Reinforcement Learning-Based Fuzz Testing for the Gazebo Robotic Simulator

Gazebo, being the most widely utilized simulator in robotics, plays a pivotal role in developing and testing robotic systems. Given its impact on the safety and reliability of robotic operations, early bug detection is critical. However, due to the challenges of strict input structures and vast stat...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the ACM on software engineering Vol. 2; no. ISSTA; pp. 1467 - 1488
Main Authors: Ren, Zhilei, Li, Yitao, Li, Xiaochen, Qi, Guanxiao, Xuan, Jifeng, Jiang, He
Format: Journal Article
Language:English
Published: New York, NY, USA ACM 22.06.2025
Subjects:
ISSN:2994-970X, 2994-970X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Gazebo, being the most widely utilized simulator in robotics, plays a pivotal role in developing and testing robotic systems. Given its impact on the safety and reliability of robotic operations, early bug detection is critical. However, due to the challenges of strict input structures and vast state space, it is not effective to directly use existing fuzz testing approach to Gazebo. In this paper, we present GzFuzz, the first fuzz testing framework designed for Gazebo. GzFuzz addresses these challenges through a syntax-aware feasible command generation mechanism to handle strict input requirements, and a reinforcement learning-based command generator selection mechanism to efficiently explore the state space. By combining the two mechanisms under a unified framework, GzFuzz is able to detect bugs in Gazebo effectively. In extensive experiments, GzFuzz is able to detect an average of 9.6 unique bugs in 12 hours, and exhibits a substantial increase in code coverage than existing fuzzers AFL++ and Fuzzotron, with a proportionate improvement of approximately 239%-363%. In less than six months, GzFuzz uncovered 25 unique crashes in Gazebo, 24 of which have been fixed or confirmed. Our results highlight the importance of directly fuzzing Gazebo, thereby presenting a novel and potent methodology that serves as an inspiration for enhancing testing across a broader range of simulators.
AbstractList Gazebo, being the most widely utilized simulator in robotics, plays a pivotal role in developing and testing robotic systems. Given its impact on the safety and reliability of robotic operations, early bug detection is critical. However, due to the challenges of strict input structures and vast state space, it is not effective to directly use existing fuzz testing approach to Gazebo. In this paper, we present GzFuzz, the first fuzz testing framework designed for Gazebo. GzFuzz addresses these challenges through a syntax-aware feasible command generation mechanism to handle strict input requirements, and a reinforcement learning-based command generator selection mechanism to efficiently explore the state space. By combining the two mechanisms under a unified framework, GzFuzz is able to detect bugs in Gazebo effectively. In extensive experiments, GzFuzz is able to detect an average of 9.6 unique bugs in 12 hours, and exhibits a substantial increase in code coverage than existing fuzzers AFL++ and Fuzzotron, with a proportionate improvement of approximately 239%-363%. In less than six months, GzFuzz uncovered 25 unique crashes in Gazebo, 24 of which have been fixed or confirmed. Our results highlight the importance of directly fuzzing Gazebo, thereby presenting a novel and potent methodology that serves as an inspiration for enhancing testing across a broader range of simulators.
Gazebo, being the most widely utilized simulator in robotics, plays a pivotal role in developing and testing robotic systems. Given its impact on the safety and reliability of robotic operations, early bug detection is critical. However, due to the challenges of strict input structures and vast state space, it is not effective to directly use existing fuzz testing approach to Gazebo. In this paper, we present GzFuzz, the first fuzz testing framework designed for Gazebo. GzFuzz addresses these challenges through a syntax-aware feasible command generation mechanism to handle strict input requirements, and a reinforcement learning-based command generator selection mechanism to efficiently explore the state space. By combining the two mechanisms under a unified framework, GzFuzz is able to detect bugs in Gazebo effectively. In extensive experiments, GzFuzz is able to detect an average of 9.6 unique bugs in 12 hours, and exhibits a substantial increase in code coverage than existing fuzzers AFL++ and Fuzzotron, with a proportionate improvement of approximately 239%-363%. In less than six months, GzFuzz uncovered 25 unique crashes in Gazebo, 24 of which have been fixed or confirmed. Our results highlight the importance of directly fuzzing Gazebo, thereby presenting a novel and potent methodology that serves as an inspiration for enhancing testing across a broader range of simulators.
