Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers

Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS nano Ročník 12; číslo 7; s. 6378 - 6388
Hlavní autoři: Mittal, Nitesh, Ansari, Farhan, Gowda.V, Krishne, Brouzet, Christophe, Chen, Pan, Larsson, Per Tomas, Roth, Stephan V, Lundell, Fredrik, Wågberg, Lars, Kotov, Nicholas A, Söderberg, L. Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Chemical Society 24.07.2018
Témata:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3–15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young’s modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.
AbstractList Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.
Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.
Author Brouzet, Christophe
Gowda.V, Krishne
Chen, Pan
Larsson, Per Tomas
Wågberg, Lars
Mittal, Nitesh
Ansari, Farhan
Roth, Stephan V
Lundell, Fredrik
Kotov, Nicholas A
Söderberg, L. Daniel
AuthorAffiliation Linné FLOW Centre, KTH Mechanics
University of Michigan
Stanford University
Department of Fibre and Polymer Technology
Department of Chemical Engineering
Wallenberg Wood Science Centre
Department of Materials Science and Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Linné FLOW Centre, KTH Mechanics
– name: University of Michigan
– name: Wallenberg Wood Science Centre
– name: Stanford University
– name: Department of Fibre and Polymer Technology
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Nitesh
  surname: Mittal
  fullname: Mittal, Nitesh
– sequence: 2
  givenname: Farhan
  orcidid: 0000-0001-7870-6327
  surname: Ansari
  fullname: Ansari, Farhan
  organization: Stanford University
– sequence: 3
  givenname: Krishne
  surname: Gowda.V
  fullname: Gowda.V, Krishne
– sequence: 4
  givenname: Christophe
  orcidid: 0000-0003-3131-3942
  surname: Brouzet
  fullname: Brouzet, Christophe
– sequence: 5
  givenname: Pan
  surname: Chen
  fullname: Chen, Pan
– sequence: 6
  givenname: Per Tomas
  surname: Larsson
  fullname: Larsson, Per Tomas
– sequence: 7
  givenname: Stephan V
  surname: Roth
  fullname: Roth, Stephan V
– sequence: 8
  givenname: Fredrik
  surname: Lundell
  fullname: Lundell, Fredrik
– sequence: 9
  givenname: Lars
  orcidid: 0000-0001-8622-0386
  surname: Wågberg
  fullname: Wågberg, Lars
– sequence: 10
  givenname: Nicholas A
  orcidid: 0000-0002-6864-5804
  surname: Kotov
  fullname: Kotov, Nicholas A
  organization: University of Michigan
– sequence: 11
  givenname: L. Daniel
  orcidid: 0000-0003-3737-0091
  surname: Söderberg
  fullname: Söderberg, L. Daniel
  email: dansod@kth.se
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29741364$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229288$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33852$$DView record from Swedish Publication Index
BookMark eNqFkd1rFDEUxYNU7JfPvkkeBZk2H_OR8W1ZrS10FUoV30KSvWnTZpNtMoP0vzfDTisIxad74f7O4XLOIdoLMQBC7yg5oYTRU2VyUCGeCE0oEfUrdEB73lZEtL_2nveG7qPDnO8IaTrRtW_QPuu7mvK2PkDjavSDy0Z5wMsYhhQ9jhZ_K6YGvB99zIAXOcNG-8dP-DqpkC2k5MINvoKNSvdKF-nE70zOnE7O4xWYWxWcyXiIeKVM-nuGlI_Ra6t8hrfzPEI_zr5cL8-ry-9fL5aLy0o1tB4qy7i2TDBjrKAghNKkpR3rGSGMNH3XmdaswfKGQlf3HeFKABGwNpZoAorxI_Rx55t_w3bUcptceflRRuXkZ_dzIWO6kclJzkUz0dX_6fvhVrLyghCF_7Djtyk-jJAHuSlJltRUgDhmyQhvS-CMtgV9P6Oj3sD62fqpiAI0O2BKKiew0rhBDW6qRDkvKZFT4XIuXM6FF93pP7on65cVcyblIO_imEJp4EX6DzBkv8w
