Distribution of polycyclic aromatic hydrocarbons in soil–water system containing a nonionic surfactant

The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil–water system was studied on a natural soil. The apparent soil–water distribution coefficient wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemosphere (Oxford) Ročník 60; číslo 9; s. 1237 - 1245
Hlavní autoři: Zhou, Wenjun, Zhu, Lizhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.09.2005
Elsevier
Témata:
ISSN:0045-6535, 1879-1298
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil–water system was studied on a natural soil. The apparent soil–water distribution coefficient with surfactant ( K d ∗ ) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in K d ∗ at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient ( K ss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter ( K oc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When K d ∗ = K d the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of K d ∗ and CWC can be predicted by a model, which correlates them with the compounds’ octanol–water partition coefficients ( K ow), soil property and the amount of soil-sorbed surfactant.
AbstractList The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant [image] for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in [image] at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (K sub(ss)) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (K sub(oc)), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When [image] the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of [image] and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (K sub(ow)), soil property and the amount of soil- sorbed surfactant.
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil–water system was studied on a natural soil. The apparent soil–water distribution coefficient with surfactant ( K d ∗ ) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in K d ∗ at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient ( K ss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter ( K oc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When K d ∗ = K d the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of K d ∗ and CWC can be predicted by a model, which correlates them with the compounds’ octanol–water partition coefficients ( K ow), soil property and the amount of soil-sorbed surfactant.
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.
Author Zhou, Wenjun
Zhu, Lizhong
Author_xml – sequence: 1
  givenname: Wenjun
  surname: Zhou
  fullname: Zhou, Wenjun
  email: wjzhou2815@sina.com
– sequence: 2
  givenname: Lizhong
  surname: Zhu
  fullname: Zhu, Lizhong
  email: zlz@zju.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17056271$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16018894$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxi1URLeFV4BwgNsG27Hj5ITQ8leqxAF6tibOpOtVYi-2A9ob78Ab8iQ42kVFXNrT-PD7vhnPfBfkzHmHhDxntGSU1a92pdni5ON-iwFLTqksKS-pbB6QFWtUu2a8bc7IilIh17Ws5Dm5iHFHaRbL9hE5ZzVlTdOKFdm-tTEF283Jelf4odj78WAOZrSmgOAnSPmxPfTBGwidd7Gwrojejr9__voBCUMRDzHhVBjvElhn3U0BRZ4322VlnMMAJoFLj8nDAcaIT071kly_f_d183F99fnDp82bqzVIJtJacIod45K1fQ9Ni1xgAwxgoKaRFdSiEh1XHQyq4vkHrULEDjOMqhLYyeqSvDz67oP_NmNMerLR4DiCQz9HXTe0Yi2v7gRFrRSthboTZEoIRSXL4NMTOHcT9nof7AThoP9uOwMvTgBEA-MQwBkbb7nsUnO1GLVHzgQfY8DhFqF6SYDe6X8SoJcEaMp1TkDWvv5Pa2yC5bopgB3v5fDs6DCA13AT8oTXXzhlFWW0kq1Ydrw5EpgP-d1i0NFYdAZ7G9Ak3Xt7jz5_AIoE4Q8
CODEN CMSHAF
CitedBy_id crossref_primary_10_1016_j_seppur_2025_133021
crossref_primary_10_1186_s40538_014_0010_4
crossref_primary_10_1016_j_jcis_2020_10_146