ArticleNumber ISSTA065
Author Li, Yitao
Li, Xiaochen
Ren, Zhilei
Jiang, He
Qi, Guanxiao
Xuan, Jifeng
Author_xml – sequence: 1
  givenname: Zhilei
  orcidid: 0000-0002-1511-2158
  surname: Ren
  fullname: Ren, Zhilei
  email: zren@dlut.edu.cn
  organization: Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Yitao
  orcidid: 0009-0004-0832-9406
  surname: Li
  fullname: Li, Yitao
  email: liyitao@mail.dlut.edu.cn
  organization: Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Xiaochen
  orcidid: 0000-0002-5068-1938
  surname: Li
  fullname: Li, Xiaochen
  email: xiaochen.li@dlut.edu.cn
  organization: Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Guanxiao
  orcidid: 0009-0007-6838-6308
  surname: Qi
  fullname: Qi, Guanxiao
  email: gxqi@mail.dlut.edu.cn
  organization: Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Jifeng
  orcidid: 0000-0002-2968-3496
  surname: Xuan
  fullname: Xuan, Jifeng
  email: jxuan@whu.edu.cn
  organization: Wuhan University, Wuhan, China
– sequence: 6
  givenname: He
  orcidid: 0000-0001-8674-4948
  surname: Jiang
  fullname: Jiang, He
  email: jianghe@dlut.edu.cn
  organization: Dalian University of Technology, Dalian, China
BookMark eNpNkDFPwzAUhC1UJEqp2Jm8MQVsx4ntESpaQJGQSga2yHafIaixkZ0O5Nc3qAUx3enu0w13jiY-eEDokpIbSnlxmwsmFWcnaMqU4pkS5G3yz5-heUqfhJAxoVSQKXpeQ-tdiBY68D2uQEff-vfsXifY4OVuGHANqR8jPFK4_wC80gOYgNfBhL61-LXtdlvdh3iBTp3eJpgfdYbq5UO9eMyql9XT4q7KdEFZVhrtRK6VYJaUgpqyYGUBwhJHHDeMMFpw4oRzYK3JJagcNnzDJEgpRQk8n6Hrw6yNIaUIrvmKbafjd0NJ83NCczxhJK8OpLbdH_Rb7gGLlFg6
Cites_doi 10.1145/3616394.3618266
10.5772/5618
10.1016/j.infsof.2021.106625
10.1145/3540250.3549164
10.1016/j.jss.2022.111574
10.1073/pnas.1907856118
10.1109/NetSoft57336.2023.10175496
10.14722/ndss.2024.24556
10.1007/s11432-023-4127-5
10.1109/TCE.2023.3269528
10.1109/ICST46399.2020.00062
10.1146/annurev-control-062722-100728
10.1007/s10664-022-10233-3
10.1109/TRO.2023.3323938
10.1016/j.jss.2024.111963
10.1145/3597926.3598052
10.1109/TR.2018.2850315
10.1109/TASE.2014.2368997
10.1145/3324884.3416570
10.1109/ICST46399.2020.00020
10.1145/3533767.3534376
ContentType Journal Article
Copyright Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright_xml – notice: Copyright is held by the owner/author(s). Publication rights licensed to ACM.
DBID AAYXX
CITATION
DOI 10.1145/3728942
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2994-970X
EndPage 1488
ExternalDocumentID 10_1145_3728942
3728942
GrantInformation_xml – fundername: Foundational Research Funds for the Central Universities
  grantid: DUT24LAB126
– fundername: National Natural Science Foundation of China
  grantid: 62132020, 62032004, 62432010, 62072068
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YF-B1003900
  funderid: https://doi.org/10.13039/501100012166
GroupedDBID AAKMM
ACM
AEJOY
AKRVB
ALMA_UNASSIGNED_HOLDINGS
LHSKQ
M~E
AAYXX
CITATION
ID FETCH-LOGICAL-a512-6baf73a972c0671b65265e7c0f0f4b2021540f7ffeccb38e93ed4d28e88876e43
ISSN 2994-970X
IngestDate Sat Nov 29 07:43:49 EST 2025
Mon Jul 14 20:48:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue ISSTA
Keywords Fuzz Testing
Gazebo
Robotic Simulator
Software Testing
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a512-6baf73a972c0671b65265e7c0f0f4b2021540f7ffeccb38e93ed4d28e88876e43
ORCID 0000-0002-5068-1938
0000-0002-1511-2158
0000-0002-2968-3496
0000-0001-8674-4948
0009-0007-6838-6308
0009-0004-0832-9406
OpenAccessLink https://dl.acm.org/doi/10.1145/3728942
PageCount 22
ParticipantIDs crossref_primary_10_1145_3728942
acm_primary_3728942
PublicationCentury 2000
PublicationDate 20250622
2025-06-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 20250622
  day: 22
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of the ACM on software engineering
PublicationTitleAbbrev ACM PACMSE
PublicationYear 2025
Publisher ACM
Publisher_xml – name: ACM
References Andrea Fioraldi, Dominik Maier, Heiko Eiß feldt, and Marc Heuse. 2020. AFL++: Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies (WOOT).
Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming Zhang. 2024. WhiteFox: White-Box Compiler Fuzzing Empowered by Large Language Models. Proc. ACM Program. Lang., 8, OOPSLA2 (2024), Article 296, Oct., 27 pages.
Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: A Greybox Fuzzer for Network Protocols. In Proceedings of the 13rd IEEE International Conference on Software Testing, Verification and Validation : Testing Tools Track.
Afsoon Afzal, Deborah S Katz, Claire Le Goues, and Christopher S Timperley. 2021. Simulation for Robotics Test Automation: Developer Perspectives. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). 263–274.
Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception and Practices of Differential Testing. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 71–80.
Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016. Coverage-Directed Differential Testing of JVM Implementations. In proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 85–99.
Alexander Smirnov and Nikolay Teslya. 2020. Modeling of Robot Interaction in Coalition Through Smart Space and Blockchain: Precision Agriculture Scenario. In International Conference on Enterprise Information Systems (ICEIS). 481–497.
Mohamed Fasil Syed Ahamed, Girma Tewolde, and Jaerock Kwon. 2018. Software-in-the-Loop Modeling and Simulation Framework for Autonomous Vehicles. In 2018 IEEE International Conference on Electro/Information Technology (EIT). 0305–0310.
Megan Olsen and Mohammad Raunak. 2019. Increasing Validity of Simulation Models Through Metamorphic Testing. IEEE Transactions on Reliability, 68, 1 (2019), 91–108.
Danielle Dauphinais, Michael Zylka, Harris Spahic, Farhan Shaik, Jingda Yang, Isabella Cruz, Jakob Gibson, and Ying Wang. 2023. Automated Vulnerability Testing and Detection Digital Twin Framework for 5G Systems. In 2023 IEEE 9th International Conference on Network Softwarization (NetSoft). 308–310.