CitedBy_id crossref_primary_10_1002_adfm_202403952
crossref_primary_10_1002_adfm_202501380
crossref_primary_10_1002_adma_202413564
crossref_primary_10_1016_j_ijbiomac_2024_132129
crossref_primary_10_1002_admt_201800557
crossref_primary_10_1016_j_jcis_2023_04_081
crossref_primary_10_3103_S1062873822100070
crossref_primary_10_1007_s42765_023_00265_9
crossref_primary_10_1016_j_jmps_2021_104560
crossref_primary_10_1016_j_carbpol_2022_119945
crossref_primary_10_1016_j_jclepro_2024_142073
crossref_primary_10_1016_j_compositesa_2021_106757
crossref_primary_10_1016_j_ijbiomac_2025_143657
crossref_primary_10_1002_aelm_202100137
crossref_primary_10_1021_jacs_4c18620
crossref_primary_10_1016_j_indcrop_2023_117650
crossref_primary_10_1038_s41893_021_00831_2
crossref_primary_10_1016_j_progpolymsci_2021_101418
crossref_primary_10_1016_j_foodhyd_2023_108947
crossref_primary_10_1016_j_compositesb_2022_110078
crossref_primary_10_3390_nano11020490
crossref_primary_10_1002_adfm_202108556
crossref_primary_10_1016_j_pmatsci_2025_101430
crossref_primary_10_1016_j_apsusc_2024_161877
crossref_primary_10_1038_s41467_019_13053_0
crossref_primary_10_1002_mba2_70005
crossref_primary_10_1039_D0RA06178F
crossref_primary_10_1016_j_chemosphere_2023_139213
crossref_primary_10_1002_pol_20230126
crossref_primary_10_1016_j_mtchem_2022_101247
crossref_primary_10_1016_j_indcrop_2022_115882
crossref_primary_10_1016_j_matdes_2021_110254
crossref_primary_10_1016_j_seppur_2025_132590
crossref_primary_10_1007_s10570_021_03771_4
crossref_primary_10_1016_j_carbpol_2023_120881
crossref_primary_10_1007_s10853_020_05676_2
crossref_primary_10_1016_j_ijbiomac_2022_11_292
crossref_primary_10_1002_admt_202400847
crossref_primary_10_1080_15583724_2022_2106491
crossref_primary_10_1002_adma_202002504
crossref_primary_10_3390_coatings14111421
crossref_primary_10_1007_s10570_022_04937_4
crossref_primary_10_1016_j_carbpol_2022_120008
crossref_primary_10_1016_j_nantod_2022_101485
crossref_primary_10_1007_s10570_021_03697_x
crossref_primary_10_1007_s10570_022_04492_y
crossref_primary_10_1002_adfm_202313204
crossref_primary_10_1002_adma_202303255
crossref_primary_10_3390_molecules25194420
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119155
crossref_primary_10_1016_j_pmatsci_2021_100916
crossref_primary_10_1002_adma_201906308
crossref_primary_10_1039_D1MH00135C
crossref_primary_10_1002_fld_4970
crossref_primary_10_1002_smll_202311966
crossref_primary_10_3390_nano12071139
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105413
crossref_primary_10_1007_s10570_021_03991_8
crossref_primary_10_1016_j_carbpol_2022_120355
crossref_primary_10_1038_s41586_020_03167_7
crossref_primary_10_1016_j_jece_2022_107754
crossref_primary_10_1007_s10570_021_04160_7
crossref_primary_10_1002_cssc_202201955
crossref_primary_10_1016_j_carbpol_2022_119133
crossref_primary_10_1515_ntrev_2024_0006
crossref_primary_10_1002_adma_202001085
crossref_primary_10_1016_j_carbpol_2020_116466
crossref_primary_10_1007_s10570_025_06489_9