crossref_primary_10_1016_j_jhazmat_2010_06_099
crossref_primary_10_1007_s11356_021_15876_1
crossref_primary_10_1016_j_marpolbul_2014_12_042
crossref_primary_10_1080_09593330_2012_696718
crossref_primary_10_1016_j_molliq_2011_08_002
crossref_primary_10_1016_j_chemosphere_2011_04_073
crossref_primary_10_1007_s11270_019_4386_4
crossref_primary_10_1007_s11743_013_1507_8
crossref_primary_10_3390_ma12223772
crossref_primary_10_1016_j_jenvman_2008_08_006
crossref_primary_10_1016_j_chemosphere_2009_03_068
crossref_primary_10_4028_www_scientific_net_AMM_522_524_257
crossref_primary_10_1016_S1001_0742_11_60950_9
crossref_primary_10_1016_S1001_0742_12_60221_6
crossref_primary_10_1007_s12665_013_2783_3
crossref_primary_10_1016_j_jhydrol_2011_03_040
crossref_primary_10_1016_j_clay_2012_09_025
crossref_primary_10_1016_j_colsurfa_2015_01_077
crossref_primary_10_1016_j_jhazmat_2012_10_057
crossref_primary_10_1016_j_colsurfa_2022_129974
crossref_primary_10_1080_10889868_2015_1066303
crossref_primary_10_1016_j_chemosphere_2014_03_016
crossref_primary_10_1016_j_chemosphere_2015_09_038
crossref_primary_10_1039_D0RA10513A
crossref_primary_10_1016_j_cej_2024_154285
crossref_primary_10_1016_j_molliq_2016_07_108
crossref_primary_10_1016_j_scitotenv_2018_03_349
crossref_primary_10_3390_12040703
crossref_primary_10_1016_j_envpol_2007_05_001
crossref_primary_10_3390_agriculture14050733
crossref_primary_10_1016_j_chemosphere_2012_08_036
crossref_primary_10_5004_dwt_2011_1424
crossref_primary_10_1016_j_marpolbul_2016_04_064
crossref_primary_10_1016_j_chemosphere_2018_06_025
crossref_primary_10_1016_j_cej_2013_08_040
crossref_primary_10_1016_j_chemosphere_2006_10_017
crossref_primary_10_1016_j_jece_2021_105908
crossref_primary_10_1016_j_envpol_2023_122489
crossref_primary_10_1016_j_jhazmat_2024_133781
crossref_primary_10_1016_j_cej_2014_08_101
crossref_primary_10_1016_j_watres_2013_04_062
crossref_primary_10_1016_j_jenvman_2018_02_065
crossref_primary_10_1080_10889860802060170
crossref_primary_10_1016_j_jwpe_2023_103829
crossref_primary_10_1007_s11356_020_10830_z
crossref_primary_10_1016_j_chemosphere_2018_06_078
crossref_primary_10_1007_s00253_010_2453_2
crossref_primary_10_1007_s11368_020_02640_0
Cites_doi 10.1021/es00048a005
10.1021/es00004a010
10.1021/es00038a010
10.1021/es00065a012
10.1021/es00060a012
10.1021/es00057a027
10.1021/es960604w
10.1021/es00036a002
10.1021/es950694p
10.2175/106143099X121580
10.1021/es00004a029
10.1016/j.chemosphere.2004.01.037
10.1021/es980908d
10.1016/S0045-6535(03)00389-8
10.1021/es00013a014
10.1016/0043-1354(94)90185-6
10.1021/es971075e
10.1016/S0269-7491(01)00304-9
10.1016/S0013-7952(00)00117-4
10.1021/es950567t
10.1002/etc.5620140705
10.1021/es00006a008
10.1016/0043-1354(79)90201-X
10.1006/jcis.2000.7039
10.1016/0045-6535(90)90002-B
10.1021/ja00496a001
10.1021/es9609967
10.1021/es00110a009
10.1016/0043-1354(92)90128-Q
10.1021/es00057a001
10.1021/es00064a001
10.1016/S0927-7757(98)00785-7
10.1126/science.206.4420.831
10.1002/etc.5620140605
10.1016/0045-6535(81)90083-7
ContentType Journal Article
Copyright 2005 Elsevier Ltd
2005 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: 2005 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TG
C1K
F1W
H97
KL.
L.G
7S9
L.6
7X8
DOI 10.1016/j.chemosphere.2005.02.058
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Meteorological & Geoastrophysical Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
Applied Sciences
EISSN 1879-1298
EndPage 1245
ExternalDocumentID 16018894
17056271
10_1016_j_chemosphere_2005_02_058
US201301035945
S0045653505002699
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7TG
C1K
F1W
H97
KL.