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
Michel Nass, Emil Alégroth, and Robert Feldt. 2021. Why Many Challenges with GUI Test Automation (Will) Remain. Information and Software Technology, 138 (2021), 106625.
Junjie Chen, Chenyao Suo, Jiajun Jiang, Peiqi Chen, and Xingjian Li. 2023. Compiler Test-Program Generation via Memoized Configuration Search. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 2035–2047.
Dongwei Xiao, Zhibo Liu, and Shuai Wang. 2023. PhyFu: Fuzzing Modern Physics Simulation Engines. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). 1579–1591.
Mayank Sharma, Pingshi Yu, and Alastair F Donaldson. 2023. Rustsmith: Random Differential Compiler Testing for Rust. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 1483–1486.
Chang-Ai Sun, An Fu, Pak-Lok Poon, Xiaoyuan Xie, Huai Liu, and Tsong Yueh Chen. 2021. METRIC^++: A Metamorphic Relation Identification Technique Based on Input Plus Output Domains. IEEE Transactions on Software Engineering, 47, 9 (2021), 1764–1785.
Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini Encyclopedia of Psychology, 1–1.
Olivier Michel. 2004. Cyberbotics ltd. Webots™ : Professional Mobile Robot Simulation. International Journal of Advanced Robotic Systems, 1, 1 (2004), 5.
Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Compiler Bug Isolation via Memoized Search. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). 78–89.
Kamak Ebadi, Lukas Bernreiter, Harel Biggie, Gavin Catt, Yun Chang, Arghya Chatterjee, Christopher E Denniston, Simon-Pierre Deschênes, Kyle Harlow, and Shehryar Khattak. 2024. Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge. IEEE Transactions on Robotics, 40 (2024), 936–959.
Ruyi Zhou, Wenhao Feng, Liang Ding, Huaiguang Yang, Haibo Gao, Guangjun Liu, and Zongquan Deng. 2022. MarsSim: a High-Fidelity Physical and Visual Simulation for Mars Rovers. IEEE Trans. Aerospace Electron. Systems, 59, 2 (2022), 1879–1892.
Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024. Large Language Model Guided Protocol Fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS).
Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A Survey for Roadmap. ACM Comput. Surv., 54, 11s (2022), Article 230, Sept., 36 pages. issn:0360-0300
Roberto Natella. 2022. StateAFL: Greybox Fuzzing for Stateful Network Servers. Empirical Software Engineering, 27, 7 (2022), 191.
Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang. 2024. Large Language Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering (ICSE). ACM, 70:1–70:13.
Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio Pelliccione. 2020. Robotics Software Engineering: A Perspective from the Service Robotics Domain. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 593–604.
Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis. 2023. Dependency-Aware Metamorphic Testing of Datalog Engines. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, 236–247.
Nathan Koenig and Andrew Howard. 2004. Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 3, 2149–2154.
Philippe Bardou, Jérôme Mariette, Frédéric Escudié, Christophe Djemiel, and Christophe Klopp. 2014. JVenn: an Interactive Venn Diagram Viewer. BMC bioinformatics, 15 (2014), 1–7.
Ahmed AbdelHamed, Girma Tewolde, and Jaerock Kwon. 2020. Simulation Framework for Development and Testing of Autonomous Vehicles. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 1–6.
Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architecture. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), Satinder Singh and Shaul Markovitch (Eds.). AAAI Press, 1726–1734.
Thomas Wetzlmaier, Rudolf Ramler, and Werner Putschögl. 2016. A Framework for Monkey GUI Testing. In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). 416–423.
Yang Hong and Jun Wu. 2024. Fuzzing Digital Twin With Graphical Visualization of Electronic AVs Provable Test for Consumer Safety. IEEE Transactions on Consumer Electronics, 70, 1 (2024), 4633–4644.
Anastasios Andronidis and Cristian Cadar. 2022. Snapfuzz: High-Throughput Fuzzing of Network Applications. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 340–351.
Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-Min Hu. 2021. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks with Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC). 489–502.
Michel Albonico, Milica Đ orđ ević, Engel Hamer, and Ivano Malavolta. 2023. Software Engineering Research on the Robot Operating System: A Systematic Mapping Study. Journal of Systems and Software, 197 (2023), 111574.
Xiaohui Wan, Tiancheng Li, Weibin Lin, Yi Cai, and Zheng Zheng. 2024. Coverage-Guided Fuzzing for Deep Reinforcement Learning Systems. Journal of Systems and Software, 210 (2024), 111963. issn:0164-1212
HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory Hager, David Han, Frank Hearl, Jessica Hodgins, Abhinandan Jain, and Frederick Leve. 2021. On the Use of Simulation in Robotics: Opportunities, Challenges, and Suggestions for Moving Forward. Proceedings of the National Academy of Sciences, 118, 1 (2021), e1907856118.
Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges and Opportunities. ACM Comput. Surv., 51, 1 (2018), 4:1–4:27.
Brian Bingham, Carlos Agüero, Michael McCarrin, Joseph Klamo, Joshua Malia, Kevin Allen, Tyler Lum, Marshall Rawson, and Rumman Waqar. 2019. Toward Maritime Robotic Simulation in Gazebo. In OCEANS 2019 MTS/IEEE SEATTLE. 1–10.
Jia-Ju Bai, Hao-Xuan Song, and Shi-Min Hu. 2024. Multi-Dimensional and Message-Guided Fuzzing for Robotic Programs in Robot Operating System. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 763–778.
Timothy H Chung, Viktor Orekhov, and Angela Maio. 2023. Into the Robotic Depths: Analysis and Insights from the DARPA Subterranean Challenge. Annual Review of Control, Robotics, and Autonomous Systems, 6, 1 (2023), 477–502.