crossref_primary_10_1007_s40843_019_9421_y
crossref_primary_10_3390_polym12092113
crossref_primary_10_1038_s41467_025_60242_1
crossref_primary_10_1007_s10570_022_04577_8
crossref_primary_10_1103_PhysRevFluids_6_094202
crossref_primary_10_1002_adfm_202208074
crossref_primary_10_1016_j_compositesa_2025_109153
crossref_primary_10_1016_j_ijbiomac_2024_131592
crossref_primary_10_1007_s10570_019_02642_3
crossref_primary_10_1016_j_cej_2024_154105
crossref_primary_10_1021_acs_biomac_5c00128
crossref_primary_10_1002_adma_202504372
crossref_primary_10_1039_D3NR06126D
crossref_primary_10_1002_ange_201910603
crossref_primary_10_1002_smtd_202301304
crossref_primary_10_1002_advs_202103965
crossref_primary_10_1007_s10570_023_05217_5
crossref_primary_10_1016_j_cej_2023_147997
crossref_primary_10_1002_adma_201901115
crossref_primary_10_1007_s10570_024_06084_4
crossref_primary_10_1016_j_compositesb_2024_111369
crossref_primary_10_1016_j_colsurfa_2023_132195
crossref_primary_10_1002_adma_202000657
crossref_primary_10_1007_s10570_024_05935_4
crossref_primary_10_1016_j_cej_2022_135675
crossref_primary_10_1016_j_mtnano_2024_100476
crossref_primary_10_1007_s10570_021_04009_z
crossref_primary_10_1016_j_colsurfa_2024_134673
crossref_primary_10_1016_j_conbuildmat_2024_139765
crossref_primary_10_1021_acsami_4c08879
crossref_primary_10_1002_pol_20230440
crossref_primary_10_1126_science_ado7201
crossref_primary_10_1021_acs_nanolett_5c01019
crossref_primary_10_1631_jzus_B23d0003
crossref_primary_10_1038_s41598_019_50477_6
crossref_primary_10_1080_19475411_2025_2483819
crossref_primary_10_1002_adhm_201901552
crossref_primary_10_1016_j_carbpol_2020_116892
crossref_primary_10_1002_adfm_202008552
crossref_primary_10_1186_s13068_021_02010_z
crossref_primary_10_1016_j_ces_2023_119320
crossref_primary_10_3390_polym14050881
crossref_primary_10_1002_advs_202100559
crossref_primary_10_1016_j_cej_2021_128981
crossref_primary_10_1002_admi_202201962
crossref_primary_10_1016_j_ijbiomac_2024_135925
crossref_primary_10_1088_1361_6528_ac6fef
crossref_primary_10_1038_s41598_020_68642_7
crossref_primary_10_1007_s10570_018_2029_3
crossref_primary_10_1016_j_jobe_2025_112068
crossref_primary_10_1038_s41598_024_69346_y
crossref_primary_10_1016_j_engstruct_2024_118339
crossref_primary_10_3390_ma14185137
crossref_primary_10_1126_science_aay9033
crossref_primary_10_1002_smll_202403443
crossref_primary_10_1007_s42423_022_00107_7
crossref_primary_10_1016_j_carbon_2020_05_080
crossref_primary_10_1016_j_cej_2024_151175
crossref_primary_10_1038_s41598_019_53215_0
crossref_primary_10_1038_s41893_025_01523_x
crossref_primary_10_1016_j_indcrop_2023_117503
crossref_primary_10_1017_jfm_2019_566
crossref_primary_10_3390_app10165565
crossref_primary_10_1016_j_carbpol_2018_07_028
crossref_primary_10_1016_j_matpr_2020_12_971
crossref_primary_10_1016_j_conbuildmat_2025_139921
crossref_primary_10_1007_s10570_019_02496_9
crossref_primary_10_1002_mame_202100899
crossref_primary_10_1002_mabi_201800253
crossref_primary_10_1016_j_ijbiomac_2021_03_081
crossref_primary_10_1016_j_carbpol_2020_116664
crossref_primary_10_1038_s41563_022_01384_1
crossref_primary_10_1002_adma_202306451
