Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers
Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these...
Uloženo v:
| Vydáno v: | ACS nano Ročník 12; číslo 7; s. 6378 - 6388 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Chemical Society
24.07.2018
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3–15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young’s modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization. |
|---|---|
| AbstractList | Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization. Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization. |
| Author | Brouzet, Christophe Gowda.V, Krishne Chen, Pan Larsson, Per Tomas Wågberg, Lars Mittal, Nitesh Ansari, Farhan Roth, Stephan V Lundell, Fredrik Kotov, Nicholas A Söderberg, L. Daniel |
| AuthorAffiliation | Linné FLOW Centre, KTH Mechanics University of Michigan Stanford University Department of Fibre and Polymer Technology Department of Chemical Engineering Wallenberg Wood Science Centre Department of Materials Science and Engineering |
| AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Linné FLOW Centre, KTH Mechanics – name: University of Michigan – name: Wallenberg Wood Science Centre – name: Stanford University – name: Department of Fibre and Polymer Technology – name: Department of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Nitesh surname: Mittal fullname: Mittal, Nitesh – sequence: 2 givenname: Farhan orcidid: 0000-0001-7870-6327 surname: Ansari fullname: Ansari, Farhan organization: Stanford University – sequence: 3 givenname: Krishne surname: Gowda.V fullname: Gowda.V, Krishne – sequence: 4 givenname: Christophe orcidid: 0000-0003-3131-3942 surname: Brouzet fullname: Brouzet, Christophe – sequence: 5 givenname: Pan surname: Chen fullname: Chen, Pan – sequence: 6 givenname: Per Tomas surname: Larsson fullname: Larsson, Per Tomas – sequence: 7 givenname: Stephan V surname: Roth fullname: Roth, Stephan V – sequence: 8 givenname: Fredrik surname: Lundell fullname: Lundell, Fredrik – sequence: 9 givenname: Lars orcidid: 0000-0001-8622-0386 surname: Wågberg fullname: Wågberg, Lars – sequence: 10 givenname: Nicholas A orcidid: 0000-0002-6864-5804 surname: Kotov fullname: Kotov, Nicholas A organization: University of Michigan – sequence: 11 givenname: L. Daniel orcidid: 0000-0003-3737-0091 surname: Söderberg fullname: Söderberg, L. Daniel email: dansod@kth.se |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29741364$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229288$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33852$$DView record from Swedish Publication Index |
| BookMark | eNqFkd1rFDEUxYNU7JfPvkkeBZk2H_OR8W1ZrS10FUoV30KSvWnTZpNtMoP0vzfDTisIxad74f7O4XLOIdoLMQBC7yg5oYTRU2VyUCGeCE0oEfUrdEB73lZEtL_2nveG7qPDnO8IaTrRtW_QPuu7mvK2PkDjavSDy0Z5wMsYhhQ9jhZ_K6YGvB99zIAXOcNG-8dP-DqpkC2k5MINvoKNSvdKF-nE70zOnE7O4xWYWxWcyXiIeKVM-nuGlI_Ra6t8hrfzPEI_zr5cL8-ry-9fL5aLy0o1tB4qy7i2TDBjrKAghNKkpR3rGSGMNH3XmdaswfKGQlf3HeFKABGwNpZoAorxI_Rx55t_w3bUcptceflRRuXkZ_dzIWO6kclJzkUz0dX_6fvhVrLyghCF_7Djtyk-jJAHuSlJltRUgDhmyQhvS-CMtgV9P6Oj3sD62fqpiAI0O2BKKiew0rhBDW6qRDkvKZFT4XIuXM6FF93pP7on65cVcyblIO_imEJp4EX6DzBkv8w |
