Representation of the Lagrange reconstructing polynomial by combination of substencils

The Lagrange reconstructing polynomial [Shu C.W.: {\em SIAM Rev.} {\bf 51} (2009) 82--126] of a function \(f(x)\) on a given set of equidistant (\(\Delta x=\const\)) points \(\bigl\{x_i+\ell\Delta x;\;\ell\in\{-M_-,...,+M_+\}\bigr\}\) is defined [Gerolymos G.A.: {\em J. Approx. Theory} {\bf 163} (20...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavný autor: Gerolymos, G A
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 14.02.2012
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Lagrange reconstructing polynomial [Shu C.W.: {\em SIAM Rev.} {\bf 51} (2009) 82--126] of a function \(f(x)\) on a given set of equidistant (\(\Delta x=\const\)) points \(\bigl\{x_i+\ell\Delta x;\;\ell\in\{-M_-,...,+M_+\}\bigr\}\) is defined [Gerolymos G.A.: {\em J. Approx. Theory} {\bf 163} (2011) 267--305] as the polynomial whose sliding (with \(x\)) averages on \([x-\tfrac{1}{2}\Delta x,x+\tfrac{1}{2}\Delta x]\) are equal to the Lagrange interpolating polynomial of \(f(x)\) on the same stencil. We first study the fundamental functions of Lagrange reconstruction, show that these polynomials have only real and distinct roots, which are never located at the cell-interfaces (half-points) \(x_i+n\tfrac{1}{2}\Delta x\) (\(n\in\mathbb{Z}\)), and obtain several identities. Using these identities, by analogy to the recursive Neville-Aitken-like algorithm applied to the Lagrange interpolating polynomial, we show that there exists a unique representation of the Lagrange reconstructing polynomial on \(\{i-M_-,...,i+M_+\}\) as a combination of the Lagrange reconstructing polynomials on the \(K_\mathrm{s}+1\leq M:=M_-+M_+>1\) substencils \(\{i-M_-+k_\mathrm{s},...,i+M_+-K_\mathrm{s}+k_\mathrm{s}\}\) (\(k_\mathrm{s}\in\{0,...,K_\mathrm{s}\}\)), with weights \(\sigma_{R_1,M_-,M_+,K_\mathrm{s},k_\mathrm{s}}(\xi)\) which are rational functions of \(\xi\) (\(x=x_i+\xi\Delta x\)) [Liu Y.Y., Shu C.W., Zhang M.P.: {\em Acta Math. Appl. Sinica} {\bf 25} (2009) 503--538], and give an analytical recursive expression of the weight-functions. We then use the analytical expression of the weight-functions \(\sigma_{R_1,M_-,M_+,K_\mathrm{s},k_\mathrm{s}}(\xi)\) to obtain a formal proof of convexity (positivity of the weight-functions) in the neighborhood of \(\xi=\tfrac{1}{2}\), under the condition that all of the substencils contain either point \(i\) or point \(i+1\) (or both).
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1102.3136