Marcela G Dos Santos, Bianca M Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar. 2020. A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. 647–654.
Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics, 7, 66 (202
Macenski Steven (e_1_2_1_36_1) 2022
Xiao Dongwei (e_1_2_1_58_1) 2023
Rohmer Eric (e_1_2_1_50_1) 2013
Sharma Mayank (e_1_2_1_51_1) 2023
Koenig Nathan (e_1_2_1_35_1) 2004
Smirnov Alexander (e_1_2_1_52_1) 2020
Bardou Philippe (e_1_2_1_12_1) 2014
García Sergio (e_1_2_1_28_1) 2020
Sopegno L (e_1_2_1_53_1) 2022
Chen Yuting (e_1_2_1_19_1) 2016
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
Chung Timothy H (e_1_2_1_21_1) 2023; 6
e_1_2_1_49_1
AbdelHamed Ahmed (e_1_2_1_1_1) 2020
Bai Jia-Ju (e_1_2_1_11_1) 2024
Deng Yinlin (e_1_2_1_23_1) 2024
Michel Olivier (e_1_2_1_41_1) 2004; 1
Chen Junjie (e_1_2_1_16_1) 2023
Johnston Janis E (e_1_2_1_13_1) 2018
e_1_2_1_4_1
e_1_2_1_33_1
e_1_2_1_2_1
Sun Chang-Ai (e_1_2_1_54_1) 2021; 47
Afzal Afsoon (e_1_2_1_3_1) 2021
Diederik (e_1_2_1_34_1) 2015
Gulzar Muhammad Ali (e_1_2_1_30_1) 2019
e_1_2_1_18_1
Xie Kai-Tao (e_1_2_1_59_1) 2022
Dos Santos Marcela G (e_1_2_1_24_1) 2020
Wetzlmaier Thomas (e_1_2_1_56_1) 2016
Paszke Adam (e_1_2_1_47_1) 2019
Syed Ahamed Mohamed Fasil (e_1_2_1_6_1) 2018
e_1_2_1_42_1
Allan Mark (e_1_2_1_8_1) 2019
e_1_2_1_40_1
Bacon Pierre-Luc (e_1_2_1_10_1) 2017
Bingham Brian (e_1_2_1_14_1) 2019
Nogueira Lucas (e_1_2_1_44_1) 2014; 2014
Yang Chenyuan (e_1_2_1_60_1) 2024
Hambuchen Kimberly A (e_1_2_1_31_1) 2017
e_1_2_1_25_1
Echeverria Gilberto (e_1_2_1_26_1) 2011
Paduraru Ciprian (e_1_2_1_46_1) 2023
Xia Chunqiu Steven (e_1_2_1_57_1) 2024
Pateria Shubham (e_1_2_1_48_1) 2022
Güler Emre (e_1_2_1_29_1) 2024
Zhou Ruyi (e_1_2_1_61_1) 2022; 59
e_1_2_1_7_1
Chen Tsong Yueh (e_1_2_1_17_1) 2018; 51
e_1_2_1_55_1
e_1_2_1_5_1
Choi HeeSun (e_1_2_1_20_1) 2021; 118
Fioraldi Andrea (e_1_2_1_27_1) 2020
McKnight Patrick E (e_1_2_1_39_1)
e_1_2_1_32_1
Zou Yong-Hao (e_1_2_1_63_1) 2021
e_1_2_1_38_1
e_1_2_1_15_1
Marcusso Manhães Musa Morena (e_1_2_1_37_1) 2016
e_1_2_1_9_1
Zhu Xiaogang (e_1_2_1_62_1) 2022
References_xml – reference: Ciprian Paduraru., Rares Cristea., and Alin Stefanescu.. 2023. Automatic Fuzz Testing and Tuning Tools for Software Blueprints. In Proceedings of the 18th International Conference on Software Technologies (ICSOFT). SciTePress, 151–162.
– reference: Yang Hong and Jun Wu. 2024. Fuzzing Digital Twin With Graphical Visualization of Electronic AVs Provable Test for Consumer Safety. IEEE Transactions on Consumer Electronics, 70, 1 (2024), 4633–4644.
– reference: Haitham Y. Adarbah, Mehdi Sookhak, and Mohammed Atiquzzaman. 2023. A Digital Twin Environment for 5G Vehicle-to-Everything: Architecture and Open Issues. In Proceedings of the International ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, Montreal, Mónica Aguilar-Igartua, Luis J. de la Cruz Llopis, and Thomas Begin (Eds.). ACM, 115–122.
– reference: Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: A Greybox Fuzzer for Network Protocols. In Proceedings of the 13rd IEEE International Conference on Software Testing, Verification and Validation : Testing Tools Track.
– reference: Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz, Xinyi Xu, Cemal Kaygusuz, and Thorsten Holz. 2024. Atropos: Effective Fuzzing of Web Applications for Server-Side Vulnerabilities. In USENIX Security Symposium.
– reference: Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics, 7, 66 (2022), eabm6074.
– reference: Timothy H Chung, Viktor Orekhov, and Angela Maio. 2023. Into the Robotic Depths: Analysis and Insights from the DARPA Subterranean Challenge. Annual Review of Control, Robotics, and Autonomous Systems, 6, 1 (2023), 477–502.
– reference: Roberto Natella. 2022. StateAFL: Greybox Fuzzing for Stateful Network Servers. Empirical Software Engineering, 27, 7 (2022), 191.
– reference: Kai-Tao Xie, Jia-Ju Bai, Yong-Hao Zou, and Yu-Ping Wang. 2022. ROZZ: Property-Based Fuzzing for Robotic Programs in ROS. In 2022 International Conference on Robotics and Automation (ICRA). 6786–6792.