| CitedBy_id | crossref_primary_10_1002_adfm_202403952 crossref_primary_10_1002_adfm_202501380 crossref_primary_10_1002_adma_202413564 crossref_primary_10_1016_j_ijbiomac_2024_132129 crossref_primary_10_1002_admt_201800557 crossref_primary_10_1016_j_jcis_2023_04_081 crossref_primary_10_3103_S1062873822100070 crossref_primary_10_1007_s42765_023_00265_9 crossref_primary_10_1016_j_jmps_2021_104560 crossref_primary_10_1016_j_carbpol_2022_119945 crossref_primary_10_1016_j_jclepro_2024_142073 crossref_primary_10_1016_j_compositesa_2021_106757 crossref_primary_10_1016_j_ijbiomac_2025_143657 crossref_primary_10_1002_aelm_202100137 crossref_primary_10_1021_jacs_4c18620 crossref_primary_10_1016_j_indcrop_2023_117650 crossref_primary_10_1038_s41893_021_00831_2 crossref_primary_10_1016_j_progpolymsci_2021_101418 crossref_primary_10_1016_j_foodhyd_2023_108947 crossref_primary_10_1016_j_compositesb_2022_110078 crossref_primary_10_3390_nano11020490 crossref_primary_10_1002_adfm_202108556 crossref_primary_10_1016_j_pmatsci_2025_101430 crossref_primary_10_1016_j_apsusc_2024_161877 crossref_primary_10_1038_s41467_019_13053_0 crossref_primary_10_1002_mba2_70005 crossref_primary_10_1039_D0RA06178F crossref_primary_10_1016_j_chemosphere_2023_139213 crossref_primary_10_1002_pol_20230126 crossref_primary_10_1016_j_mtchem_2022_101247 crossref_primary_10_1016_j_indcrop_2022_115882 crossref_primary_10_1016_j_matdes_2021_110254 crossref_primary_10_1016_j_seppur_2025_132590 crossref_primary_10_1007_s10570_021_03771_4 crossref_primary_10_1016_j_carbpol_2023_120881 crossref_primary_10_1007_s10853_020_05676_2 crossref_primary_10_1016_j_ijbiomac_2022_11_292 crossref_primary_10_1002_admt_202400847 crossref_primary_10_1080_15583724_2022_2106491 crossref_primary_10_1002_adma_202002504 crossref_primary_10_3390_coatings14111421 crossref_primary_10_1007_s10570_022_04937_4 crossref_primary_10_1016_j_carbpol_2022_120008 crossref_primary_10_1016_j_nantod_2022_101485 crossref_primary_10_1007_s10570_021_03697_x crossref_primary_10_1007_s10570_022_04492_y crossref_primary_10_1002_adfm_202313204 crossref_primary_10_1002_adma_202303255 crossref_primary_10_3390_molecules25194420 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119155 crossref_primary_10_1016_j_pmatsci_2021_100916 crossref_primary_10_1002_adma_201906308 crossref_primary_10_1039_D1MH00135C crossref_primary_10_1002_fld_4970 crossref_primary_10_1002_smll_202311966 crossref_primary_10_3390_nano12071139 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105413 crossref_primary_10_1007_s10570_021_03991_8 crossref_primary_10_1016_j_carbpol_2022_120355 crossref_primary_10_1038_s41586_020_03167_7 crossref_primary_10_1016_j_jece_2022_107754 crossref_primary_10_1007_s10570_021_04160_7 crossref_primary_10_1002_cssc_202201955 crossref_primary_10_1016_j_carbpol_2022_119133 crossref_primary_10_1515_ntrev_2024_0006 crossref_primary_10_1002_adma_202001085 crossref_primary_10_1016_j_carbpol_2020_116466 crossref_primary_10_1007_s10570_025_06489_9 crossref_primary_10_1007_s40843_019_9421_y crossref_primary_10_3390_polym12092113 crossref_primary_10_1038_s41467_025_60242_1 