crossref_primary_10_1016_j_compositesa_2024_108029
crossref_primary_10_1002_adma_201902930
crossref_primary_10_1016_j_coco_2019_03_004
crossref_primary_10_1039_C8MH01566J
crossref_primary_10_1134_S1063784223900449
crossref_primary_10_1007_s10570_020_03543_6
crossref_primary_10_3390_ma16103856
crossref_primary_10_1002_cjoc_202300328
crossref_primary_10_1016_j_carbpol_2019_115609
crossref_primary_10_1016_j_jobab_2024_11_006
crossref_primary_10_1016_j_eurpolymj_2018_12_035
crossref_primary_10_3390_molecules27134167
crossref_primary_10_1016_j_carbpol_2020_115866
crossref_primary_10_3390_nano10030478
crossref_primary_10_1016_j_colcom_2020_100306
crossref_primary_10_1039_D5MH01003A
crossref_primary_10_1002_adfm_202208661
crossref_primary_10_1016_j_carbpol_2022_119681
crossref_primary_10_1016_j_mtcomm_2022_104549
crossref_primary_10_1002_adma_202209685
crossref_primary_10_3390_app8122463
crossref_primary_10_1073_pnas_2316396121
crossref_primary_10_1002_app_48836
crossref_primary_10_1016_j_cej_2022_136203
crossref_primary_10_1007_s12221_022_4762_3
crossref_primary_10_1016_j_jcis_2021_04_015
crossref_primary_10_1002_smll_201904190
crossref_primary_10_1002_app_56130
crossref_primary_10_1039_C8NR08194H
crossref_primary_10_1002_adfm_202102184
crossref_primary_10_1002_anie_201910603
crossref_primary_10_1016_j_measurement_2024_115499
crossref_primary_10_1016_j_polymer_2024_127119
crossref_primary_10_1016_j_rser_2025_115792
crossref_primary_10_1093_nsr_nwae270
crossref_primary_10_1098_rsta_2020_0331
crossref_primary_10_1016_j_fuel_2018_09_105
crossref_primary_10_1002_adma_202412858
crossref_primary_10_1016_j_mattod_2023_04_006
crossref_primary_10_1016_j_indcrop_2022_115699
crossref_primary_10_1016_j_inoche_2023_111940
crossref_primary_10_1021_jacs_1c06502
crossref_primary_10_1016_j_carbon_2024_119397
crossref_primary_10_1002_mame_201800450
crossref_primary_10_3390_gels8110685
crossref_primary_10_3390_coatings10121210
crossref_primary_10_1016_j_jcp_2023_112473
crossref_primary_10_1016_j_gee_2025_03_010
crossref_primary_10_3390_app9235119
crossref_primary_10_1021_acsnano_4c17158
crossref_primary_10_1002_jctb_7775
crossref_primary_10_1016_j_indcrop_2023_116292
crossref_primary_10_3390_polym11050873
crossref_primary_10_4028_p_298NOq
crossref_primary_10_1016_j_taml_2021_100304
crossref_primary_10_1016_j_jallcom_2025_183277
crossref_primary_10_1002_EXP_20220075
crossref_primary_10_1146_annurev_matsci_080921_083655
crossref_primary_10_1007_s10570_022_04922_x
crossref_primary_10_1016_j_jocs_2025_102536
crossref_primary_10_1002_admt_202001180
crossref_primary_10_1016_j_carbpol_2023_121229
crossref_primary_10_1007_s11837_019_03340_y
crossref_primary_10_3390_molecules25010179
crossref_primary_10_1002_adma_202407712
crossref_primary_10_1016_j_ijbiomac_2019_12_241
crossref_primary_10_1002_adma_201804953
crossref_primary_10_1016_j_compscitech_2020_108395
crossref_primary_10_1007_s10853_023_08422_6
crossref_primary_10_1002_smll_202307504
crossref_primary_10_1021_acs_jcim_5c01204
crossref_primary_10_1002_smll_202501880
crossref_primary_10_1016_j_ijbiomac_2023_125875
crossref_primary_10_1016_j_jece_2020_104908
crossref_primary_10_1098_rsos_200967
