b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs
A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous i...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
10.01.2014
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. |
|---|---|
| AbstractList | A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. |
| Author | Stein, Maya Valencia-Pabon, Mario Bonomo, Flavia Schaudt, Oliver |
| Author_xml | – sequence: 1 givenname: Flavia surname: Bonomo fullname: Bonomo, Flavia – sequence: 2 givenname: Oliver surname: Schaudt fullname: Schaudt, Oliver – sequence: 3 givenname: Maya surname: Stein fullname: Stein, Maya – sequence: 4 givenname: Mario surname: Valencia-Pabon fullname: Valencia-Pabon, Mario |
| BookMark | eNotjUtLAzEUhYMoWGv3LgOuU_O6M8lSii8oWmj35c5Mpk0ZkzGZFv33jtTVgXM-vnNDLkMMjpA7wefaAPAHTN_-NBdqLIwS6oJMpFKCGS3lNZnlfOCcy6KUAGpC1hWrYxeTDzvqM31fsT2mhsZA68gq32Ma_ODoLmG_zxRDQ_vY_Qz-09EcuxNWnfuDh-TcKDpjt-SqxS672X9Oyeb5abN4ZcuPl7fF45IhCGBCIW9MrUVdFoilAC6t5LUp2qYCZxpTajlO1toCC2eVVGi1s1xYsFi1oKbk_qztU_w6ujxsD_GYwvi4lbwELYFrUL9aPlIk |
| ContentType | Paper |
| Copyright | 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1310.8313 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a515-13a0d8c41c76aa71502920c86fdb5e8d8742c769996a6e9323a94e901959abf53 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:34:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a515-13a0d8c41c76aa71502920c86fdb5e8d8742c769996a6e9323a94e901959abf53 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2075425045?pq-origsite=%requestingapplication% |
| PQID | 2075425045 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2075425045 |
| PublicationCentury | 2000 |
| PublicationDate | 20140110 |
| PublicationDateYYYYMMDD | 2014-01-10 |
| PublicationDate_xml | – month: 01 year: 2014 text: 20140110 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2014 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.5261335 |
| SecondaryResourceType | preprint |
| Snippet | A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Color Coloring Computing time Dynamic programming Graph theory Graphs Polynomials Stability Stability augmentation Trees (mathematics) |
| Title | b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs |
| URI | https://www.proquest.com/docview/2075425045 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA66KXjyGz_myMFrZ7OmTXoSlImCluJ2mKeRJikMpK3tHPrvfd-sU_DgxWNJKCVN3jzv1_MQcsmE0CbGtl-Abh5nRnmZ9BV2gXBAx3kwzB1l_qNIEjmdxmkbcGvassq1TXSG2pQaY-QYCQk58m2F19Wbh6pRmF1tJTQ2SRdZEpgr3Rt_x1iGkQDEHKyyk46660rVH_PlgAGoGcgANQ1-WWB3rdzt_veD9kg3VZWt98mGLQ7Itivn1M0hGWceslFjzI7OG5qkHjZX0bKgugRfuML9srDUsVU3VBWGVuXrJ-rMU9iLS2ynwsmYsYYXraYdkcndaHJ777XyCZ4CkOKxQPlGas60iJQSAPxQmErLKDdZaKWR4BTDEDo8KrIA4wIVcxtjA2GssjwMjkmnKAt7QqjECcK3SuSWM2kAMwKwiCUPfV8xnp2S3nqJZu0RaGY_63P29_A52QEUgrUwcCf0SGdRv9sLsqWXi3lT90n3ZpSkz333Z-EpfXhKX74AN_Gstg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHGlLztDIgBqFq1RJXaoVvkxI5UCZKQhEJ_FP-Ru7QBiYGtA7NPlqzz3X33JuTKYCySHrb9AnTTbEMKLeS6wC4QG9BxbJlxNTJ_yHyfT6feqEE-614YLKusdWKlqGUaYYwcIyGOjfO2nLvsVcOtUZhdrVdoLL_FQC3ewWUrbvsPwN9r0-w-Tu572mqrgCbAdmuGJXTJI9uImCsEAzyE-5oi7sYydBSXHHxFOEI_QLgK0I0lPFt52FfniTDGJRGg8VuAIkyvqhQcf4d0TJcBQLeWydBqUtiNyD9m844BGKrDLVyh8EvhV1asu_PP3r9LWiORqXyPNFSyTzarYtWoOCDjUMNZ2xiRpLOC-iMNW8domtAoBU8_Q2koFa1mcRdUJJJm6fOinL0oCpI2x2YxJMZ8PFy0JDskk3U844g0kzRRx4RyJGC6EixWtsElIGKATR63HV0Xhh2ekHbNkWAl4EXww47Tv48vyVZv8jQMhn1_cEa2AW9h1Q9YvzZplvmbOicb0bycFflF9ZkoCdbMvC8pXAK8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=b-coloring+is+NP-hard+on+co-bipartite+graphs+and+polytime+solvable+on+tree-cographs&rft.jtitle=arXiv.org&rft.au=Bonomo%2C+Flavia&rft.au=Schaudt%2C+Oliver&rft.au=Stein%2C+Maya&rft.au=Valencia-Pabon%2C+Mario&rft.date=2014-01-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1310.8313 |