On canonical metrics on Cartan-Hartogs domains

The Cartan-Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan-Hartogs domain \(\Omega^{B^{d_0}}(\mu)\) endowed with the canonical metric \(g(\mu)\), we obtain an explicit formula for t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Feng, Zhiming, Tu, Zhenhan
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 31.03.2014
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Cartan-Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan-Hartogs domain \(\Omega^{B^{d_0}}(\mu)\) endowed with the canonical metric \(g(\mu)\), we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space \(\mathcal{H}_{\alpha}\) of square integrable holomorphic functions on \((\Omega^{B^{d_0}}(\mu), g(\mu))\) with the weight \(\exp\{-\alpha \varphi\}\) (where \(\varphi\) is a globally defined K\"{a}hler potential for \(g(\mu)\)) for \(\alpha>0\), and, furthermore, we give an explicit expression of the Rawnsley's \(\varepsilon\)-function expansion for \((\Omega^{B^{d_0}}(\mu), g(\mu)).\) Secondly, using the explicit expression of the Rawnsley's \(\varepsilon\)-function expansion, we show that the coefficient \(a_2\) of the Rawnsley's \(\varepsilon\)-function expansion for the Cartan-Hartogs domain \((\Omega^{B^{d_0}}(\mu), g(\mu))\) is constant on \(\Omega^{B^{d_0}}(\mu)\) if and only if \((\Omega^{B^{d_0}}(\mu), g(\mu))\) is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1403.7975