A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization

In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this set-up convex constraint sets are distributed to the network processors who have to compute the optimizer of a linear cost function subject to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Bürger, Mathias, Notarstefano, Giuseppe, Allgöwer, Frank
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 25.03.2013
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this set-up convex constraint sets are distributed to the network processors who have to compute the optimizer of a linear cost function subject to the constraints. We propose a novel fully distributed algorithm, named cutting-plane consensus, to solve the problem, based on an outer polyhedral approximation of the constraint sets. Processors running the algorithm compute and exchange linear approximations of their locally feasible sets. Independently of the number of processors in the network, each processor stores only a small number of linear constraints, making the algorithm scalable to large networks. The cutting-plane consensus algorithm is presented and analyzed for the general framework. Specifically, we prove that all processors running the algorithm agree on an optimizer of the global problem, and that the algorithm is tolerant to node and link failures as long as network connectivity is preserved. Then, the cutting plane consensus algorithm is specified to three different classes of distributed optimization problems, namely (i) inequality constrained problems, (ii) robust optimization problems, and (iii) almost separable optimization problems with separable objective functions and coupling constraints. For each one of these problem classes we solve a concrete problem that can be expressed in that framework and present computational results. That is, we show how to solve: position estimation in wireless sensor networks, a distributed robust linear program and, a distributed microgrid control problem.
AbstractList In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this set-up convex constraint sets are distributed to the network processors who have to compute the optimizer of a linear cost function subject to the constraints. We propose a novel fully distributed algorithm, named cutting-plane consensus, to solve the problem, based on an outer polyhedral approximation of the constraint sets. Processors running the algorithm compute and exchange linear approximations of their locally feasible sets. Independently of the number of processors in the network, each processor stores only a small number of linear constraints, making the algorithm scalable to large networks. The cutting-plane consensus algorithm is presented and analyzed for the general framework. Specifically, we prove that all processors running the algorithm agree on an optimizer of the global problem, and that the algorithm is tolerant to node and link failures as long as network connectivity is preserved. Then, the cutting plane consensus algorithm is specified to three different classes of distributed optimization problems, namely (i) inequality constrained problems, (ii) robust optimization problems, and (iii) almost separable optimization problems with separable objective functions and coupling constraints. For each one of these problem classes we solve a concrete problem that can be expressed in that framework and present computational results. That is, we show how to solve: position estimation in wireless sensor networks, a distributed robust linear program and, a distributed microgrid control problem.
Author Notarstefano, Giuseppe
Bürger, Mathias
Allgöwer, Frank
Author_xml – sequence: 1
  givenname: Mathias
  surname: Bürger
  fullname: Bürger, Mathias
– sequence: 2
  givenname: Giuseppe
  surname: Notarstefano
  fullname: Notarstefano, Giuseppe
– sequence: 3
  givenname: Frank
  surname: Allgöwer
  fullname: Allgöwer, Frank
BookMark eNotjj1PwzAYhC0EEqV0Z7TEnOCP2EnHqNCCVKkIulevY1u4JHFwnBL49UTAcDrd8NzdFTpvfWsQuqEkzQohyB2E0Z1SyglPJVmyMzRjnNOkyBi7RIu-PxJCmMyZEHyGXkv87OuvN6MD1LjsuuBH10B0vsXrAI359OEdWx_wyrcnM2JoNX7xaugjvnd9DE4N0Wi866Jr3PcveI0uLNS9Wfz7HO3XD_vVY7LdbZ5W5TYBQWmiOc0FFVrkApQpIKuM1RYkNdUUpVFkCQA01wVIoog1oJgGZpksxKSKz9HtX-30-WMwfTwc_RDaafHASCEZzfKM8h-ZSVUc
ContentType Paper
Copyright 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1303.6092
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a511-d317515d575abe8a4cefdfa61ecbe86eb09aaa17d8a60b0feab2da2f2685268c3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:11:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a511-d317515d575abe8a4cefdfa61ecbe86eb09aaa17d8a60b0feab2da2f2685268c3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2086214741?pq-origsite=%requestingapplication%
PQID 2086214741
PQPubID 2050157
ParticipantIDs proquest_journals_2086214741
PublicationCentury 2000
PublicationDate 20130325
PublicationDateYYYYMMDD 2013-03-25
PublicationDate_xml – month: 03
  year: 2013
  text: 20130325
  day: 25
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2013
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.50535
SecondaryResourceType preprint
Snippet In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Approximation
Cutting
Distributed generation
Economic models
Mathematical analysis
Microprocessors
Optimization
Peer to peer computing
Position sensing
Processors
Remote sensors
Robustness
Social networks
Wireless sensor networks
Title A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization
URI https://www.proquest.com/docview/2086214741
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTgIxFG0UNHHlOz6QdOG2Oq92ZlYGEaILcQIscEXu9BFJcAZngODf25ZB48aNy6Zp0rTp7em9p-cgdB2HSvmeoUoFlJKARTFJFXcJjRSnPJCCpY41mwh7vWg0ipMq4VZWtMpNTLSBWuTc5Mj1I11jbzfQF-Dd7IMY1yhTXa0sNLZR3agkuJa6N_jOsXgs1IjZX1cnrXTXLRSrydJYIPs3zLH1z98R2F4r3f3_TugA1ROYyeIQbcnsCO1aOicvj9GghZN8-vkmRQFT3DK64avJ-pMi7m7oWFjjVdw2rPMVhkzgfp4uyjl-MFK6xgVLCvyiA8p79VPzBA27nWH7kVT2CQQ0iiLCIAOXCo3HIJURBFwqoYC5kusmk6kTA4AbigiYkzpKQuoJ8JTHIiMBw_1TVMvyTJ4hbCTv7chYn14lKUihTHk1UKGvFIVz1Ngs0bg6AuX4Z30u_u6-RHue9ZjwiUcbqDYvFvIK7fDlfFIWTVS_7_SSftPurG4lT8_J6xeUVLEm
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5Qe9Dj6m73fTCGgAQCIhEO3Ei3j0iCC-4Cwo_yP9oWVuPFGwePzaabNNPOfO18Mx_AdegLYWNFlXJc13C8IDQiQS3DDQR1qcOZF5labMJvtYJeL2zn4DOrhVG0yswnakfNRlS9kctLusTeliMD4MP43VCqUSq7mkloLLdFgy8-5JUtva9XpH1vMK4-dss1Y6UqYBAJLgymAqblMglTSMQD4lAumCCexakcejwyQ0KI5bOAeGZkCk4izAgW2AtUZxRqy99uQEGiCBxqpmDn-0kHe74E6PYyGao7hd2RZD6YKcVl-9Yzdbr1t8PXUay6-8_WvweFNhnzZB9yPD6ALU1WpekhdEqoPRouXjlLyBCVVFf0-WBZgomqGdkMSTSOyopTP0ckZuhlFE3TCaqoRsFK44sz9Czd5duqDvUIuutYxjHk41HMTwCphv56Zih9k-Au4Uyo5LEjfFsIl5xCMbNIf3XA0_6POc7-_nwF27XuU7PfrLca57CDtZqGbWC3CPlJMuUXsElnk0GaXOrNhKC_ZuN9AfM-DWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Polyhedral+Approximation+Framework+for+Convex+and+Robust+Distributed+Optimization&rft.jtitle=arXiv.org&rft.au=B%C3%BCrger%2C+Mathias&rft.au=Notarstefano%2C+Giuseppe&rft.au=Allg%C3%B6wer%2C+Frank&rft.date=2013-03-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1303.6092