crossref_primary_10_1016_j_compscitech_2020_108151
crossref_primary_10_1002_adma_202415787
crossref_primary_10_1007_s10570_019_02889_w
crossref_primary_10_1002_adfm_202308361
crossref_primary_10_1002_admt_202100124
crossref_primary_10_1002_smll_202311832
crossref_primary_10_1002_adma_202001238
crossref_primary_10_1017_flo_2025_8
crossref_primary_10_1016_j_compositesb_2020_108184
crossref_primary_10_1016_j_eml_2022_101947
crossref_primary_10_59717_j_xinn_mater_2023_100010
crossref_primary_10_1016_j_indcrop_2023_117455
crossref_primary_10_1002_adma_201906886
crossref_primary_10_1038_s41467_023_41738_0
crossref_primary_10_1016_j_carbpol_2022_119919
crossref_primary_10_1016_j_compositesb_2024_111643
crossref_primary_10_1016_j_compositesa_2020_105863
crossref_primary_10_3390_pr8030329
crossref_primary_10_3390_ma13102296
crossref_primary_10_1002_macp_202200249
crossref_primary_10_1016_j_ijbiomac_2025_143904
crossref_primary_10_1002_adfm_201905898
crossref_primary_10_1016_j_compscitech_2021_108795
crossref_primary_10_1002_admi_201900333
crossref_primary_10_1016_j_indcrop_2022_114599
crossref_primary_10_1038_s41598_023_31655_z
crossref_primary_10_1007_s10570_020_03566_z
crossref_primary_10_3390_polym14010143
crossref_primary_10_1002_advs_202509321
crossref_primary_10_1016_j_matdes_2024_113417
crossref_primary_10_1016_j_carbpol_2022_120320
crossref_primary_10_1093_nsr_nwz077
crossref_primary_10_1134_S106378502317008X
crossref_primary_10_1002_adma_202404071
crossref_primary_10_1016_j_carbpol_2024_122785
crossref_primary_10_3389_fbioe_2021_608826
crossref_primary_10_1016_j_matt_2019_04_005
crossref_primary_10_1088_2399_7532_ac4c95
crossref_primary_10_1007_s40820_019_0304_y
crossref_primary_10_1016_j_cej_2020_127092
crossref_primary_10_1016_j_cclet_2023_108817
crossref_primary_10_1002_nadc_20184080604
crossref_primary_10_1016_j_nanoen_2025_110649
crossref_primary_10_1016_j_matdes_2022_111431
crossref_primary_10_1107_S205225252300204X
crossref_primary_10_3390_ma16113962
crossref_primary_10_1016_j_cej_2019_123527
crossref_primary_10_1002_smll_201900019
crossref_primary_10_1002_smll_202411339
crossref_primary_10_3390_buildings14072029
crossref_primary_10_1016_j_mtnano_2022_100256
crossref_primary_10_3390_nano11113008
crossref_primary_10_1016_j_carbpol_2021_118507
crossref_primary_10_1016_j_cej_2020_126793
crossref_primary_10_1007_s10570_023_05605_x
crossref_primary_10_1039_D1RA03474J
crossref_primary_10_1002_cben_202000002
crossref_primary_10_1021_acs_biomac_5c00551
Cites_doi 10.1021/ct700301q
10.1021/bm800038n
10.1021/acs.macromol.7b02642
10.1098/rsif.2012.0341
10.1039/C6CP00624H
10.1103/PhysRevE.79.061401
10.1021/ma0474224
10.1039/C0NR00583E
10.1002/jcc.20820
10.1038/nnano.2009.302
10.1073/pnas.1219340110
10.1098/rspa.1995.0075
10.1038/nmat2704
10.1039/f29787400560
10.1016/S0008-6215(98)00236-5
10.1126/science.1164865
10.1038/ncomms8259
10.1016/S0008-6215(97)00130-4
10.1021/acs.iecr.6b04010
10.1126/science.227.4687.636
10.1039/C7TA02006F
10.1016/0015-0568(75)90012-3
10.1126/science.283.5408.1724
10.1107/S0909049512016895
10.1007/BF00652253
10.1177/073168448400300201
10.1039/C6LC00690F
10.1021/ja0257319
10.1016/j.pmatsci.2007.05.002