crossref_primary_10_1007_s10570_022_04577_8 crossref_primary_10_1103_PhysRevFluids_6_094202 crossref_primary_10_1002_adfm_202208074 crossref_primary_10_1016_j_compositesa_2025_109153 crossref_primary_10_1016_j_ijbiomac_2024_131592 crossref_primary_10_1007_s10570_019_02642_3 crossref_primary_10_1016_j_cej_2024_154105 crossref_primary_10_1021_acs_biomac_5c00128 crossref_primary_10_1002_adma_202504372 crossref_primary_10_1039_D3NR06126D crossref_primary_10_1002_ange_201910603 crossref_primary_10_1002_smtd_202301304 crossref_primary_10_1002_advs_202103965 crossref_primary_10_1007_s10570_023_05217_5 crossref_primary_10_1016_j_cej_2023_147997 crossref_primary_10_1002_adma_201901115 crossref_primary_10_1007_s10570_024_06084_4 crossref_primary_10_1016_j_compositesb_2024_111369 crossref_primary_10_1016_j_colsurfa_2023_132195 crossref_primary_10_1002_adma_202000657 crossref_primary_10_1007_s10570_024_05935_4 crossref_primary_10_1016_j_cej_2022_135675 crossref_primary_10_1016_j_mtnano_2024_100476 crossref_primary_10_1007_s10570_021_04009_z crossref_primary_10_1016_j_colsurfa_2024_134673 crossref_primary_10_1016_j_conbuildmat_2024_139765 crossref_primary_10_1021_acsami_4c08879 crossref_primary_10_1002_pol_20230440 crossref_primary_10_1126_science_ado7201 crossref_primary_10_1021_acs_nanolett_5c01019 crossref_primary_10_1631_jzus_B23d0003 crossref_primary_10_1038_s41598_019_50477_6 crossref_primary_10_1080_19475411_2025_2483819 crossref_primary_10_1002_adhm_201901552 crossref_primary_10_1016_j_carbpol_2020_116892 crossref_primary_10_1002_adfm_202008552 crossref_primary_10_1186_s13068_021_02010_z crossref_primary_10_1016_j_ces_2023_119320 crossref_primary_10_3390_polym14050881 crossref_primary_10_1002_advs_202100559 crossref_primary_10_1016_j_cej_2021_128981 crossref_primary_10_1002_admi_202201962 crossref_primary_10_1016_j_ijbiomac_2024_135925 crossref_primary_10_1088_1361_6528_ac6fef crossref_primary_10_1038_s41598_020_68642_7 crossref_primary_10_1007_s10570_018_2029_3 crossref_primary_10_1016_j_jobe_2025_112068 crossref_primary_10_1038_s41598_024_69346_y crossref_primary_10_1016_j_engstruct_2024_118339 crossref_primary_10_3390_ma14185137 crossref_primary_10_1126_science_aay9033 crossref_primary_10_1002_smll_202403443 crossref_primary_10_1007_s42423_022_00107_7 crossref_primary_10_1016_j_carbon_2020_05_080 crossref_primary_10_1016_j_cej_2024_151175 crossref_primary_10_1038_s41598_019_53215_0 crossref_primary_10_1038_s41893_025_01523_x crossref_primary_10_1016_j_indcrop_2023_117503 crossref_primary_10_1017_jfm_2019_566 crossref_primary_10_3390_app10165565 crossref_primary_10_1016_j_carbpol_2018_07_028 crossref_primary_10_1016_j_matpr_2020_12_971 crossref_primary_10_1016_j_conbuildmat_2025_139921 crossref_primary_10_1007_s10570_019_02496_9 crossref_primary_10_1002_mame_202100899 crossref_primary_10_1002_mabi_201800253 crossref_primary_10_1016_j_ijbiomac_2021_03_081 crossref_primary_10_1016_j_carbpol_2020_116664 crossref_primary_10_1038_s41563_022_01384_1 crossref_primary_10_1002_adma_202306451 crossref_primary_10_1016_j_compositesa_2024_108029 crossref_primary_10_1002_adma_201902930 crossref_primary_10_1016_j_coco_2019_03_004 