Improved Foreground Detection via Block-based Classifier Cascade with Probabilistic Decision Integration

Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Reddy, Vikas, Sanderson, Conrad, Lovell, Brian C
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 18.03.2013
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analysed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
AbstractList Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analysed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Author Lovell, Brian C
Reddy, Vikas
Sanderson, Conrad
Author_xml – sequence: 1
  givenname: Vikas
  surname: Reddy
  fullname: Reddy, Vikas
– sequence: 2
  givenname: Conrad
  surname: Sanderson
  fullname: Sanderson, Conrad
– sequence: 3
  givenname: Brian
  surname: Lovell
  middlename: C
  fullname: Lovell, Brian C
BookMark eNotjzFPwzAUhC0EEqV0Z7TEnGI_x046QqBQqRIM3asX-5m6hBjstPDzCYLplrvv012w0z72xNiVFPOy1lrcYPoOx7lUQs1LacQJm4BSsqhLgHM2y3kvhABTgdZqwnar948Uj-T4MiZ6TfHQO35PA9khxJ4fA_K7Ltq3osU8lpoOcw4-UOINZouO-FcYdvwlxRbb0IU8BDvubci_81U_jEz8RV2yM49dptl_Ttlm-bBpnor18-OquV0XqKUuCGsSUDkAjyi8ATI1KBKm9WZhKiXtopTeUoWtbaUCV3oplCb0lSOQTk3Z9R92fPV5oDxs9_GQ-tG4BVGPilpJrX4Adexb4A
ContentType Paper
Copyright 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1303.4160
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a515-ea8e027d22faa0f62e6823e06bf696731c941fce7abcb132d4f1035eaf7de21d3
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:18:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515-ea8e027d22faa0f62e6823e06bf696731c941fce7abcb132d4f1035eaf7de21d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2085158315?pq-origsite=%requestingapplication%
PQID 2085158315
PQPubID 2050157
ParticipantIDs proquest_journals_2085158315
PublicationCentury 2000
PublicationDate 20130318
PublicationDateYYYYMMDD 2013-03-18
PublicationDate_xml – month: 03
  year: 2013
  text: 20130318
  day: 18
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2013
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5049222
SecondaryResourceType preprint
Snippet Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Classifiers
Computer vision
Image segmentation
Masks
Pixels
Post-processing
Subtraction
Tracking
Title Improved Foreground Detection via Block-based Classifier Cascade with Probabilistic Decision Integration
URI https://www.proquest.com/docview/2085158315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcXbRU8-cZn2YPXtdlsnidBbbGgJagHPclmdxaDkNakFj--M2mqB8GTt0AIDJtkXvvf-TF2llgsjp0xAlODWAR5kIrURZjI-THBLVyooKGW3MbjcfL0lGbt8ei6lVUufWLjqBfTnkm3jU64byeGOuZ9IkvKMFEyvJi-C2JI0V5rC9RYZV0avOV1WDcb3WXP3z0XNAczaLXYrWxGefV19VnMCYmszjE18X555CbMDDf_18AtNExPodpmK1DusPVG7GnqXfa66CSA5QTmpHMdpeXXMGtUWSWfF5pfYox7ExTiLG-4mYXD-MmvdE16ek7dW55V6AtIW0ujnvH5BayHj9oBFHi9xx6Hg8erG9ESF4RGawXoBLBMtb7vtPbwlUGU-Aq8KHdRGsVKmjSQzkCsc5NjGWsDJz0VgnaxBV9atc865aSEA8ZdIH3AWiwPwAboFRNME4iQagzIOMrhkJ0sV_Gl_Wvql59FO_r79jHb8BsshRIyOWGdWfUBp2zNzGdFXfVY93Iwzu57pON86LUfwRe7g8NX
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZggODEW7zJAY6BJun6OCAkXmJiTDvsAKcpTRwxIXXQjgE_iv-I021wQOLGgVulqlFTu_Znx_YHcJBYCo6dMZygQczDLEx56iICcjL25BaurrBiLWnGrVZyd5e2p-Bj0gvjyyonNrEy1LZvfI782HNJinqiRP306Zl71ih_ujqh0BipxQ2-v1LIVp40Lki-h1JeXXbOr_mYVYBrWoCjTpBCMSul0zqg18IokQqDKHNRGsVKmDQUzmCsM5NRqGZDJwJVR-1ii1JYRctOw0xIuh7UYKbduG3ffyV1aL8E0dXoOLSaFXasi7fe0HMuqyPCPsEPk1_5savFf_YFlmjn-gmLZZjCfAXmqnJVU67CwygXgpZ5alHfmZJbdoGDqq4sZ8OeZmfkpR-5d9KWVcyfPUcIgJ3r0ncEMJ9_Zu2CrJmvDvbDqun5Ed0Qa4xHaND1GnT-Ym_rUMv7OW4Ac6GQSNFkFqINya4nBHQ8x6sxKOIow03YmYipO_7vy-63jLZ-v70P89ed22a32WjdbMOCrEg2FBfJDtQGxQvuwqwZDnplsTfWMQbdP5bpJ63SEqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Foreground+Detection+via+Block-based+Classifier+Cascade+with+Probabilistic+Decision+Integration&rft.jtitle=arXiv.org&rft.au=Reddy%2C+Vikas&rft.au=Sanderson%2C+Conrad&rft.au=Lovell%2C+Brian+C&rft.date=2013-03-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1303.4160