L.G
7S9
L.6
7X8
ID FETCH-LOGICAL-a514t-420eb12519dda89e24e8a1aaf0c853a6434b27baf73288997eeebe9dde734eb53
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000231774100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-6535
IngestDate Wed Oct 01 14:37:37 EDT 2025
Sun Sep 28 10:58:10 EDT 2025
Mon Sep 29 05:02:54 EDT 2025
Wed Feb 19 01:52:23 EST 2025
Mon Jul 21 09:15:07 EDT 2025
Sat Nov 29 03:39:10 EST 2025
Tue Nov 18 21:26:13 EST 2025
Wed Dec 27 18:52:24 EST 2023
Fri Feb 23 02:20:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Sorption
Distribution coefficient
Critical washing concentration
Polycyclic aromatic hydrocarbons
Surfactant
Fluorene
Phenanthrene
Hydrocarbon
Non ionic surfactant
Surfactant polymer
Partition coefficient
Desorption
Polycyclic aromatic compound
Soil pollution
Solubilization
Interstitial water
Persistent organic pollutant
Naphthalene
Decontamination
Phase partition
Water pollution
Acenaphthene
Ground water
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a514t-420eb12519dda89e24e8a1aaf0c853a6434b27baf73288997eeebe9dde734eb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16018894
PQID 17447051
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_68031923
proquest_miscellaneous_46770647
proquest_miscellaneous_17447051
pubmed_primary_16018894
pascalfrancis_primary_17056271
crossref_primary_10_1016_j_chemosphere_2005_02_058
crossref_citationtrail_10_1016_j_chemosphere_2005_02_058
fao_agris_US201301035945
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2005_02_058
PublicationCentury 2000
PublicationDate 2005-09-01
PublicationDateYYYYMMDD 2005-09-01
PublicationDate_xml – month: 09
  year: 2005
  text: 2005-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2005
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kile, Chiou (bib20) 1989; 23
Chu, Kwan (bib6) 2003; 53
Mackay, Cherry (bib25) 1989; 23
Jafvert, Van Hoof, Heath (bib16) 1994; 28
Roch, Alexander (bib30) 1995; 14
Ko, Schlautman, Carraway (bib21) 1998; 32
Paterson, Mackay, Tam, Shiu (bib27) 1990; 21
Tiehm, Stieber, Werner, Frimmel (bib32) 1997; 31
Edwards, Luithy, Liu (bib10) 1991; 25
Karickhoff (bib19) 1981; 10
Deitsch, Smith (bib8) 1995; 29
Guha, Jaffe (bib14) 1996; 30
Chiou, Peters, Freed (bib4) 1979; 206
Chiou, Porter, Schmedding (bib5) 1983; 17
Pennell, Adinolfi, Abriola, Diallo (bib29) 1997; 31
Diallo, Abriola, Weber (bib9) 1994; 28
Chun, Lee, Park (bib7) 2002; 118
Harwell, Sabatini, Knox (bib15) 1999; 151
Johnson, Sun, Jaffe (bib17) 1999; 35
Yeom, Ghosh, Cox (bib36) 1996; 30
Almgren, Grteser, Thomas (bib1) 1979; 101
Bury, Miller (bib3) 1993; 27
Pennel, Abriola, Weber (bib28) 1993; 27
Gremberg, Nagel, Aitken (bib13) 1995; 29
Boopathy, Manning (bib2) 1999; 71
Edwards, Adeel, Luthy (bib11) 1994; 28
Liu, Edwards, Luthy (bib23) 1992; 26
Lee, Liao, Kuo, Yang, Chiou (bib22) 2000; 229
Mulligan, Yong, Gibbs (bib26) 2001; 60
Karickhoff, Brown, Scott (bib18) 1979; 13
Yaws (bib35) 1999
West, Harwell (bib34) 1992; 26
MacDonald, Kavanaugh (bib24) 1994; 28
Sun, Inskeep (bib31) 1995; 29
Gao, Zhu (bib12) 2004; 55
Tsomides, Hughes, Thomas, Ward (bib33) 1995; 14
Chu (10.1016/j.chemosphere.2005.02.058_bib6) 2003; 53
Lee (10.1016/j.chemosphere.2005.02.058_bib22) 2000; 229
Kile (10.1016/j.chemosphere.2005.02.058_bib20) 1989; 23