crossref_primary_10_1039_C8MH01566J crossref_primary_10_1134_S1063784223900449 crossref_primary_10_1007_s10570_020_03543_6 crossref_primary_10_3390_ma16103856 crossref_primary_10_1002_cjoc_202300328 crossref_primary_10_1016_j_carbpol_2019_115609 crossref_primary_10_1016_j_jobab_2024_11_006 crossref_primary_10_1016_j_eurpolymj_2018_12_035 crossref_primary_10_3390_molecules27134167 crossref_primary_10_1016_j_carbpol_2020_115866 crossref_primary_10_3390_nano10030478 crossref_primary_10_1016_j_colcom_2020_100306 crossref_primary_10_1039_D5MH01003A crossref_primary_10_1002_adfm_202208661 crossref_primary_10_1016_j_carbpol_2022_119681 crossref_primary_10_1016_j_mtcomm_2022_104549 crossref_primary_10_1002_adma_202209685 crossref_primary_10_3390_app8122463 crossref_primary_10_1073_pnas_2316396121 crossref_primary_10_1002_app_48836 crossref_primary_10_1016_j_cej_2022_136203 crossref_primary_10_1007_s12221_022_4762_3 crossref_primary_10_1016_j_jcis_2021_04_015 crossref_primary_10_1002_smll_201904190 crossref_primary_10_1002_app_56130 crossref_primary_10_1039_C8NR08194H crossref_primary_10_1002_adfm_202102184 crossref_primary_10_1002_anie_201910603 crossref_primary_10_1016_j_measurement_2024_115499 crossref_primary_10_1016_j_polymer_2024_127119 crossref_primary_10_1016_j_rser_2025_115792 crossref_primary_10_1093_nsr_nwae270 crossref_primary_10_1098_rsta_2020_0331 crossref_primary_10_1016_j_fuel_2018_09_105 crossref_primary_10_1002_adma_202412858 crossref_primary_10_1016_j_mattod_2023_04_006 crossref_primary_10_1016_j_indcrop_2022_115699 crossref_primary_10_1016_j_inoche_2023_111940 crossref_primary_10_1021_jacs_1c06502 crossref_primary_10_1016_j_carbon_2024_119397 crossref_primary_10_1002_mame_201800450 crossref_primary_10_3390_gels8110685 crossref_primary_10_3390_coatings10121210 crossref_primary_10_1016_j_jcp_2023_112473 crossref_primary_10_1016_j_gee_2025_03_010 crossref_primary_10_3390_app9235119 crossref_primary_10_1021_acsnano_4c17158 crossref_primary_10_1002_jctb_7775 crossref_primary_10_1016_j_indcrop_2023_116292 crossref_primary_10_3390_polym11050873 crossref_primary_10_4028_p_298NOq crossref_primary_10_1016_j_taml_2021_100304 crossref_primary_10_1016_j_jallcom_2025_183277 crossref_primary_10_1002_EXP_20220075 crossref_primary_10_1146_annurev_matsci_080921_083655 crossref_primary_10_1007_s10570_022_04922_x crossref_primary_10_1016_j_jocs_2025_102536 crossref_primary_10_1002_admt_202001180 crossref_primary_10_1016_j_carbpol_2023_121229 crossref_primary_10_1007_s11837_019_03340_y crossref_primary_10_3390_molecules25010179 crossref_primary_10_1002_adma_202407712 crossref_primary_10_1016_j_ijbiomac_2019_12_241 crossref_primary_10_1002_adma_201804953 crossref_primary_10_1016_j_compscitech_2020_108395 crossref_primary_10_1007_s10853_023_08422_6 crossref_primary_10_1002_smll_202307504 crossref_primary_10_1021_acs_jcim_5c01204 crossref_primary_10_1002_smll_202501880 crossref_primary_10_1016_j_ijbiomac_2023_125875 crossref_primary_10_1016_j_jece_2020_104908 crossref_primary_10_1098_rsos_200967 crossref_primary_10_1016_j_compscitech_2020_108151 crossref_primary_10_1002_adma_202415787 crossref_primary_10_1007_s10570_019_02889_w