Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized vers...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Liu, Shuiyin, Ling, Cong, Stehlé, Damien
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 28.12.2012
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized version of Babai's nearest plane algorithm (i.e., successive interference cancelation (SIC)). To find the closest lattice point, Klein's algorithm is used to sample some lattice points and the closest among those samples is chosen. Lattice reduction increases the probability of finding the closest lattice point, and only needs to be run once during pre-processing. Further, the sampling can operate very efficiently in parallel. The technical contribution of this paper is two-fold: we analyze and optimize the decoding radius of sampling decoding resulting in better error performance than Klein's original algorithm, and propose a very efficient implementation of random rounding. Of particular interest is that a fixed gain in the decoding radius compared to Babai's decoding can be achieved at polynomial complexity. The proposed decoder is useful for moderate dimensions where sphere decoding becomes computationally intensive, while lattice reduction-aided decoding starts to suffer considerable loss. Simulation results demonstrate near-ML performance is achieved by a moderate number of samples, even if the dimension is as high as 32.
AbstractList Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized version of Babai's nearest plane algorithm (i.e., successive interference cancelation (SIC)). To find the closest lattice point, Klein's algorithm is used to sample some lattice points and the closest among those samples is chosen. Lattice reduction increases the probability of finding the closest lattice point, and only needs to be run once during pre-processing. Further, the sampling can operate very efficiently in parallel. The technical contribution of this paper is two-fold: we analyze and optimize the decoding radius of sampling decoding resulting in better error performance than Klein's original algorithm, and propose a very efficient implementation of random rounding. Of particular interest is that a fixed gain in the decoding radius compared to Babai's decoding can be achieved at polynomial complexity. The proposed decoder is useful for moderate dimensions where sphere decoding becomes computationally intensive, while lattice reduction-aided decoding starts to suffer considerable loss. Simulation results demonstrate near-ML performance is achieved by a moderate number of samples, even if the dimension is as high as 32.
Author Ling, Cong
Liu, Shuiyin
Stehlé, Damien
Author_xml – sequence: 1
  givenname: Shuiyin
  surname: Liu
  fullname: Liu, Shuiyin
– sequence: 2
  givenname: Cong
  surname: Ling
  fullname: Ling, Cong
– sequence: 3
  givenname: Damien
  surname: Stehlé
  fullname: Stehlé, Damien
BookMark eNo1jUtLw0AYRQdRsNbuXQ64Tv0y77iLrS8ICLX7Mq_UKclMzUPUX29AXd0DB869QKcxRY_QVQ5LpjiHG919ho9lDkCXAIKdoBmhNM8UI-QcLfr-AABESMI5naHN2tvkQtxj84VfdXtsJr7FJd7o6FIbvr3DlR6GYD0um33qwvDW4jp1-C6N0U12HfpBx0n_ly7RWa2b3i_-do62D_fb1VNWvTw-r8oq0zxnmeOy4IoqR4T1RluiCl5blXupOaFgQVpTGyOJd86ZXHlHJdO0dqJmwhSWztH1b_bYpffR98PukMYuTo87AgoKIbhi9AcOtFMS
ContentType Paper
Copyright 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1003.0064
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a514-d5795838d26cebac2895fc81e7a5230c07cbfbb72edddb18ed374a3fd6f46b9c3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:27:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a514-d5795838d26cebac2895fc81e7a5230c07cbfbb72edddb18ed374a3fd6f46b9c3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2080966584?pq-origsite=%requestingapplication%
PQID 2080966584
PQPubID 2050157
ParticipantIDs proquest_journals_2080966584
PublicationCentury 2000
PublicationDate 20121228
PublicationDateYYYYMMDD 2012-12-28
PublicationDate_xml – month: 12
  year: 2012
  text: 20121228
  day: 28
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2012
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.4991332
SecondaryResourceType preprint
Snippet Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Complexity
Computer simulation
Decoding
Maximum likelihood decoding
Polynomials
Randomization
Reduction
Rounding
Sampling
Title Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding
URI https://www.proquest.com/docview/2080966584
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oaOLJd3wg2YPXRuiW7uLFgEA0QdIAMXgi-yqSSMG2EvXXO1OKJh68eNvNJptmt535ZubrN4RcetKKUHHm6NCiqLZkjjDWxXIhOChj5Or3sccu7_XEaFQP8oRbktMq1zYxM9RmrjFHDkG6ALSN_vJm8epg1yisruYtNDZJEVUSqhl1b_CdY3F9DoiZraqTmXTXlYzfp0ukBqCwKcoM_LLAmVvp7P73gfZIMZALG--TDRsdkO2MzqmTQ9JvQVSJXomqDzqQyBqPJte0QfsyMvPZ9NMa2pUpEt9o42UC26bPMwr4lTaxzRKsthBXwgtB1zsdkWGnPby9c_LuCY4EEOSYGq9jSdS4vrZKagiskK5VtVxiIlhXuFahUty1xhhVFdYw7kkWGj_0fFXX7JgUonlkTwitwIUCzgghkPY8a7hiMJCCM1bzQsAYp6S0PqFx_gUk45_jOft7-ZzsAAjJOqy4okQKafxmL8iWXqbTJC6TYrPdC_rl7GJhFtw_BE9f4fKutQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwNBDA61KnryjY-qc9DjYt3Z7uwKItUqLdYiWsRbmdfWgt3Wtlbrf_I_mmy7Ch689eBtYWAgJJt8Sb5JAA48aYNICe7oyNJQbcmdwFiX2oUYoIyR4-djD1VRqwWPj-FtBj7TtzBEq0x9YuKoTUdTjRyT9ADRNsXLs-6LQ1ujqLuartAYm8W1Hb1hytY_rZRQv4eue3VZvyg7k60CjkRw4JiCCKlVaFxfWyU1JhxEYzq2QlKBVOeFVpFSwrXGGHUcWMOFJ3lk_MjzVag5XjsDs4gi3DBhCt5_l3RcXyBA5-NmaDIp7Ej23ltDYiLQHFWaavDL4SdR7Grpn8m_DLO3smt7K5Cx8SrMJ2RV3V-DuxLmzBRzmRqxe0mc-Lh5worsTsam0259WMOqckC0PlZ8bqIUg6c2Q3TOzmmJFJ6WCDWjubP0pnWoT0OKDcjGndhuAsujuSKKivww73nWCMXxQwaC84IXIYLaglyqkMbk_-43frSx_ffxPiyU6zfVRrVSu96BRYRbyS4ZN8hBdtB7tbswp4eDVr-3l9gSg8aUdfcFLPIKOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+by+Sampling%3A+A+Randomized+Lattice+Algorithm+for+Bounded+Distance+Decoding&rft.jtitle=arXiv.org&rft.au=Liu%2C+Shuiyin&rft.au=Ling%2C+Cong&rft.au=Stehl%C3%A9%2C+Damien&rft.date=2012-12-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1003.0064