Sun (10.1016/j.chemosphere.2005.02.058_bib31) 1995; 29
Karickhoff (10.1016/j.chemosphere.2005.02.058_bib19) 1981; 10
Tsomides (10.1016/j.chemosphere.2005.02.058_bib33) 1995; 14
Boopathy (10.1016/j.chemosphere.2005.02.058_bib2) 1999; 71
Mulligan (10.1016/j.chemosphere.2005.02.058_bib26) 2001; 60
Gao (10.1016/j.chemosphere.2005.02.058_bib12) 2004; 55
Guha (10.1016/j.chemosphere.2005.02.058_bib14) 1996; 30
Bury (10.1016/j.chemosphere.2005.02.058_bib3) 1993; 27
Jafvert (10.1016/j.chemosphere.2005.02.058_bib16) 1994; 28
Paterson (10.1016/j.chemosphere.2005.02.058_bib27) 1990; 21
Deitsch (10.1016/j.chemosphere.2005.02.058_bib8) 1995; 29
Pennell (10.1016/j.chemosphere.2005.02.058_bib29) 1997; 31
Edwards (10.1016/j.chemosphere.2005.02.058_bib11) 1994; 28
Chiou (10.1016/j.chemosphere.2005.02.058_bib4) 1979; 206
MacDonald (10.1016/j.chemosphere.2005.02.058_bib24) 1994; 28
Mackay (10.1016/j.chemosphere.2005.02.058_bib25) 1989; 23
Tiehm (10.1016/j.chemosphere.2005.02.058_bib32) 1997; 31
Yeom (10.1016/j.chemosphere.2005.02.058_bib36) 1996; 30
Diallo (10.1016/j.chemosphere.2005.02.058_bib9) 1994; 28
Yaws (10.1016/j.chemosphere.2005.02.058_bib35) 1999
Chiou (10.1016/j.chemosphere.2005.02.058_bib5) 1983; 17
Edwards (10.1016/j.chemosphere.2005.02.058_bib10) 1991; 25
Almgren (10.1016/j.chemosphere.2005.02.058_bib1) 1979; 101
Karickhoff (10.1016/j.chemosphere.2005.02.058_bib18) 1979; 13
Pennel (10.1016/j.chemosphere.2005.02.058_bib28) 1993; 27
Harwell (10.1016/j.chemosphere.2005.02.058_bib15) 1999; 151
Ko (10.1016/j.chemosphere.2005.02.058_bib21) 1998; 32
Chun (10.1016/j.chemosphere.2005.02.058_bib7) 2002; 118
Liu (10.1016/j.chemosphere.2005.02.058_bib23) 1992; 26
Johnson (10.1016/j.chemosphere.2005.02.058_bib17) 1999; 35
Gremberg (10.1016/j.chemosphere.2005.02.058_bib13) 1995; 29
West (10.1016/j.chemosphere.2005.02.058_bib34) 1992; 26
Roch (10.1016/j.chemosphere.2005.02.058_bib30) 1995; 14
References_xml – volume: 26
  start-page: 1337
  year: 1992
  end-page: 1345
  ident: bib23
  article-title: Sorption of non-ionic surfactants onto soil
  publication-title: Water Res.
– volume: 25
  start-page: 127
  year: 1991
  end-page: 133
  ident: bib10
  article-title: Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 2570
  year: 1997
  end-page: 2576
  ident: bib32
  article-title: Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil
  publication-title: Environ. Sci. Technol.
– volume: 101
  start-page: 279
  year: 1979
  end-page: 291
  ident: bib1
  article-title: Dynamic and static aspects of solubilization of neutral arenas in ionic micellar solutions
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 104
  year: 1993
  end-page: 110
  ident: bib3
  article-title: Effect of miellar solubilization on biodegradation rates of hydrocarbons
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 833
  year: 1981
  end-page: 846
  ident: bib19
  article-title: Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils
  publication-title: Chemosphere
– volume: 71
  start-page: 119
  year: 1999
  end-page: 124
  ident: bib2
  article-title: Surfactant-enhanced bioremediation of soil contaminated with 2,4,6-trinitrotoluene in soil slurry reactors
  publication-title: Water Environ. Res.