10.1016/0263-7855(96)00018-5
10.1021/bm301674e
10.1038/ncomms5018
10.1126/science.276.5321.2016
10.1021/bm101510r
10.1126/science.aaa6502
10.1126/science.290.5495.1331
10.1007/s10086-009-1029-1
10.1038/nmat4089
10.1038/nmat747
10.1021/acsnano.7b02305
10.1126/science.1228061
10.1073/pnas.1617260114
10.1007/s10570-009-9314-0
10.1017/S002211209200171X
10.1038/srep30695
10.1021/la201947x
10.1126/science.1143176
10.1002/adma.201404565
10.1063/1.1940031
10.1016/j.carbon.2007.11.001
10.1038/ncomms8564
10.1063/1.857608
10.1088/0022-3727/46/11/114002
10.1021/bm401451m
10.1038/natrevmats.2016.7
10.1126/science.1099074
10.1021/acsami.5b03091
10.1038/nnano.2007.150
10.1039/C5SM02310F
10.1002/adma.201100580
10.1126/science.1157996
10.1016/0301-9322(74)90018-4
10.1073/pnas.1502870112
10.1103/PhysRevLett.84.290
10.1038/nmat1019
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1021/acsnano.8b01084
DatabaseName CrossRef
PubMed
MEDLINE - Academic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1936-086X
EndPage 6388
ExternalDocumentID oai_DiVA_org_ri_33852
oai_DiVA_org_kth_229288
29741364
10_1021_acsnano_8b01084
d019163006
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
LG6
ZZAVC
ID FETCH-LOGICAL-a514t-f23bf282ccf81e88ab061729200205977c6cdef351e749703a8e08edcf0b0ea23
IEDL.DBID ACS
ISICitedReferencesCount 417
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440505000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Wed Sep 24 03:40:01 EDT 2025
Tue Nov 04 16:21:46 EST 2025
Thu Jul 10 18:02:58 EDT 2025
Thu Jan 02 23:00:33 EST 2025
Sat Nov 29 02:50:13 EST 2025
Tue Nov 18 21:21:11 EST 2025
Thu Aug 27 13:42:58 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cellulose nanofibrils
self-organization
bio-based materials
microfluidics
nanocomposites
mechanical properties
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a514t-f23bf282ccf81e88ab061729200205977c6cdef351e749703a8e08edcf0b0ea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8622-0386
0000-0001-7870-6327
0000-0003-3131-3942
0000-0003-3737-0091
0000-0002-6864-5804
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229288
PMID 29741364
PQID 2036787216
PQPubID 23479
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_ri_33852
swepub_primary_oai_DiVA_org_kth_229288
proquest_miscellaneous_2036787216
pubmed_primary_29741364
crossref_citationtrail_10_1021_acsnano_8b01084
crossref_primary_10_1021_acsnano_8b01084
acs_journals_10_1021_acsnano_8b01084
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-07-24
PublicationDateYYYYMMDD 2018-07-24
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
Doi M. (ref66/cit66) 1988
References_xml – ident: ref61/cit61
  doi: 10.1021/ct700301q
– ident: ref30/cit30
  doi: 10.1021/bm800038n
– ident: ref50/cit50
  doi: 10.1021/acs.macromol.7b02642
– ident: ref5/cit5
  doi: 10.1098/rsif.2012.0341
– ident: ref64/cit64
  doi: 10.1039/C6CP00624H
– ident: ref16/cit16
  doi: 10.1103/PhysRevE.79.061401
– ident: ref19/cit19
  doi: 10.1021/ma0474224
– ident: ref53/cit53
  doi: 10.1039/C0NR00583E
– ident: ref62/cit62
  doi: 10.1002/jcc.20820
– ident: ref12/cit12
  doi: 10.1038/nnano.2009.302
– ident: ref17/cit17
  doi: 10.1073/pnas.1219340110