– reference: Jia-Ju Bai, Hao-Xuan Song, and Shi-Min Hu. 2024. Multi-Dimensional and Message-Guided Fuzzing for Robotic Programs in Robot Operating System. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 763–778.
– reference: Brian Bingham, Carlos Agüero, Michael McCarrin, Joseph Klamo, Joshua Malia, Kevin Allen, Tyler Lum, Marshall Rawson, and Rumman Waqar. 2019. Toward Maritime Robotic Simulation in Gazebo. In OCEANS 2019 MTS/IEEE SEATTLE. 1–10.
– reference: Alexander Smirnov and Nikolay Teslya. 2020. Modeling of Robot Interaction in Coalition Through Smart Space and Blockchain: Precision Agriculture Scenario. In International Conference on Enterprise Information Systems (ICEIS). 481–497.
– reference: Chang-Ai Sun, An Fu, Pak-Lok Poon, Xiaoyuan Xie, Huai Liu, and Tsong Yueh Chen. 2021. METRIC^++: A Metamorphic Relation Identification Technique Based on Input Plus Output Domains. IEEE Transactions on Software Engineering, 47, 9 (2021), 1764–1785.
– reference: Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. 2024. Fuzz4all: Universal Fuzzing with Large Language Models. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE). 1–13.
– reference: Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architecture. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), Satinder Singh and Shaul Markovitch (Eds.). AAAI Press, 1726–1734.
– reference: Mayank Sharma, Pingshi Yu, and Alastair F Donaldson. 2023. Rustsmith: Random Differential Compiler Testing for Rust. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 1483–1486.
– reference: Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming Zhang. 2024. WhiteFox: White-Box Compiler Fuzzing Empowered by Large Language Models. Proc. ACM Program. Lang., 8, OOPSLA2 (2024), Article 296, Oct., 27 pages.
– reference: HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory Hager, David Han, Frank Hearl, Jessica Hodgins, Abhinandan Jain, and Frederick Leve. 2021. On the Use of Simulation in Robotics: Opportunities, Challenges, and Suggestions for Moving Forward. Proceedings of the National Academy of Sciences, 118, 1 (2021), e1907856118.
– reference: L Sopegno, P Livreri, and Kp Valavanis. 2022. Using UAVs for Future Mission on Mars. In Proceedings of the International Astronautical Congress, IAC. 2022.
– reference: Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges and Opportunities. ACM Comput. Surv., 51, 1 (2018), 4:1–4:27.
– reference: Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016. Coverage-Directed Differential Testing of JVM Implementations. In proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 85–99.
– reference: Musa Morena Marcusso Manhães, Sebastian A Scherer, Martin Voss, Luiz Ricardo Douat, and Thomas Rauschenbach. 2016. UUV simulator: A Gazebo-Based Package for Underwater Intervention and Multi-Robot Simulation. In Oceans 2016 Mts/IEEE Monterey. 1–8.
– reference: Andrea Fioraldi, Dominik Maier, Heiko Eiß feldt, and Marc Heuse. 2020. AFL++: Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies (WOOT).
– reference: Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A Survey for Roadmap. ACM Comput. Surv., 54, 11s (2022), Article 230, Sept., 36 pages. issn:0360-0300
– reference: Mark Allan, Uland Wong, P Michael Furlong, Arno Rogg, Scott McMichael, Terry Welsh, Ian Chen, Steven Peters, Brian Gerkey, and Moraan Quigley. 2019. Planetary Rover Simulation for Lunar Exploration Missions. In 2019 IEEE Aerospace Conference. 1–19.
– reference: Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio Pelliccione. 2020. Robotics Software Engineering: A Perspective from the Service Robotics Domain. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 593–604.
– reference: Mohamed Fasil Syed Ahamed, Girma Tewolde, and Jaerock Kwon. 2018. Software-in-the-Loop Modeling and Simulation Framework for Autonomous Vehicles. In 2018 IEEE International Conference on Electro/Information Technology (EIT). 0305–0310.
– reference: Xiangping Chen, Xing Hu, Yuan Huang, He Jiang, Weixing Ji, Yanjie Jiang, Yanyan Jiang, Bo Liu, Hui Liu, and Xiaochen Li. 2025. Deep Learning-Based Software Engineering: Progress, Challenges, and Opportunities. Science China Information Sciences, 68, 1 (2025), 1–88.
– reference: Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024. Large Language Model Guided Protocol Fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS).
– reference: Olivier Michel. 2004. Cyberbotics ltd. Webots™ : Professional Mobile Robot Simulation. International Journal of Advanced Robotic Systems, 1, 1 (2004), 5.
– reference: Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
– reference: Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis. 2023. Dependency-Aware Metamorphic Testing of Datalog Engines. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, 236–247.
– reference: Danielle Dauphinais, Michael Zylka, Harris Spahic, Farhan Shaik, Jingda Yang, Isabella Cruz, Jakob Gibson, and Ying Wang. 2023. Automated Vulnerability Testing and Detection Digital Twin Framework for 5G Systems. In 2023 IEEE 9th International Conference on Network Softwarization (NetSoft). 308–310.
– reference: Michel Nass, Emil Alégroth, and Robert Feldt. 2021. Why Many Challenges with GUI Test Automation (Will) Remain. Information and Software Technology, 138 (2021), 106625.
– reference: Lucas Nogueira. 2014. Comparative Analysis Between Gazebo and V-REP Robotic Simulators. Seminario Interno de Cognicao Artificial-SICA, 2014, 5 (2014), 2.
– reference: Eric Rohmer, Surya PN Singh, and Marc Freese. 2013. V-REP: A Versatile and Scalable Robot Simulation Framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1321–1326.