– volume: 30
  start-page: 1589
  year: 1996
  end-page: 1595
  ident: bib36
  article-title: Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 362A
  year: 1994
  end-page: 368A
  ident: bib24
  article-title: Restoring contaminated groundwater: an achievable goal?
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 1009
  year: 1994
  end-page: 1017
  ident: bib16
  article-title: Solubilization of non-polar compounds by non-ionic surfactant micelles
  publication-title: Water Res.
– volume: 13
  start-page: 241
  year: 1979
  end-page: 248
  ident: bib18
  article-title: Sorption of hydrophobic pollutants on natural sediments
  publication-title: Water Res.
– volume: 55
  start-page: 1169
  year: 2004
  end-page: 1178
  ident: bib12
  article-title: Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils
  publication-title: Chemosphere
– volume: 27
  start-page: 2332
  year: 1993
  end-page: 2340
  ident: bib28
  article-title: Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 227
  year: 1983
  end-page: 231
  ident: bib5
  article-title: Partition equilibria of nonionic organic compounds between soil organic matter and water
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 630
  year: 1989
  end-page: 636
  ident: bib25
  article-title: Groundwater contamination: pump-and-treat remediation
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 297
  year: 1990
  end-page: 331
  ident: bib27
  article-title: Uptake of organic chemical by plants: a review of correlations and models
  publication-title: Chemosphere
– volume: 53
  start-page: 9
  year: 2003
  end-page: 15
  ident: bib6
  article-title: Remediation of contaminated soil by a solvent/surfactant system
  publication-title: Chemosphere
– volume: 206
  start-page: 831
  year: 1979
  ident: bib4
  article-title: A physical concept of soil–water equilibria for nonionic organic compounds
  publication-title: Science
– volume: 28
  start-page: 1550
  year: 1994
  end-page: 1560
  ident: bib11
  article-title: Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 1382
  year: 1997
  end-page: 1389
  ident: bib29
  article-title: Solubilization of dodecane, tetrachloroethylene in micellar solutions of ethoxylated nonionic surfactants
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 1382
  year: 1996
  end-page: 1391
  ident: bib14
  article-title: Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 903
  year: 1995
  end-page: 913
  ident: bib31
  article-title: Sorption of nonionic organic compounds in soil–water systems containing a micelle-forming surfactant
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 832
  year: 1989
  end-page: 838
  ident: bib20
  article-title: Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 1829
  year: 1994
  end-page: 1837
  ident: bib9
  article-title: Solubilization of nonaqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 2324
  year: 1992
  end-page: 2340
  ident: bib34
  article-title: Surfactants and subsurface remediation
  publication-title: Environ. Sci. Technol.
– volume: 151
  start-page: 255
  year: 1999
  end-page: 268
  ident: bib15
  article-title: Surfactants for grounder water remediation
  publication-title: Colloids Surface A
– volume: 60
  start-page: 371
  year: 2001
  end-page: 380
  ident: bib26
  article-title: Surfactant-enhanced remediation of contaminated soil: a review
  publication-title: Eng. Geol.
– volume: 229
  start-page: 445
  year: 2000
  end-page: 452
  ident: bib22
  article-title: Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids
  publication-title: J. Colloid Interface Sci.
– volume: 118
  start-page: 307
  year: 2002
  end-page: 313
  ident: bib7
  article-title: Solubilization of PAH mixtures by three different anionic surfactant
  publication-title: Environ. Pollut.
– volume: 14
  start-page: 111
  year: 1995
  end-page: 1158
  ident: bib30
  article-title: Biodegradation of hydrophobic compounds in the presence of surfactants
  publication-title: Environ. Toxicol. Chem.