crossref_primary_10_1002_adfm_202308361 crossref_primary_10_1002_admt_202100124 crossref_primary_10_1002_smll_202311832 crossref_primary_10_1002_adma_202001238 crossref_primary_10_1017_flo_2025_8 crossref_primary_10_1016_j_compositesb_2020_108184 crossref_primary_10_1016_j_eml_2022_101947 crossref_primary_10_59717_j_xinn_mater_2023_100010 crossref_primary_10_1016_j_indcrop_2023_117455 crossref_primary_10_1002_adma_201906886 crossref_primary_10_1038_s41467_023_41738_0 crossref_primary_10_1016_j_carbpol_2022_119919 crossref_primary_10_1016_j_compositesb_2024_111643 crossref_primary_10_1016_j_compositesa_2020_105863 crossref_primary_10_3390_pr8030329 crossref_primary_10_3390_ma13102296 crossref_primary_10_1002_macp_202200249 crossref_primary_10_1016_j_ijbiomac_2025_143904 crossref_primary_10_1002_adfm_201905898 crossref_primary_10_1016_j_compscitech_2021_108795 crossref_primary_10_1002_admi_201900333 crossref_primary_10_1016_j_indcrop_2022_114599 crossref_primary_10_1038_s41598_023_31655_z crossref_primary_10_1007_s10570_020_03566_z crossref_primary_10_3390_polym14010143 crossref_primary_10_1002_advs_202509321 crossref_primary_10_1016_j_matdes_2024_113417 crossref_primary_10_1016_j_carbpol_2022_120320 crossref_primary_10_1093_nsr_nwz077 crossref_primary_10_1134_S106378502317008X crossref_primary_10_1002_adma_202404071 crossref_primary_10_1016_j_carbpol_2024_122785 crossref_primary_10_3389_fbioe_2021_608826 crossref_primary_10_1016_j_matt_2019_04_005 crossref_primary_10_1088_2399_7532_ac4c95 crossref_primary_10_1007_s40820_019_0304_y crossref_primary_10_1016_j_cej_2020_127092 crossref_primary_10_1016_j_cclet_2023_108817 crossref_primary_10_1002_nadc_20184080604 crossref_primary_10_1016_j_nanoen_2025_110649 crossref_primary_10_1016_j_matdes_2022_111431 crossref_primary_10_1107_S205225252300204X crossref_primary_10_3390_ma16113962 crossref_primary_10_1016_j_cej_2019_123527 crossref_primary_10_1002_smll_201900019 crossref_primary_10_1002_smll_202411339 crossref_primary_10_3390_buildings14072029 crossref_primary_10_1016_j_mtnano_2022_100256 crossref_primary_10_3390_nano11113008 crossref_primary_10_1016_j_carbpol_2021_118507 crossref_primary_10_1016_j_cej_2020_126793 crossref_primary_10_1007_s10570_023_05605_x crossref_primary_10_1039_D1RA03474J crossref_primary_10_1002_cben_202000002 crossref_primary_10_1021_acs_biomac_5c00551 |
| Cites_doi | 10.1021/ct700301q 10.1021/bm800038n 10.1021/acs.macromol.7b02642 10.1098/rsif.2012.0341 10.1039/C6CP00624H 10.1103/PhysRevE.79.061401 10.1021/ma0474224 10.1039/C0NR00583E 10.1002/jcc.20820 10.1038/nnano.2009.302 10.1073/pnas.1219340110 10.1098/rspa.1995.0075 10.1038/nmat2704 10.1039/f29787400560 10.1016/S0008-6215(98)00236-5 10.1126/science.1164865 10.1038/ncomms8259 10.1016/S0008-6215(97)00130-4 10.1021/acs.iecr.6b04010 10.1126/science.227.4687.636 10.1039/C7TA02006F 10.1016/0015-0568(75)90012-3 10.1126/science.283.5408.1724 10.1107/S0909049512016895 10.1007/BF00652253 10.1177/073168448400300201 10.1039/C6LC00690F 10.1021/ja0257319 10.1016/j.pmatsci.2007.05.002 10.1016/0263-7855(96)00018-5 10.1021/bm301674e 10.1038/ncomms5018 10.1126/science.276.5321.2016 10.1021/bm101510r 