Inverse Scattering and the Geroch Group

We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Katsimpouri, Despoina, Kleinschmidt, Axel, Virmani, Amitabh
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 26.09.2013
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and we analyse the relation of this group structure to the inverse scattering method of the BZ approach in general. Concrete solution generating methods are exhibited in the BM approach in the so-called soliton transformation sector where the analysis becomes purely algebraic. As a novel example we construct the Kerr-NUT solution by solving the appropriate purely algebraic Riemann-Hilbert problem in the BM approach.
AbstractList We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and we analyse the relation of this group structure to the inverse scattering method of the BZ approach in general. Concrete solution generating methods are exhibited in the BM approach in the so-called soliton transformation sector where the analysis becomes purely algebraic. As a novel example we construct the Kerr-NUT solution by solving the appropriate purely algebraic Riemann-Hilbert problem in the BM approach.
Author Kleinschmidt, Axel
Virmani, Amitabh
Katsimpouri, Despoina
Author_xml – sequence: 1
  givenname: Despoina
  surname: Katsimpouri
  fullname: Katsimpouri, Despoina
– sequence: 2
  givenname: Axel
  surname: Kleinschmidt
  fullname: Kleinschmidt, Axel
– sequence: 3
  givenname: Amitabh
  surname: Virmani
  fullname: Virmani, Amitabh
BookMark eNotjTFPwzAQRi1EJUrbndESA1PC3fkcJyOqIFSqxED3ynYc2go5xUkqfj6R6PDpvel99-I2djEI8YCQc6k1PNv0e7zkSIi5AuYbMSelMCuZ6E6s-v4EAFQY0lrNxdMmXkLqg_z0dhhCOsYvaWMjh0OQdUidP8g6deN5KWat_e7D6sqF2L297tbv2faj3qxftpnVqDJNltiCRmbUrfGqwsld5bhtm8JZdNr7poDWE4TCmsphaSyX5DSrYEAtxON_9py6nzH0w_7UjSlOj3uCspgGrNQfRl9CFQ
ContentType Paper
Copyright 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1211.3044
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a513-52a24a0514415f7c391514b9b4ffd6ba1b5ccd60fc20e6a79b187a482b543e703
IEDL.DBID M7S
IngestDate Mon Jun 30 09:34:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a513-52a24a0514415f7c391514b9b4ffd6ba1b5ccd60fc20e6a79b187a482b543e703
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2086208043?pq-origsite=%requestingapplication%
PQID 2086208043
PQPubID 2050157
ParticipantIDs proquest_journals_2086208043
PublicationCentury 2000
PublicationDate 20130926
PublicationDateYYYYMMDD 2013-09-26
PublicationDate_xml – month: 09
  year: 2013
  text: 20130926
  day: 26
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2013
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5185751
SecondaryResourceType preprint
Snippet We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algebra
Group theory
Inverse scattering
Linear systems
Title Inverse Scattering and the Geroch Group
URI https://www.proquest.com/docview/2086208043
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ27T8MwEMZP0ILExFs8SpUBiclQJxcnnpBALSBBFdEOZar8lFjSkpSKPx_bpDAgsTBGWeIkvvvufPp9AOeCacVSowlFkxMUMiE5S5BY6eFRSmCiA2f2MRsO88mEF03DrW7GKlcxMQRqPVO-R-6KdKe9nbzB5Hr-RrxrlD9dbSw01qHtKQlxGN0bffdYYpY5xZx8nU4GdNeVqD5elx6pQC9dIY-_InBIK4Pt_z7QDrQLMTfVLqyZcg82wzinqvfhwuMzqtpEIxX4mS4_RaLUkVN70Z3xLllRaDodwHjQH9_ek8YSgYiUJq5qFDEKjyx3eddmytPdKUou0VrNpKAyVUqznlVxzzCRcUnzTGAeuzefGLe5D6FVzkpzBBFy1UOLuZHoJFFmueSGcqlRpdQ4HXcMndWyp81vXU9_1nzy9-1T2IqDbwQnMetAa1G9mzPYUMvFa111oX3THxbP3fC13FXx8FS8fALhJp4K
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_EokAHEFEjsy8MDYgBKq5aqUjt0q2zHkbqkJSkFfhT_Eds0MCCxdWC2ZPl59935_H0A5zxMZBioxPVRxS5yQd04pOimwpBHSY40sTyznajbjYdD1qvAR_kXxpRVljbRGupkIk2OXAfpGntreIP0dvrsGtUo87paSmh8HYu2en_VIVtx07rX-3tBSONhcNd0F6oCLg98qgMvTpAb1m_tutJIGoJ0HwUTmKZJKLgvAimT0Esl8VTIIyb8OOIYEz14qvT90N2uQA2N8beVgv3vlA4JIw3Q6ddjqGUKu-b523huGBz8K-oh_jL41os1Nv_Z_Leg1uNTlW9DRWU7sGaLVWWxC5eGHCQvlNOXlh1Ue1-HZ4mjsazzqIwGmGNTanswWMbQ9qGaTTJ1AA4y6WGKsRKoAV-UMsGUz0SCMvCVRqmHUC9XebS4tMXoZ4mP_m4-g_Xm4Kkz6rS67WPYIFYhg7kkrEN1lr-oE1iV89m4yE_tAXFgtOQN-QQ0IfUV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+Scattering+and+the+Geroch+Group&rft.jtitle=arXiv.org&rft.au=Katsimpouri%2C+Despoina&rft.au=Kleinschmidt%2C+Axel&rft.au=Virmani%2C+Amitabh&rft.date=2013-09-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1211.3044