– start-page: 387
  year: 1999
  ident: bib35
  publication-title: Chemical Properties Handbook
– volume: 35
  start-page: 1286
  year: 1999
  end-page: 1292
  ident: bib17
  article-title: Surfactant enhanced perchloroethylene dissolution in porous media: The effect on mass transfer rate coefficients
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 1069
  year: 1995
  end-page: 1080
  ident: bib8
  article-title: Effect of Ttriton X-100 on the rate of trichloroethene desorption from soil to water
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 2769
  year: 1998
  end-page: 2775
  ident: bib21
  article-title: Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. Experimental studies
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 1480
  year: 1995
  end-page: 1487
  ident: bib13
  article-title: Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactant
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 953
  year: 1995
  end-page: 959
  ident: bib33
  article-title: Effect of surfactant addition on phenanthrene biodegradation in sediments
  publication-title: Environ. Toxicol. Chem.
– volume: 27
  start-page: 2332
  year: 1993
  ident: 10.1016/j.chemosphere.2005.02.058_bib28
  article-title: Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00048a005
– volume: 29
  start-page: 903
  year: 1995
  ident: 10.1016/j.chemosphere.2005.02.058_bib31
  article-title: Sorption of nonionic organic compounds in soil–water systems containing a micelle-forming surfactant
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00004a010
– volume: 27
  start-page: 104
  year: 1993
  ident: 10.1016/j.chemosphere.2005.02.058_bib3
  article-title: Effect of miellar solubilization on biodegradation rates of hydrocarbons
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00038a010
– volume: 23
  start-page: 832
  year: 1989
  ident: 10.1016/j.chemosphere.2005.02.058_bib20
  article-title: Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00065a012
– volume: 28
  start-page: 1829
  year: 1994
  ident: 10.1016/j.chemosphere.2005.02.058_bib9
  article-title: Solubilization of nonaqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00060a012
– volume: 28
  start-page: 1550
  year: 1994
  ident: 10.1016/j.chemosphere.2005.02.058_bib11
  article-title: Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00057a027
– volume: 31
  start-page: 1382
  year: 1997
  ident: 10.1016/j.chemosphere.2005.02.058_bib29
  article-title: Solubilization of dodecane, tetrachloroethylene in micellar solutions of ethoxylated nonionic surfactants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960604w
– volume: 26
  start-page: 2324
  year: 1992
  ident: 10.1016/j.chemosphere.2005.02.058_bib34
  article-title: Surfactants and subsurface remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00036a002
– volume: 30
  start-page: 1382
  year: 1996
  ident: 10.1016/j.chemosphere.2005.02.058_bib14
  article-title: Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950694p
– volume: 71
  start-page: 119
  year: 1999
  ident: 10.1016/j.chemosphere.2005.02.058_bib2
  article-title: Surfactant-enhanced bioremediation of soil contaminated with 2,4,6-trinitrotoluene in soil slurry reactors
  publication-title: Water Environ. Res.
  doi: 10.2175/106143099X121580
– volume: 29
  start-page: 1069
  year: 1995
  ident: 10.1016/j.chemosphere.2005.02.058_bib8
  article-title: Effect of Ttriton X-100 on the rate of trichloroethene desorption from soil to water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00004a029
– volume: 55
  start-page: 1169
  year: 2004
  ident: 10.1016/j.chemosphere.2005.02.058_bib12
  article-title: Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.01.037
– volume: 35
  start-page: 1286
  year: 1999
  ident: 10.1016/j.chemosphere.2005.02.058_bib17
  article-title: Surfactant enhanced perchloroethylene dissolution in porous media: The effect on mass transfer rate coefficients
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980908d