– ident: ref7/cit7
  doi: 10.1098/rspa.1995.0075
– ident: ref33/cit33
  doi: 10.1038/nmat2704
– ident: ref45/cit45
  doi: 10.1039/f29787400560
– ident: ref56/cit56
  doi: 10.1016/S0008-6215(98)00236-5
– ident: ref1/cit1
  doi: 10.1126/science.1164865
– ident: ref28/cit28
  doi: 10.1038/ncomms8259
– ident: ref55/cit55
  doi: 10.1016/S0008-6215(97)00130-4
– ident: ref24/cit24
  doi: 10.1021/acs.iecr.6b04010
– ident: ref6/cit6
  doi: 10.1126/science.227.4687.636
– ident: ref9/cit9
  doi: 10.1039/C7TA02006F
– ident: ref67/cit67
  doi: 10.1016/0015-0568(75)90012-3
– ident: ref20/cit20
  doi: 10.1126/science.283.5408.1724
– ident: ref57/cit57
  doi: 10.1107/S0909049512016895
– ident: ref58/cit58
  doi: 10.1007/BF00652253
– ident: ref15/cit15
  doi: 10.1177/073168448400300201
– ident: ref18/cit18
  doi: 10.1039/C6LC00690F
– ident: ref59/cit59
  doi: 10.1021/ja0257319
– ident: ref39/cit39
  doi: 10.1016/j.pmatsci.2007.05.002
– ident: ref63/cit63
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref8/cit8
  doi: 10.1021/bm301674e
– ident: ref13/cit13
  doi: 10.1038/ncomms5018
– ident: ref21/cit21
  doi: 10.1126/science.276.5321.2016
– ident: ref35/cit35
  doi: 10.1021/bm101510r
– ident: ref41/cit41
  doi: 10.1126/science.aaa6502
– ident: ref43/cit43
  doi: 10.1126/science.290.5495.1331
– ident: ref60/cit60
  doi: 10.1007/s10086-009-1029-1
– ident: ref65/cit65
– ident: ref3/cit3
  doi: 10.1038/nmat4089
– ident: ref29/cit29
  doi: 10.1038/nmat747
– ident: ref37/cit37
  doi: 10.1021/acsnano.7b02305
– volume-title: The Theory of Polymer Dynamics
  year: 1988
  ident: ref66/cit66
– ident: ref40/cit40
  doi: 10.1126/science.1228061
– ident: ref11/cit11
  doi: 10.1073/pnas.1617260114
– ident: ref49/cit49
  doi: 10.1007/s10570-009-9314-0
– ident: ref47/cit47
  doi: 10.1017/S002211209200171X
– ident: ref38/cit38
  doi: 10.1038/srep30695
– ident: ref22/cit22
  doi: 10.1021/la201947x
– ident: ref4/cit4
  doi: 10.1126/science.1143176
– ident: ref54/cit54
  doi: 10.1002/adma.201404565
– ident: ref46/cit46
  doi: 10.1063/1.1940031
– ident: ref26/cit26
  doi: 10.1016/j.carbon.2007.11.001
– ident: ref14/cit14
  doi: 10.1038/ncomms8564
– ident: ref48/cit48
  doi: 10.1063/1.857608
– ident: ref23/cit23
  doi: 10.1088/0022-3727/46/11/114002
– ident: ref27/cit27
  doi: 10.1021/bm401451m
– ident: ref2/cit2
  doi: 10.1038/natrevmats.2016.7
– ident: ref42/cit42
  doi: 10.1126/science.1099074
– ident: ref36/cit36
  doi: 10.1021/acsami.5b03091
– ident: ref10/cit10
  doi: 10.1038/nnano.2007.150
– ident: ref51/cit51
  doi: 10.1039/C5SM02310F
– ident: ref34/cit34
  doi: 10.1002/adma.201100580
– ident: ref25/cit25
  doi: 10.1126/science.1157996
– ident: ref44/cit44
  doi: 10.1016/0301-9322(74)90018-4
– ident: ref32/cit32
  doi: 10.1073/pnas.1502870112
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.84.290
– ident: ref31/cit31
  doi: 10.1038/nmat1019
SSID ssj0057876
Score 2.6836708
Snippet Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high...
SourceID swepub
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6378
SubjectTerms bio-based materials
cellulose nanofibrils
Engineering Mechanics
Fiber- och polymervetenskap
