Quaternion Gradient and Hessian

The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions often require the calculation of the gradient and Hessian, however, real functions of quaternion variables are essentially non-anal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Xu, Dongpo, Mandic, Danilo P
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 13.06.2014
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions often require the calculation of the gradient and Hessian, however, real functions of quaternion variables are essentially non-analytic. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized HR (GHR) calculus, thus making possible efficient derivation of optimization algorithms directly in the quaternion field, rather than transforming the problem to the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the proposed quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are elaborated, and the results illuminate the usefulness of the GHR calculus in greatly simplifying the derivation of the quaternion least mean squares, and in quaternion least square and Newton algorithm. The proposed gradient and Hessian are also shown to enable the same generic forms as the corresponding real- and complex-valued algorithms, further illustrating the advantages in algorithm design and evaluation.
AbstractList The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions often require the calculation of the gradient and Hessian, however, real functions of quaternion variables are essentially non-analytic. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized HR (GHR) calculus, thus making possible efficient derivation of optimization algorithms directly in the quaternion field, rather than transforming the problem to the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the proposed quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are elaborated, and the results illuminate the usefulness of the GHR calculus in greatly simplifying the derivation of the quaternion least mean squares, and in quaternion least square and Newton algorithm. The proposed gradient and Hessian are also shown to enable the same generic forms as the corresponding real- and complex-valued algorithms, further illustrating the advantages in algorithm design and evaluation.
Author Mandic, Danilo P
Xu, Dongpo
Author_xml – sequence: 1
  givenname: Dongpo
  surname: Xu
  fullname: Xu, Dongpo
– sequence: 2
  givenname: Danilo
  surname: Mandic
  middlename: P
  fullname: Mandic, Danilo P
BookMark eNotzcFLwzAUgPEgCs65uzcLnlvfy8tL0qMM3QYDEXYfb20CHZJq0op_voKevtvvu1GXaUxBqTuExnhmeJT8PXw1aMA2xN5dqIUmwtobra_VqpQzAGjrNDMt1P3bLFPIaRhTtcnSDyFNlaS-2oZSBkm36irKewmr_y7V4eX5sN7W-9fNbv20r4WRa9sZNi5SJBPaTiCiA8QeBPuIsW0ZPPqTj8E6ayKdMLD2Rqx0QNSS0FI9_LEfefycQ5mO53HO6fd41OA8OW410w8FID9d
ContentType Paper
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1406.3587
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a515-6c4547f3f34e9ca0f17011d0a1df1f9950818b8fe6764f3b1e5284a6ac03393a3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:28:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515-6c4547f3f34e9ca0f17011d0a1df1f9950818b8fe6764f3b1e5284a6ac03393a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2078375925?pq-origsite=%requestingapplication%
PQID 2078375925
PQPubID 2050157
ParticipantIDs proquest_journals_2078375925
PublicationCentury 2000
PublicationDate 20140613
PublicationDateYYYYMMDD 2014-06-13
PublicationDate_xml – month: 06
  year: 2014
  text: 20140613
  day: 13
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5375684
SecondaryResourceType preprint
Snippet The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Calculus
Derivation
Least mean squares
Least mean squares algorithm
Optimization
Quaternions
Real variables
Title Quaternion Gradient and Hessian
URI https://www.proquest.com/docview/2078375925
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CFiQm3uJRSgZWQxzHj0xIIEqRoArQoUyV7dhSl7QkbcXnY5sUBiQWRsuLn_deHx-dA3ChuUgpJxb5_IFSowokJMNIx9LQgiQ8k0HE9ZEPBmI0yvIGcKsbWuUqJoZAXUy1x8g9EuLeUjRL6PXsHXnXKP-72lhorEPbqyTgQN17_cZYEsZdxUy-fieDdNeVrD4mSxceYnZJqOC_InBIK73t_w5oB9q5nJlqF9ZMuQebgc6p6304f15Ij_S5RY_uq8DqmkeyLKK-Z73K8gCGvbvhbR81VghIuoIDMe11tyyxJDWZlrH1Kuq4iCUuLLaZd3LFQglrGGepJQob6tKOZFLHhGREkkNoldPSHEEULBCEYZQU1N3XWFkZK6IEo4lWqTLH0FlNd9wc53r8M9eTv7tPYctVFKnnUmHSgda8Wpgz2NDL-aSuutC-uRvkL92wS66VPzzlb5_eZ5tL
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_EoNAOMhiSOHWdADEBp1VIV0aFb5Di21CUtSVvgR_Efsd0GBiS2DsyWLD_O353Pn-8DuBAhC0iIFTL-AwUySRHj1EPC5ZKk2A8jbou4dsNejw2HUb8Cn-VfGEOrLDHRAnU6FiZHbjIh-i5FIp_cTl6RUY0yr6ulhMbCLDry401f2Yqb9r3e30vfbz4M7lpoqSqAuPbdiApTwkphhQMZCe4qU5DcS13upcpTkRFF9VjClKQhDRROPEk0gnPKhYtxhDnW3a5BTUcRfmSZgi_fKR2fhjpAx4vHUFsp7Jrn76O5RiOXXmHCwl-Ab71Yc_ufzX8Han0-kfkuVGS2BxuWrCqKfWg8z7jJY2qTch5zy1mbOjxLnZbh9PLsAAarGNIhVLNxJo_AsQIPTFKCU6LRyE0UdxOcMEp8kQSJPIZ6ubrx8rAW8c_Snvzd3IDN1uCpG3fbvc4pbOnYKTCsMQ_XoTrNZ_IM1sV8Oiryc2sYDsQr3ogvudHyEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quaternion+Gradient+and+Hessian&rft.jtitle=arXiv.org&rft.au=Xu%2C+Dongpo&rft.au=Mandic%2C+Danilo+P&rft.date=2014-06-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1406.3587