– reference: Carlos E Agüero, Nate Koenig, Ian Chen, Hugo Boyer, Steven Peters, John Hsu, Brian Gerkey, Steffi Paepcke, Jose L Rivero, and Justin Manzo. 2015. Inside the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster Response. IEEE Transactions on Automation Science and Engineering, 12, 2 (2015), 494–506.
– reference: Nathan Koenig and Andrew Howard. 2004. Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 3, 2149–2154.
– reference: Anastasios Andronidis and Cristian Cadar. 2022. Snapfuzz: High-Throughput Fuzzing of Network Applications. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 340–351.
– reference: Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timperley. 2020. A Study on Challenges of Testing Robotic Systems. In 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). 96–107.
– reference: Michel Albonico, Milica Đ orđ ević, Engel Hamer, and Ivano Malavolta. 2023. Software Engineering Research on the Robot Operating System: A Systematic Mapping Study. Journal of Systems and Software, 197 (2023), 111574.
– reference: Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness Bugs. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 447–458.
– reference: Marcela G Dos Santos, Bianca M Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar. 2020. A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. 647–654.
– reference: Afsoon Afzal, Deborah S Katz, Claire Le Goues, and Christopher S Timperley. 2021. Simulation for Robotics Test Automation: Developer Perspectives. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). 263–274.
– reference: Megan Olsen and Mohammad Raunak. 2019. Increasing Validity of Simulation Models Through Metamorphic Testing. IEEE Transactions on Reliability, 68, 1 (2019), 91–108.
– reference: Ahmed AbdelHamed, Girma Tewolde, and Jaerock Kwon. 2020. Simulation Framework for Development and Testing of Autonomous Vehicles. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 1–6.
– reference: Ruyi Zhou, Wenhao Feng, Liang Ding, Huaiguang Yang, Haibo Gao, Guangjun Liu, and Zongquan Deng. 2022. MarsSim: a High-Fidelity Physical and Visual Simulation for Mars Rovers. IEEE Trans. Aerospace Electron. Systems, 59, 2 (2022), 1879–1892.
– reference: Junjie Chen, Chenyao Suo, Jiajun Jiang, Peiqi Chen, and Xingjian Li. 2023. Compiler Test-Program Generation via Memoized Configuration Search. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 2035–2047.
– reference: Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Compiler Bug Isolation via Memoized Search. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). 78–89.
– reference: Thomas Wetzlmaier, Rudolf Ramler, and Werner Putschögl. 2016. A Framework for Monkey GUI Testing. In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). 416–423.
– reference: Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. 2022. Hierarchical Reinforcement Learning: A Comprehensive Survey. Comput. Surveys, 54, 5 (2022), 109:1–109:35.
– reference: Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang. 2024. Large Language Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering (ICSE). ACM, 70:1–70:13.
– reference: Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-Min Hu. 2021. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks with Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC). 489–502.
– reference: Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in neural information processing systems, 32 (2019).
– reference: Kamak Ebadi, Lukas Bernreiter, Harel Biggie, Gavin Catt, Yun Chang, Arghya Chatterjee, Christopher E Denniston, Simon-Pierre Deschênes, Kyle Harlow, and Shehryar Khattak. 2024. Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge. IEEE Transactions on Robotics, 40 (2024), 936–959.
– reference: Philippe Bardou, Jérôme Mariette, Frédéric Escudié, Christophe Djemiel, and Christophe Klopp. 2014. JVenn: an Interactive Venn Diagram Viewer. BMC bioinformatics, 15 (2014), 1–7.
– reference: Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin Lemaignan. 2011. Modular Open Robots Simulation Engine: MORSE. In 2011 IEEE International Conference on Robotics and Automation (ICRA). 46–51.
– reference: Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception and Practices of Differential Testing. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 71–80.
– reference: Janis E Johnston Kenneth J Berry, Paul W Mielke Jr, Berry, and Hiripi. 2018. Measurement of Association. Springer.
– reference: Kimberly A Hambuchen, Monsi C Roman, Amy Sivak, Angela Herblet, Nathan Koenig, Daniel Newmyer, and Robert Ambrose. 2017. NASA’s Space Robotics Challenge: Advancing Robotics for Future Exploration Missions. In AIAA SPACE and Astronautics Forum and Exposition. 5120.
– reference: Dongwei Xiao, Zhibo Liu, and Shuai Wang. 2023. PhyFu: Fuzzing Modern Physics Simulation Engines. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). 1579–1591.
– reference: Xiaohui Wan, Tiancheng Li, Weibin Lin, Yi Cai, and Zheng Zheng. 2024. Coverage-Guided Fuzzing for Deep Reinforcement Learning Systems. Journal of Systems and Software, 210 (2024), 111963. issn:0164-1212
– reference: Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini Encyclopedia of Psychology, 1–1.