Fibre and Polymer Science
Fysik
mechanical properties
microfluidics
nanocomposites
nanocompositesbio-based materials
Physics
self-organization
selforganization
Teknisk mekanik
Title Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers
URI http://dx.doi.org/10.1021/acsnano.8b01084
https://www.ncbi.nlm.nih.gov/pubmed/29741364
https://www.proquest.com/docview/2036787216
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229288
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-33852
Volume 12
WOSCitedRecordID wos000440505000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-086X
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V2kM5QD9hgSJXQlUvoYntJLPcVgurHgqq-qW9WY7jtCuWBG12kfrvO5NktxRE1Z5tj-KZZ_s5Yz8DHKIPFVqpAp_H_UBrqwNirRigdHkW29hp20T6Q3p-juNx_-NvsejbGXwZvbOuLm1ZHWFGWwfUa_BQEsllMA-Gn5eTLuMuaRPItEEmFrFS8bljgJchV_-5DN3hlreEQ5vFZrT1H5_5BDY7RikGLQSewgNfPoONGzqDz2HRXLOtKRxeDNuz6aIqBM2sFf-4X0yr2gtO_15m05_Holm_CpZsLL-LT_7Szi74glVTvzUy4osCU3Hm-d7wxNViXokzy11dFhOrfAFfR6dfhu-D7r2FwBJtmgeFVFlBWzDnCow8os0aftPncxwh69S5xOW-UHHkU92nqcJSpNHnrgiz0FPAX8J6WZV-B0SUOqkzqQpMrVY2tGRW5wn6mOAQK9-DQ3KY6cZLbZpUuIxM50XTebEHR8soGddplvPTGdP7G7xdNbhq5Trur_p6GXZDQ4rdbUtfLWrDuVnCk4ySHmy3eFgZk4TkSCXU-k0LkFUJ63SfTL4NDKHCXMx_GEmeQ6Se_q3ibGKUwlju_ptD9uAxMTbkn8tS78P6fLbwr-CRuyYQzQ5gLR3jQTMwfgEepwqB
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDQl42AYM6BjDSBPiJVtiO6nLW9VRDdFWCAbam-U4zqjWJahpkfbf785Jyo9pCF5j--TcffadfbkvAAfKhUIZLgKXxb1ASiMDjFpVoLjN0tjEVhpv6VF3MlFnZ72PaxC2tTA4iQolVT6J_5NdIDrCZ4UpykOV4glCyTuwEaNzJWT3B5_bvZfgl9R5ZDwnYzCxIvO5IYC8ka1-90Y3Qsw_-EO9zxlu_f9st2GziS9ZvwbEQ1hzxSN48Avr4GNY-qLbCo3j2KD-Up2VOcN9tqRr_OWsrByjZPBlOrt6y7w3y4nAsThnn9ylmV9QuZXvXwsZUtnAjI0dVRFPbcUWJRsbeuO2GWPMHfgyfHc6OAmavy8EBoOoRZBzkeZ4ILM2V5FTyqQ-2unRVx0hsdbZxGYuF3HkurKHG4dBuyuX2TxMQ4fmfwLrRVm4Z8CiruUy5SJXXSOFCQ2KlVmiXIzgiIXrwAEqTDerp9I-Mc4j3WhRN1rswGFrLG0bBnP6kcbs9gFvVgO-1-Qdt3d91Vpf4wIjdZvClctKU6YWYcWjpANPa1ishHHEdSQSHP26xsmqhVi7j6df-xqRoS8W3zRHzSmFb_q3jvOpFkLFfPffFPIS7p2cjkd69H7y4Tncx1hO0bUzl3uwvpgv3Qu4a38goOb7fpVcA-F9Ef8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tME3wAPsCyr48CU17CUtsJ3X3VpVVmwYV2pd4sxzHhoqSoKZF4r_nzkmrbYhp2mtsn5zzz76zz_czwJ5ysVCGi8gVaS-S0sgIvVYVKW6LPDWplSaM9GF3NFInJ73jNimMcmGwEzVKqkMQn2b1ZeFbhoHkPX4vTVntqxx3EUreh9UUzTmhuz_4tlh_CYJZE0vGvTI6FEtCn1sCyCLZ-neLdMvN_INDNNid4eb_9fgRbLR-Jus3wHgM91z5BNZ_YR98CvOQfFvjIDk2aG6ss8ozXG8rOs6fT6raMQoKX-ST6w8sWDVPRI7lKfvqLsz0nNKuQv1GyJDSBybsyFE28djWbFaxI0N_vShGX_MZ_Bh-_D74FLWvMEQGnalZ5LnIPW7MrPUqcUqZPHg9PbrdERN7nc1s4bxIE9eVPVxADI6_coX1cR47hMEWrJRV6XaAJV3LZc6FV10jhYkNipVFplyKIEmF68AeKky3s6jWIUDOE91qUbda7MD-YsC0bZnM6UGNyd0N3i0bXDYkHndXfbNAgMaJRuo2pavmtaaILUKLJ1kHthtoLIVxxHciMmz9tsHKsoTYuw_GP_sa0aHPZ2eao-aUwj_9W8XpWAuhUr77bwp5DQ-PD4b68PPoy3NYQ5dO0ekzly9gZTadu5fwwF4hnqavwkS5AYyUFHk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Control+of+Nanocellulose+Assembly&rft.jtitle=ACS+nano&rft.au=Mittal%2C+Nitesh&rft.au=Ansari%2C+Farhan&rft.au=Gowda%2C+V.+Krishne&rft.au=Brouzet%2C+Christophe&rft.date=2018-07-24&rft.issn=1936-086X&rft.volume=12&rft.issue=7&rft.spage=6378&rft_id=info:doi/10.1021%2Facsnano.8b01084&rft.externalDocID=oai_DiVA_org_kth_229288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon