Improved Foreground Detection via Block-based Classifier Cascade with Probabilistic Decision Integration
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
18.03.2013
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analysed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset. |
|---|---|
| AbstractList | Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analysed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset. |
| Author | Lovell, Brian C Reddy, Vikas Sanderson, Conrad |
| Author_xml | – sequence: 1 givenname: Vikas surname: Reddy fullname: Reddy, Vikas – sequence: 2 givenname: Conrad surname: Sanderson fullname: Sanderson, Conrad – sequence: 3 givenname: Brian surname: Lovell middlename: C fullname: Lovell, Brian C |
| BookMark | eNotjzFPwzAUhC0EEqV0Z7TEnGI_x046QqBQqRIM3asX-5m6hBjstPDzCYLplrvv012w0z72xNiVFPOy1lrcYPoOx7lUQs1LacQJm4BSsqhLgHM2y3kvhABTgdZqwnar948Uj-T4MiZ6TfHQO35PA9khxJ4fA_K7Ltq3osU8lpoOcw4-UOINZouO-FcYdvwlxRbb0IU8BDvubci_81U_jEz8RV2yM49dptl_Ttlm-bBpnor18-OquV0XqKUuCGsSUDkAjyi8ATI1KBKm9WZhKiXtopTeUoWtbaUCV3oplCb0lSOQTk3Z9R92fPV5oDxs9_GQ-tG4BVGPilpJrX4Adexb4A |
| ContentType | Paper |
| Copyright | 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1303.4160 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a515-ea8e027d22faa0f62e6823e06bf696731c941fce7abcb132d4f1035eaf7de21d3 |
| IEDL.DBID | PIMPY |
| IngestDate | Mon Jun 30 09:18:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a515-ea8e027d22faa0f62e6823e06bf696731c941fce7abcb132d4f1035eaf7de21d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2085158315?pq-origsite=%requestingapplication% |
| PQID | 2085158315 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2085158315 |
| PublicationCentury | 2000 |
| PublicationDate | 20130318 |
| PublicationDateYYYYMMDD | 2013-03-18 |
| PublicationDate_xml | – month: 03 year: 2013 text: 20130318 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2013 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.5049222 |
| SecondaryResourceType | preprint |
| Snippet | Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Classifiers Computer vision Image segmentation Masks Pixels Post-processing Subtraction Tracking |
| Title | Improved Foreground Detection via Block-based Classifier Cascade with Probabilistic Decision Integration |
| URI | https://www.proquest.com/docview/2085158315 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcXbRU8-cZn2YPXtdlsnidBbbGgJagHPclmdxaDkNakFj--M2mqB8GTt0AIDJtkXvvf-TF2llgsjp0xAlODWAR5kIrURZjI-THBLVyooKGW3MbjcfL0lGbt8ei6lVUufWLjqBfTnkm3jU64byeGOuZ9IkvKMFEyvJi-C2JI0V5rC9RYZV0avOV1WDcb3WXP3z0XNAczaLXYrWxGefV19VnMCYmszjE18X555CbMDDf_18AtNExPodpmK1DusPVG7GnqXfa66CSA5QTmpHMdpeXXMGtUWSWfF5pfYox7ExTiLG-4mYXD-MmvdE16ek7dW55V6AtIW0ujnvH5BayHj9oBFHi9xx6Hg8erG9ESF4RGawXoBLBMtb7vtPbwlUGU-Aq8KHdRGsVKmjSQzkCsc5NjGWsDJz0VgnaxBV9atc865aSEA8ZdIH3AWiwPwAboFRNME4iQagzIOMrhkJ0sV_Gl_Wvql59FO_r79jHb8BsshRIyOWGdWfUBp2zNzGdFXfVY93Iwzu57pON86LUfwRe7g8NX |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZggODEW7zJAY6BJun6OCAkXmJiTDvsAKcpTRwxIXXQjgE_iv-I021wQOLGgVulqlFTu_Znx_YHcJBYCo6dMZygQczDLEx56iICcjL25BaurrBiLWnGrVZyd5e2p-Bj0gvjyyonNrEy1LZvfI782HNJinqiRP306Zl71ih_ujqh0BipxQ2-v1LIVp40Lki-h1JeXXbOr_mYVYBrWoCjTpBCMSul0zqg18IokQqDKHNRGsVKmDQUzmCsM5NRqGZDJwJVR-1ii1JYRctOw0xIuh7UYKbduG3ffyV1aL8E0dXoOLSaFXasi7fe0HMuqyPCPsEPk1_5savFf_YFlmjn-gmLZZjCfAXmqnJVU67CwygXgpZ5alHfmZJbdoGDqq4sZ8OeZmfkpR-5d9KWVcyfPUcIgJ3r0ncEMJ9_Zu2CrJmvDvbDqun5Ed0Qa4xHaND1GnT-Ym_rUMv7OW4Ac6GQSNFkFqINya4nBHQ8x6sxKOIow03YmYipO_7vy-63jLZ-v70P89ed22a32WjdbMOCrEg2FBfJDtQGxQvuwqwZDnplsTfWMQbdP5bpJ63SEqE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Foreground+Detection+via+Block-based+Classifier+Cascade+with+Probabilistic+Decision+Integration&rft.jtitle=arXiv.org&rft.au=Reddy%2C+Vikas&rft.au=Sanderson%2C+Conrad&rft.au=Lovell%2C+Brian+C&rft.date=2013-03-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1303.4160 |