– ident: e_1_2_1_2_1
  doi: 10.1145/3616394.3618266
– volume: 1
  start-page: 5
  year: 2004
  ident: e_1_2_1_41_1
  article-title: Cyberbotics ltd. Webots™ : Professional Mobile Robot Simulation
  publication-title: International Journal of Advanced Robotic Systems
  doi: 10.5772/5618
– volume-title: Software-in-the-Loop Modeling and Simulation Framework for Autonomous Vehicles. In 2018 IEEE International Conference on Electro/Information Technology (EIT). 0305–0310
  year: 2018
  ident: e_1_2_1_6_1
– volume-title: Proceedings of the 46th IEEE/ACM International Conference on Software Engineering (ICSE). ACM, 70:1–70:13
  year: 2024
  ident: e_1_2_1_23_1
– volume-title: 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). 416–423
  year: 2016
  ident: e_1_2_1_56_1
– volume-title: 14th USENIX Workshop on Offensive Technologies (WOOT).
  year: 2020
  ident: e_1_2_1_27_1
– volume-title: Atropos: Effective Fuzzing of Web Applications for Server-Side Vulnerabilities. In USENIX Security Symposium.
  year: 2024
  ident: e_1_2_1_29_1
– volume-title: Planetary Rover Simulation for Lunar Exploration Missions. In 2019 IEEE Aerospace Conference. 1–19
  year: 2019
  ident: e_1_2_1_8_1
– volume-title: JVenn: an Interactive Venn Diagram Viewer. BMC bioinformatics, 15
  year: 2014
  ident: e_1_2_1_12_1
– volume-title: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. 647–654
  year: 2020
  ident: e_1_2_1_24_1
– volume-title: Toward Maritime Robotic Simulation in Gazebo. In OCEANS 2019 MTS/IEEE SEATTLE. 1–10
  year: 2019
  ident: e_1_2_1_14_1
– volume-title: V-REP: A Versatile and Scalable Robot Simulation Framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1321–1326
  year: 2013
  ident: e_1_2_1_50_1
– volume-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), Satinder Singh and Shaul Markovitch (Eds.). AAAI Press, 1726–1734
  year: 2017
  ident: e_1_2_1_10_1
– volume-title: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 593–604
  year: 2020
  ident: e_1_2_1_28_1
– ident: e_1_2_1_42_1
  doi: 10.1016/j.infsof.2021.106625
– volume-title: The Corsini Encyclopedia of Psychology, 1–1
  ident: e_1_2_1_39_1
– volume-title: Kingma and Jimmy Ba
  year: 2015
  ident: e_1_2_1_34_1
– volume-title: TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks with Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC). 489–502
  year: 2021
  ident: e_1_2_1_63_1
– volume: 2014
  start-page: 2
  year: 2014
  ident: e_1_2_1_44_1
  article-title: Comparative Analysis Between Gazebo and V-REP Robotic Simulators
  publication-title: Seminario Interno de Cognicao Artificial-SICA
– volume: 47
  start-page: 1764
  year: 2021
  ident: e_1_2_1_54_1
  article-title: METRIC^++: A Metamorphic Relation Identification Technique Based on Input Plus Output Domains
  publication-title: IEEE Transactions on Software Engineering
– volume-title: Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics, 7, 66
  year: 2022
  ident: e_1_2_1_36_1
– volume-title: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 2035–2047
  year: 2023
  ident: e_1_2_1_16_1
– volume-title: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 3, 2149–2154
  year: 2004
  ident: e_1_2_1_35_1
– volume-title: Proceedings of the 18th International Conference on Software Technologies (ICSOFT). SciTePress, 151–162
  year: 2023
  ident: e_1_2_1_46_1
– volume-title: Hierarchical Reinforcement Learning: A Comprehensive Survey. Comput. Surveys, 54, 5
  year: 2022
  ident: e_1_2_1_48_1
– ident: e_1_2_1_33_1
  doi: 10.1145/3540250.3549164
– ident: e_1_2_1_7_1
  doi: 10.1016/j.jss.2022.111574
– volume: 118
  start-page: e1907856118
  year: 2021
  ident: e_1_2_1_20_1
  article-title: On the Use of Simulation in Robotics: Opportunities, Challenges, and Suggestions for Moving Forward
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1907856118
– volume-title: NASA’s Space Robotics Challenge: Advancing Robotics for Future Exploration Missions. In AIAA SPACE and Astronautics Forum and Exposition. 5120
  year: 2017
  ident: e_1_2_1_31_1
– volume-title: Perception and Practices of Differential Testing. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 71–80
  year: 2019
  ident: e_1_2_1_30_1
– ident: e_1_2_1_22_1
  doi: 10.1109/NetSoft57336.2023.10175496
– volume-title: Modeling of Robot Interaction in Coalition Through Smart Space and Blockchain: Precision Agriculture Scenario. In International Conference on Enterprise Information Systems (ICEIS). 481–497
  year: 2020
  ident: e_1_2_1_52_1
– volume-title: Modular Open Robots Simulation Engine: MORSE. In 2011 IEEE International Conference on Robotics and Automation (ICRA). 46–51
  year: 2011
  ident: e_1_2_1_26_1
– ident: e_1_2_1_40_1
  doi: 10.14722/ndss.2024.24556
– volume-title: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 763–778
  year: 2024
  ident: e_1_2_1_11_1
– ident: e_1_2_1_18_1
  doi: 10.1007/s11432-023-4127-5
– volume-title: Proceedings of the International Astronautical Congress, IAC.
  year: 2022
  ident: e_1_2_1_53_1
– ident: e_1_2_1_32_1
  doi: 10.1109/TCE.2023.3269528
– volume-title: Luiz Ricardo Douat, and Thomas Rauschenbach
  year: 2016
  ident: e_1_2_1_37_1
– ident: e_1_2_1_49_1
  doi: 10.1109/ICST46399.2020.00062
– volume-title: Simulation for Robotics Test Automation: Developer Perspectives. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). 263–274
  year: 2021
  ident: e_1_2_1_3_1
– volume-title: PyTorch: An Imperative Style
  year: 2019
  ident: e_1_2_1_47_1
– volume-title: Fuzzing: A Survey for Roadmap. ACM Comput. Surv., 54, 11s
  year: 2022
  ident: e_1_2_1_62_1
– volume: 6
  start-page: 477
  year: 2023
  ident: e_1_2_1_21_1
  article-title: Into the Robotic Depths: Analysis and Insights from the DARPA Subterranean Challenge
  publication-title: Annual Review of Control, Robotics, and Autonomous Systems
  doi: 10.1146/annurev-control-062722-100728
– volume: 51
  year: 2018
  ident: e_1_2_1_17_1
  article-title: Metamorphic Testing
  publication-title: A Review of Challenges and Opportunities. ACM Comput. Surv.
– ident: e_1_2_1_43_1
  doi: 10.1007/s10664-022-10233-3
– volume-title: PhyFu: Fuzzing Modern Physics Simulation Engines. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). 1579–1591
  year: 2023
  ident: e_1_2_1_58_1
– volume: 59
  start-page: 1879
  year: 2022
  ident: e_1_2_1_61_1
  article-title: MarsSim: a High-Fidelity Physical and Visual Simulation for Mars Rovers
  publication-title: IEEE Trans. Aerospace Electron. Systems
– ident: e_1_2_1_25_1
  doi: 10.1109/TRO.2023.3323938
– volume-title: Coverage-Directed Differential Testing of JVM Implementations. In proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 85–99
  year: 2016
  ident: e_1_2_1_19_1
– volume-title: Paul W Mielke Jr, Berry, and Hiripi
  year: 2018
  ident: e_1_2_1_13_1
– volume-title: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE). 1–13
  year: 2024
  ident: e_1_2_1_57_1
– ident: e_1_2_1_55_1
  doi: 10.1016/j.jss.2024.111963
– ident: e_1_2_1_38_1
  doi: 10.1145/3597926.3598052
– ident: e_1_2_1_45_1
  doi: 10.1109/TR.2018.2850315
– ident: e_1_2_1_5_1
  doi: 10.1109/TASE.2014.2368997
– ident: e_1_2_1_15_1
  doi: 10.1145/3324884.3416570
– volume-title: ROZZ: Property-Based Fuzzing for Robotic Programs in ROS. In 2022 International Conference on Robotics and Automation (ICRA). 6786–6792
  year: 2022
  ident: e_1_2_1_59_1
– volume-title: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 1483–1486
  year: 2023
  ident: e_1_2_1_51_1
– volume-title: Electronics and Mechatronics Conference (IEMTRONICS). 1–6.
  year: 2020
  ident: e_1_2_1_1_1
– volume-title: Proc. ACM Program. Lang., 8, OOPSLA2
  year: 2024
  ident: e_1_2_1_60_1
– ident: e_1_2_1_4_1
  doi: 10.1109/ICST46399.2020.00020
– ident: e_1_2_1_9_1
  doi: 10.1145/3533767.3534376
SSID ssj0002991170
Score 2.2951112
Snippet Gazebo, being the most widely utilized simulator in robotics, plays a pivotal role in developing and testing robotic systems. Given its impact on the safety...
SourceID crossref
acm
SourceType Index Database
Publisher
StartPage 1467
SubjectTerms Software and its engineering
Software testing and debugging
SubjectTermsDisplay Software and its engineering -- Software testing and debugging
Title Reinforcement Learning-Based Fuzz Testing for the Gazebo Robotic Simulator
URI https://dl.acm.org/doi/10.1145/3728942
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2994-970X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002991170
  issn: 2994-970X
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BT9swFLYK48BlY8A0toF84IaipY4Tx8cOgQYSCNYcul1Q7DgQaSSoLVBx4B_sP_Ne7KQpQmI77BJVrh1Ffl_ee3Y-f4-Q3TjPlNA89DQLM49L04dXKmdeGvh5pmXKlLbFJsTpaTwaybNe709zFubutyjLeDaTN__V1NAGxsajs_9g7vam0AC_wehwBbPD9a8M_8PUYqi63vdr9FMvvW8QrrK9w9uHh70ElTUcgRLzTiT8qApJ1hXKtw6La6zpVY27ietZG-gmDa1gsH-Cnxom4MjvkT9m5tKG7Wcc69R-XYHvKVruT00g-FlM02qxaVSkWL-rhet53QogLmeF6-v2J1iIPCrW2bJkKD4shT-yEeeFNueHWQduR8NhMuj4VfTnnRgNa7j4Zf_PUSojELCMtKJdiwrbzyJfy0e0p7PDCzdwibxhIpTIEDx5nG_ZwVNjnR4sV9g8vz2GjWO_urGY5ejrTpbTSVeSNfLWrTPowOLjPemZcp28a2p4UOfSN8jxAlzoIlwowoU6uFDoRcHu1MKFOrjQFi6bJDk8SPa_e66-hpdCmudFKs1FkErBNKQsfRVhpQQjtJ_7OVcMk0Hu5wJpRVoFsZGByXjGYhNDYIoMDz6Q5bIqzUdCM8VlptKQB0xzniuFYldRYPpKRRoWCFtkHSbl4sYKqDTTvEVoM0ntX88s8en1Lp_J6hx2X8jydHxrtsmKvpsWk_FObcEn_wlsFg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Fuzz+Testing+for+the+Gazebo+Robotic+Simulator&rft.jtitle=Proceedings+of+the+ACM+on+software+engineering&rft.au=Ren%2C+Zhilei&rft.au=Li%2C+Yitao&rft.au=Li%2C+Xiaochen&rft.au=Qi%2C+Guanxiao&rft.date=2025-06-22&rft.issn=2994-970X&rft.eissn=2994-970X&rft.volume=2&rft.issue=ISSTA&rft.spage=1467&rft.epage=1488&rft_id=info:doi/10.1145%2F3728942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3728942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2994-970X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2994-970X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2994-970X&client=summon