Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between desc...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Princeton
Princeton University Press
2012
|
| Vydání: | 1 |
| Edice: | Annals of Mathematics Studies |
| Témata: | |
| ISBN: | 9780691153551, 0691153566, 0691153558, 9780691153568, 1400842697, 9781400842698 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Front Matter Table of Contents Chapter One: Introduction Chapter Two: Gâteaux differentiability of Lipschitz functions Chapter Three: Smoothness, convexity, porosity, and separable determination Chapter Four: ε-Fréchet differentiability Chapter Five: Γ-null and Γn-null sets Chapter Six: Fréchet differentiability except for Γ-null sets Chapter Seven: Variational principles Chapter Eight: Smoothness and asymptotic smoothness Chapter Nine: Preliminaries to main results Chapter Ten: Porosity, Γn- and Γ-null sets Chapter Eleven: Porosity and ε-Fréchet differentiability Chapter Twelve: Fréchet differentiability of real-valued functions Chapter Thirteen: Fréchet differentiability of vector-valued functions Chapter Fourteen: Unavoidable porous sets and nondifferentiable maps Chapter Fifteen: Asymptotic Fréchet differentiability Chapter Sixteen: Differentiability of Lipschitz maps on Hilbert spaces Bibliography Index Index of Notation
- Cover -- Title Page -- Copyright Page -- Table of Contents -- Chapter 1. Introduction -- 1.1 Key notions and notation -- Chapter 2. Gâteaux Dfferentiability of Lipschitz Functions -- 2.1 Radon-Nikodým Property -- 2.2 Haar and Aronszajn-Gauss Null Sets -- 2.3 Existence Results for Gâteaux Derivatives -- 2.4 Mean Value Estimates -- Chapter 3. Smoothness, Convexity, Porosity, and Separable Determination -- 3.1 A criterion of Differentiability of Convex Functions -- 3.2 Fréchet Smooth and Nonsmooth Renormings -- 3.3 Fréchet Differentiability of Convex Functions -- 3.4 Porosity and Nondifferentiability -- 3.5 Sets of Fréchet Differentiability Points -- 3.6 Separable Determination -- Chapter 4. ε-Fréchet Differentiability -- 4.1 ε-Differentiability and Uniform Smoothness -- 4.2 Asymptotic Uniform Smoothness -- 4.3 ε-Fréchet Differentiability of Functions on Asymptotically Smooth Spaces -- Chapter 5. Γ-Null and Γn-Null Sets -- 5.1 Introduction -- 5.2 Γ-Null Sets and Gâteaux Differentiability -- 5.3 Spaces of Surfaces -- 5.4 Γ- and Γn-Null Sets of low Borel Classes -- 5.5 Equivalent Definitions of Γn-Null Sets -- 5.6 Separable Determination -- Chapter 6. Fréchet Differentiability Except for Γ-Null Sets -- 6.1 Introduction -- 6.2 Regular Points -- 6.3 A Criterion of Fréchet Differentiability -- 6.4 Fréchet Differentiability Except for Γ-Null Sets -- Chapter 7. Variational Principles -- 7.1 Introduction -- 7.2 Variational Principles via Games -- 7.3 Bimetric Variational Principles -- Chapter 8. Smoothness and Asymptotic Smoothness -- 8.1 Modulus of Smoothness -- 8.2 Smooth Bumps with Controlled Modulus -- Chapter 9. Preliminaries to Main Results -- 9.1 Notation, Linear Operators, Tensor Products -- 9.2 Derivatives and Regularity -- 9.3 Deformation of Surfaces Controlled by ωn -- 9.4 Divergence Theorem -- 9.5 Some Integral Estimates
- Chapter 10. Porosity, Γn- and Γ-Null Sets -- 10.1 Porous and σ-Porous Sets -- 10.2 A Criterion of Γn-nullness of Porous Sets -- 10.3 Directional Porosity and Γn-Nullness -- 10.4 σ-Porosity and Γn-Nullness -- 10.5 Γ1-Nullness of Porous Sets and Asplundness -- 10.6 Spaces in which σ-Porous Sets are Γ-Null -- Chapter 11. Porosity and ε-Fréchet Differentiability -- 11.1 Introduction -- 11.2 Finite Dimensional Approximation -- 11.3 Slices and ε-Differentiability -- Chapter 12. Fréchet Differentiability of Real-Valued Functions -- 12.1 Introduction and Main Results -- 12.2 An Illustrative Special Case -- 12.3 A Mean Value Estimate -- 12.4 Proof of Theorems -- 12.5 Generalizations and Extensions -- Chapter 13. Fréchet Differentiability of Vector-Valued Functions -- 13.1 Main Results -- 13.2 Regularity Parameter -- 13.3 Reduction to a Special Case -- 13.4 Regular Fréchet Differentiability -- 13.5 Fréchet Differentiability -- 13.6 Simpler Special Cases -- Chapter 14. Unavoidable Porous Sets and Nondifferentiable Maps -- 14.1 Introduction and Main Results -- 14.2 An Unavoidable Porous Set in ℓ1 -- 14.3 Preliminaries to Proofs of Main Results -- 14.4 The Main Construction -- 14.5 The Main Construction -- 14.6 Proof of Theorem -- 14.7 Proof of Theorem -- Chapter 15. Asymptotic Fréchet Differentiability -- 15.1 Introduction -- 15.2 Auxiliary and Finite Dimensional Lemmas -- 15.3 The Algorithm -- 15.4 Regularity of f at x∞ -- 15.5 Linear Approximation of f at x∞ -- 15.6 Proof of Theorem -- Chapter 16. Differentiability of Lipschitz Maps on Hilbert Spaces -- 16.1 Introduction -- 16.2 Preliminaries -- 16.3 The Algorithm -- 16.4 Proof of Theorem -- 16.5 Proof of Lemma -- Bibliography -- Index -- Index of Notation
- Index of Notation
- Chapter One: Introduction
- Chapter Fifteen: Asymptotic Fréchet differentiability
- Chapter Six: Férchet differentiability except for Γ-null sets
- Chapter Two: Gâteaux differentiability of Lipschitz functions
- Index
- -
- /
- Chapter Four: ε-Fréchet differentiability
- Chapter Five: Γ-null and Γn-null sets
- Chapter Seven: Variational principles
- Chapter Eight: Smoothness and asymptotic smoothness
- Chapter Nine: Preliminaries to main results
- Contents
- Chapter Thirteen: Fréchet differentiability of vector-valued functions
- Frontmatter --
- Chapter Ten: Porosity, Γn- and Γ-null sets
- Chapter Sixteen: Differentiability of Lipschitz maps on Hilbert spaces
- Chapter Fourteen: Unavoidable porous sets and nondifferentiable maps
- Chapter Three: Smoothness, convexity, porosity, and separable determination
- Chapter Twelve: Fréchet differentiability of real-valued functions
- Bibliography
- Chapter Eleven: Porosity and ε-Fréchet differentiability

