Time-Darts: A Data Structure for Verification of Closed Timed Automata

Symbolic data structures for model checking timed systems have been subject to a significant research, with Difference Bound Matrices (DBMs) still being the preferred data structure in several mature verification tools. In comparison, discretization offers an easy alternative, with all operations ha...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Jørgensen, Kenneth Y, Larsen, Kim G, Srba, Jiří
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 27.11.2012
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Symbolic data structures for model checking timed systems have been subject to a significant research, with Difference Bound Matrices (DBMs) still being the preferred data structure in several mature verification tools. In comparison, discretization offers an easy alternative, with all operations having linear-time complexity in the number of clocks, and yet valid for a large class of closed systems. Unfortunately, fine-grained discretization causes itself a state-space explosion. We introduce a new data structure called time-darts for the symbolic representation of state-spaces of timed automata. Compared with the complete discretization, a single time-dart allows to represent an arbitrary large set of states, yet the time complexity of operations on time-darts remain linear in the number of clocks. We prove the correctness of the suggested reachability algorithm and perform several experiments in order to compare the performance of time-darts and the complete discretization. The main conclusion is that in all our experiments the time-dart method outperforms the complete discretization and it scales significantly better for models with larger constants.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1211.6195