– start-page: 387
  year: 1999
  ident: 10.1016/j.chemosphere.2005.02.058_bib35
– volume: 53
  start-page: 9
  year: 2003
  ident: 10.1016/j.chemosphere.2005.02.058_bib6
  article-title: Remediation of contaminated soil by a solvent/surfactant system
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(03)00389-8
– volume: 25
  start-page: 127
  year: 1991
  ident: 10.1016/j.chemosphere.2005.02.058_bib10
  article-title: Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00013a014
– volume: 28
  start-page: 1009
  year: 1994
  ident: 10.1016/j.chemosphere.2005.02.058_bib16
  article-title: Solubilization of non-polar compounds by non-ionic surfactant micelles
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)90185-6
– volume: 32
  start-page: 2769
  year: 1998
  ident: 10.1016/j.chemosphere.2005.02.058_bib21
  article-title: Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. Experimental studies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es971075e
– volume: 118
  start-page: 307
  year: 2002
  ident: 10.1016/j.chemosphere.2005.02.058_bib7
  article-title: Solubilization of PAH mixtures by three different anionic surfactant
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00304-9
– volume: 60
  start-page: 371
  year: 2001
  ident: 10.1016/j.chemosphere.2005.02.058_bib26
  article-title: Surfactant-enhanced remediation of contaminated soil: a review
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(00)00117-4
– volume: 30
  start-page: 1589
  year: 1996
  ident: 10.1016/j.chemosphere.2005.02.058_bib36
  article-title: Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950567t
– volume: 14
  start-page: 111
  year: 1995
  ident: 10.1016/j.chemosphere.2005.02.058_bib30
  article-title: Biodegradation of hydrophobic compounds in the presence of surfactants
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620140705
– volume: 29
  start-page: 1480
  year: 1995
  ident: 10.1016/j.chemosphere.2005.02.058_bib13
  article-title: Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactant
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00006a008
– volume: 13
  start-page: 241
  year: 1979
  ident: 10.1016/j.chemosphere.2005.02.058_bib18
  article-title: Sorption of hydrophobic pollutants on natural sediments
  publication-title: Water Res.
  doi: 10.1016/0043-1354(79)90201-X
– volume: 229
  start-page: 445
  year: 2000
  ident: 10.1016/j.chemosphere.2005.02.058_bib22
  article-title: Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7039
– volume: 21
  start-page: 297
  year: 1990
  ident: 10.1016/j.chemosphere.2005.02.058_bib27
  article-title: Uptake of organic chemical by plants: a review of correlations and models
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(90)90002-B
– volume: 101
  start-page: 279
  year: 1979
  ident: 10.1016/j.chemosphere.2005.02.058_bib1
  article-title: Dynamic and static aspects of solubilization of neutral arenas in ionic micellar solutions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00496a001
– volume: 31
  start-page: 2570
  year: 1997
  ident: 10.1016/j.chemosphere.2005.02.058_bib32
  article-title: Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9609967
– volume: 17
  start-page: 227
  year: 1983
  ident: 10.1016/j.chemosphere.2005.02.058_bib5
  article-title: Partition equilibria of nonionic organic compounds between soil organic matter and water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00110a009
– volume: 26
  start-page: 1337
  year: 1992
  ident: 10.1016/j.chemosphere.2005.02.058_bib23
  article-title: Sorption of non-ionic surfactants onto soil
  publication-title: Water Res.
  doi: 10.1016/0043-1354(92)90128-Q
– volume: 28
  start-page: 362A
  year: 1994
  ident: 10.1016/j.chemosphere.2005.02.058_bib24
  article-title: Restoring contaminated groundwater: an achievable goal?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00057a001
– volume: 23
  start-page: 630
  year: 1989
  ident: 10.1016/j.chemosphere.2005.02.058_bib25