10.1126/science.aaa6502 10.1126/science.290.5495.1331 10.1007/s10086-009-1029-1 10.1038/nmat4089 10.1038/nmat747 10.1021/acsnano.7b02305 10.1126/science.1228061 10.1073/pnas.1617260114 10.1007/s10570-009-9314-0 10.1017/S002211209200171X 10.1038/srep30695 10.1021/la201947x 10.1126/science.1143176 10.1002/adma.201404565 10.1063/1.1940031 10.1016/j.carbon.2007.11.001 10.1038/ncomms8564 10.1063/1.857608 10.1088/0022-3727/46/11/114002 10.1021/bm401451m 10.1038/natrevmats.2016.7 10.1126/science.1099074 10.1021/acsami.5b03091 10.1038/nnano.2007.150 10.1039/C5SM02310F 10.1002/adma.201100580 10.1126/science.1157996 10.1016/0301-9322(74)90018-4 10.1073/pnas.1502870112 10.1103/PhysRevLett.84.290 10.1038/nmat1019 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 ADTPV AFDQA AOWAS D8T D8V ZZAVC |
| DOI | 10.1021/acsnano.8b01084 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1936-086X |
| EndPage | 6388 |
| ExternalDocumentID | oai_DiVA_org_ri_33852 oai_DiVA_org_kth_229288 29741364 10_1021_acsnano_8b01084 d019163006 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 ADTPV AFDQA AOWAS D8T D8V LG6 ZZAVC |
| ID | FETCH-LOGICAL-a514t-f23bf282ccf81e88ab061729200205977c6cdef351e749703a8e08edcf0b0ea23 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 417 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440505000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Wed Sep 24 03:40:01 EDT 2025 Tue Nov 04 16:21:46 EST 2025 Thu Jul 10 18:02:58 EDT 2025 Thu Jan 02 23:00:33 EST 2025 Sat Nov 29 02:50:13 EST 2025 Tue Nov 18 21:21:11 EST 2025 Thu Aug 27 13:42:58 EDT 2020 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | cellulose nanofibrils self-organization bio-based materials microfluidics nanocomposites mechanical properties |
| Language | English |
| License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a514t-f23bf282ccf81e88ab061729200205977c6cdef351e749703a8e08edcf0b0ea23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8622-0386 0000-0001-7870-6327 0000-0003-3131-3942 0000-0003-3737-0091 0000-0002-6864-5804 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229288 |
| PMID | 29741364 |
| PQID | 2036787216 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_ri_33852 swepub_primary_oai_DiVA_org_kth_229288 proquest_miscellaneous_2036787216 pubmed_primary_29741364 crossref_citationtrail_10_1021_acsnano_8b01084 crossref_primary_10_1021_acsnano_8b01084 acs_journals_10_1021_acsnano_8b01084 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-24 |
| PublicationDateYYYYMMDD | 2018-07-24 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2018 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 Doi M. (ref66/cit66) 1988 |
| References_xml | – ident: ref61/cit61 doi: 10.1021/ct700301q – ident: ref30/cit30 doi: 10.1021/bm800038n – ident: ref50/cit50 doi: 10.1021/acs.macromol.7b02642 – ident: ref5/cit5 doi: 10.1098/rsif.2012.0341 – ident: ref64/cit64 doi: 10.1039/C6CP00624H – ident: ref16/cit16 doi: 10.1103/PhysRevE.79.061401 – ident: ref19/cit19 doi: 10.1021/ma0474224 – ident: ref53/cit53 doi: 10.1039/C0NR00583E – ident: ref62/cit62 doi: 10.1002/jcc.20820 – ident: ref12/cit12 doi: 10.1038/nnano.2009.302 – ident: ref17/cit17 doi: 10.1073/pnas.1219340110 – ident: ref7/cit7 doi: 10.1098/rspa.1995.0075 – ident: ref33/cit33 doi: 10.1038/nmat2704 – ident: ref45/cit45 doi: 10.1039/f29787400560 – ident: ref56/cit56 doi: 10.1016/S0008-6215(98)00236-5 – ident: ref1/cit1 doi: 10.1126/science.1164865 – ident: ref28/cit28 doi: 10.1038/ncomms8259 – ident: ref55/cit55 doi: 10.1016/S0008-6215(97)00130-4 – ident: ref24/cit24 doi: 10.1021/acs.iecr.6b04010 – ident: ref6/cit6 doi: 10.1126/science.227.4687.636 – ident: ref9/cit9 doi: 10.1039/C7TA02006F – ident: ref67/cit67 doi: 10.1016/0015-0568(75)90012-3 – ident: ref20/cit20 doi: 10.1126/science.283.5408.1724 – ident: ref57/cit57 doi: 10.1107/S0909049512016895 – ident: ref58/cit58 doi: 10.1007/BF00652253 – ident: ref15/cit15 doi: 10.1177/073168448400300201 – ident: ref18/cit18 doi: 10.1039/C6LC00690F – ident: ref59/cit59 doi: 10.1021/ja0257319 – ident: ref39/cit39 doi: 10.1016/j.pmatsci.2007.05.002 – ident: ref63/cit63 doi: 10.1016/0263-7855(96)00018-5 – ident: ref8/cit8 doi: 10.1021/bm301674e – ident: ref13/cit13 doi: 10.1038/ncomms5018 – ident: ref21/cit21 doi: 10.1126/science.276.5321.2016 – ident: ref35/cit35 doi: 10.1021/bm101510r – ident: ref41/cit41 doi: 10.1126/science.aaa6502 – ident: ref43/cit43 doi: 10.1126/science.290.5495.1331 – ident: ref60/cit60 doi: 10.1007/s10086-009-1029-1 – ident: ref65/cit65 – ident: ref3/cit3 doi: 10.1038/nmat4089 – ident: ref29/cit29 doi: 10.1038/nmat747 – ident: ref37/cit37 doi: 10.1021/acsnano.7b02305 – volume-title: The Theory of Polymer Dynamics year: 1988 ident: ref66/cit66 – ident: ref40/cit40 doi: 10.1126/science.1228061 – ident: ref11/cit11 doi: 10.1073/pnas.1617260114 – ident: ref49/cit49 doi: 10.1007/s10570-009-9314-0 – ident: ref47/cit47 doi: 10.1017/S002211209200171X – ident: ref38/cit38 doi: 10.1038/srep30695 – ident: ref22/cit22 doi: 10.1021/la201947x – ident: ref4/cit4 doi: 10.1126/science.1143176 – ident: ref54/cit54 doi: 10.1002/adma.201404565 – ident: ref46/cit46 doi: 10.1063/1.1940031 – ident: ref26/cit26 doi: 10.1016/j.carbon.2007.11.001 – ident: ref14/cit14 doi: 10.1038/ncomms8564 – ident: ref48/cit48 doi: 10.1063/1.857608 – ident: ref23/cit23 doi: 10.1088/0022-3727/46/11/114002 – ident: ref27/cit27 doi: 10.1021/bm401451m – ident: ref2/cit2 doi: 10.1038/natrevmats.2016.7 – ident: ref42/cit42 doi: 10.1126/science.1099074 – ident: ref36/cit36 doi: 10.1021/acsami.5b03091 – ident: ref10/cit10 doi: 10.1038/nnano.2007.150 – ident: ref51/cit51 doi: 10.1039/C5SM02310F – ident: ref34/cit34 doi: 10.1002/adma.201100580 – ident: ref25/cit25 doi: 10.1126/science.1157996 – ident: ref44/cit44 doi: 10.1016/0301-9322(74)90018-4 – ident: ref32/cit32 doi: 10.1073/pnas.1502870112 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.84.290 – ident: ref31/cit31 doi: 10.1038/nmat1019 |
| SSID | ssj0057876 |
| Score | 2.6836708 |
| Snippet | Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high... |
| SourceID | swepub proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6378 |
| SubjectTerms | bio-based materials cellulose nanofibrils Engineering Mechanics Fiber- och polymervetenskap Fibre and Polymer Science Fysik mechanical properties microfluidics nanocomposites nanocompositesbio-based materials Physics self-organization selforganization Teknisk mekanik |
| Title | Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers |
| URI | http://dx.doi.org/10.1021/acsnano.8b01084 https://www.ncbi.nlm.nih.gov/pubmed/29741364 https://www.proquest.com/docview/2036787216 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229288 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33852 |
| Volume | 12 |
| WOSCitedRecordID | wos000440505000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-086X databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V2kM5QD9hgSJXQlUvoYntJLPcVgurHgqq-qW9WY7jtCuWBG12kfrvO5NktxRE1Z5tj-KZZ_s5Yz8DHKIPFVqpAp_H_UBrqwNirRigdHkW29hp20T6Q3p-juNx_-NvsejbGXwZvbOuLm1ZHWFGWwfUa_BQEsllMA-Gn5eTLuMuaRPItEEmFrFS8bljgJchV_-5DN3hlreEQ5vFZrT1H5_5BDY7RikGLQSewgNfPoONGzqDz2HRXLOtKRxeDNuz6aIqBM2sFf-4X0yr2gtO_15m05_Holm_CpZsLL-LT_7Szi74glVTvzUy4osCU3Hm-d7wxNViXokzy11dFhOrfAFfR6dfhu-D7r2FwBJtmgeFVFlBWzDnCow8os0aftPncxwh69S5xOW-UHHkU92nqcJSpNHnrgiz0FPAX8J6WZV-B0SUOqkzqQpMrVY2tGRW5wn6mOAQK9-DQ3KY6cZLbZpUuIxM50XTebEHR8soGddplvPTGdP7G7xdNbhq5Trur_p6GXZDQ4rdbUtfLWrDuVnCk4ySHmy3eFgZk4TkSCXU-k0LkFUJ63SfTL4NDKHCXMx_GEmeQ6Se_q3ibGKUwlju_ptD9uAxMTbkn8tS78P6fLbwr-CRuyYQzQ5gLR3jQTMwfgEepwqB |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDQl42AYM6BjDSBPiJVtiO6nLW9VRDdFWCAbam-U4zqjWJahpkfbf785Jyo9pCF5j--TcffadfbkvAAfKhUIZLgKXxb1ASiMDjFpVoLjN0tjEVhpv6VF3MlFnZ72PaxC2tTA4iQolVT6J_5NdIDrCZ4UpykOV4glCyTuwEaNzJWT3B5_bvZfgl9R5ZDwnYzCxIvO5IYC8ka1-90Y3Qsw_-EO9zxlu_f9st2GziS9ZvwbEQ1hzxSN48Avr4GNY-qLbCo3j2KD-Up2VOcN9tqRr_OWsrByjZPBlOrt6y7w3y4nAsThnn9ylmV9QuZXvXwsZUtnAjI0dVRFPbcUWJRsbeuO2GWPMHfgyfHc6OAmavy8EBoOoRZBzkeZ4ILM2V5FTyqQ-2unRVx0hsdbZxGYuF3HkurKHG4dBuyuX2TxMQ4fmfwLrRVm4Z8CiruUy5SJXXSOFCQ2KlVmiXIzgiIXrwAEqTDerp9I-Mc4j3WhRN1rswGFrLG0bBnP6kcbs9gFvVgO-1-Qdt3d91Vpf4wIjdZvClctKU6YWYcWjpANPa1ishHHEdSQSHP26xsmqhVi7j6df-xqRoS8W3zRHzSmFb_q3jvOpFkLFfPffFPIS7p2cjkd69H7y4Tncx1hO0bUzl3uwvpgv3Qu4a38goOb7fpVcA-F9Ef8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tME3wAPsCyr48CU17CUtsJ3X3VpVVmwYV2pd4sxzHhoqSoKZF4r_nzkmrbYhp2mtsn5zzz76zz_czwJ5ysVCGi8gVaS-S0sgIvVYVKW6LPDWplSaM9GF3NFInJ73jNimMcmGwEzVKqkMQn2b1ZeFbhoHkPX4vTVntqxx3EUreh9UUzTmhuz_4tlh_CYJZE0vGvTI6FEtCn1sCyCLZ-neLdMvN_INDNNid4eb_9fgRbLR-Jus3wHgM91z5BNZ_YR98CvOQfFvjIDk2aG6ss8ozXG8rOs6fT6raMQoKX-ST6w8sWDVPRI7lKfvqLsz0nNKuQv1GyJDSBybsyFE28djWbFaxI0N_vShGX_MZ_Bh-_D74FLWvMEQGnalZ5LnIPW7MrPUqcUqZPHg9PbrdERN7nc1s4bxIE9eVPVxADI6_coX1cR47hMEWrJRV6XaAJV3LZc6FV10jhYkNipVFplyKIEmF68AeKky3s6jWIUDOE91qUbda7MD-YsC0bZnM6UGNyd0N3i0bXDYkHndXfbNAgMaJRuo2pavmtaaILUKLJ1kHthtoLIVxxHciMmz9tsHKsoTYuw_GP_sa0aHPZ2eao-aUwj_9W8XpWAuhUr77bwp5DQ-PD4b68PPoy3NYQ5dO0ekzly9gZTadu5fwwF4hnqavwkS5AYyUFHk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Control+of+Nanocellulose+Assembly&rft.jtitle=ACS+nano&rft.au=Mittal%2C+Nitesh&rft.au=Ansari%2C+Farhan&rft.au=Gowda%2C+V.+Krishne&rft.au=Brouzet%2C+Christophe&rft.date=2018-07-24&rft.issn=1936-086X&rft.volume=12&rft.issue=7&rft.spage=6378&rft_id=info:doi/10.1021%2Facsnano.8b01084&rft.externalDocID=oai_DiVA_org_kth_229288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |