On canonical metrics on Cartan-Hartogs domains
The Cartan-Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan-Hartogs domain \(\Omega^{B^{d_0}}(\mu)\) endowed with the canonical metric \(g(\mu)\), we obtain an explicit formula for t...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
31.03.2014
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The Cartan-Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan-Hartogs domain \(\Omega^{B^{d_0}}(\mu)\) endowed with the canonical metric \(g(\mu)\), we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space \(\mathcal{H}_{\alpha}\) of square integrable holomorphic functions on \((\Omega^{B^{d_0}}(\mu), g(\mu))\) with the weight \(\exp\{-\alpha \varphi\}\) (where \(\varphi\) is a globally defined K\"{a}hler potential for \(g(\mu)\)) for \(\alpha>0\), and, furthermore, we give an explicit expression of the Rawnsley's \(\varepsilon\)-function expansion for \((\Omega^{B^{d_0}}(\mu), g(\mu)).\) Secondly, using the explicit expression of the Rawnsley's \(\varepsilon\)-function expansion, we show that the coefficient \(a_2\) of the Rawnsley's \(\varepsilon\)-function expansion for the Cartan-Hartogs domain \((\Omega^{B^{d_0}}(\mu), g(\mu))\) is constant on \(\Omega^{B^{d_0}}(\mu)\) if and only if \((\Omega^{B^{d_0}}(\mu), g(\mu))\) is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda. |
|---|---|
| Bibliographie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1403.7975 |