  article-title: Groundwater contamination: pump-and-treat remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00064a001
– volume: 151
  start-page: 255
  year: 1999
  ident: 10.1016/j.chemosphere.2005.02.058_bib15
  article-title: Surfactants for grounder water remediation
  publication-title: Colloids Surface A
  doi: 10.1016/S0927-7757(98)00785-7
– volume: 206
  start-page: 831
  year: 1979
  ident: 10.1016/j.chemosphere.2005.02.058_bib4
  article-title: A physical concept of soil–water equilibria for nonionic organic compounds
  publication-title: Science
  doi: 10.1126/science.206.4420.831
– volume: 14
  start-page: 953
  year: 1995
  ident: 10.1016/j.chemosphere.2005.02.058_bib33
  article-title: Effect of surfactant addition on phenanthrene biodegradation in sediments
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620140605
– volume: 10
  start-page: 833
  year: 1981
  ident: 10.1016/j.chemosphere.2005.02.058_bib19
  article-title: Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(81)90083-7
SSID ssj0001659
Score 2.0545244
Snippet The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene,...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1237
SubjectTerms acenaphthene
Adsorption
analysis
Animals
Applied sciences
chemistry
Critical washing concentration
Decontamination. Miscellaneous
Distribution coefficient
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
fluorene
Groundwaters
Mice
Micelles
naphthalene
Natural water pollution
nonionic surfactants
Octoxynol
Octoxynol - chemistry
phenanthrene
phenanthrenes
polluted soils
Pollution
Pollution, environment geology
Polycyclic Aromatic Hydrocarbons
Polycyclic Aromatic Hydrocarbons - analysis
remediation
Soil
Soil - analysis
Soil and sediments pollution
Soil Pollutants
Soil Pollutants - analysis
soil pollution
soil solution
soil washing
soil water distribution coefficient
Sorption
Surface-Active Agents
Surface-Active Agents - chemistry
Surfactant
Water
Water - chemistry
Water treatment and pollution
Title Distribution of polycyclic aromatic hydrocarbons in soil–water system containing a nonionic surfactant
URI https://dx.doi.org/10.1016/j.chemosphere.2005.02.058
https://www.ncbi.nlm.nih.gov/pubmed/16018894
https://www.proquest.com/docview/17447051
https://www.proquest.com/docview/46770647
https://www.proquest.com/docview/68031923
Volume 60
WOSCitedRecordID wos000231774100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1298
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001659
  issn: 0045-6535
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfajq8XBGOw8lGMxNuUqnE-bEu8TKMIEJqQtqGKl8hJHNqqSqamHStPiH-B_5C_hHNsNxmiqAjxElWW3dS5X-7O17vfIfQ8kzJkMkwdN8uY44uMOFyy2OGcxpki0AqrznMf3tHjYzYa8fet1jdbC3Mxo3nOLi_5-X8VNYyBsFXp7F-Ie_2lMACfQehwBbHDdSvBv1RUuKaLVZXPXMxWySpRZNZiXmiG1vEqBcMl5rHJIy-LycymPXifxWJN8VylsusmEgfiIAcFUHXMKZdzVREh8iuRfUU-UJSKp6ByXHUtYiPU8HFcLKucPplPl3k9utTBgS_jwphRG4UI1mlWJjRmy2PqXKRK3fqBEwaaj6QvtYZlVPVf0K2nrQrWLQUM1HhDn4JdpQ3bDM5I8Fu9r0MQ035Sb9TEy0h_oLnhf6HVPtHOrAceoDqHct5GO4QGnHXQzuGb4ejt2p67YaAPUWYzN9CzOktwww03eTntTBQq_VaU8AZmunXK5rNN5eOc3kG3zeEEH2pQ3UUtme-im0e2J-Auuj6sSM5X99C4CTNcZLiGGbYww02Y4UmOFcx-fP1eAQxrgOEaYFhgCzBcA2wPnb0anh69dkzXDkeA871wfDIA-68KotNUMC6JL5lwhcgGCbiGAjxgPyY0FpmiiYLTPpUSFAlMltTzZRx491EH7ib3EaYZJ2kCz105-nEM01mapFzyJAhj4qVdxOxTjhJDaa86q8wim7s4jRoCUi1Xg2hAIhBQF5H10nPN67LNohdWlJFxULXjGQEOt1m-D-KPxCcw39HZCVFJA66i0PSDLupdwUT9m6g6oVC3i55akEQgc_WvnshlsSxhhu_DpD_MAF-IqpryzTNCpooZiddFDzT-6vuHAxek5D_8t60_QrdqrfEYdRbzpXyCriUXi0k576E2HbGeee9-AnZj_pw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+of+polycyclic+aromatic+hydrocarbons+in+soil%E2%80%93water+system+containing+a+nonionic+surfactant&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Zhou%2C+Wenjun&rft.au=Zhu%2C+Lizhong&rft.date=2005-09-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=60&rft.issue=9&rft.spage=1237&rft.epage=1245&rft_id=info:doi/10.1016%2Fj.chemosphere.2005.02.058&rft.externalDocID=S0045653505002699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon