Anisotropic Singular Integrals in Product Spaces

Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic sing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Li, Baode, Bownik, Marcin, Yang, Dachun, Zhou, Yuan
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 19.07.2010
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic singular integrals on \(\mathbb R^n\times\mathbb R^m\), whose kernels are adapted to \(\vec A\) in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on \(L^q_w(\mathbb R^n\times\mathbb R^m)\) with \(q\in(1, \infty)\) and \(w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A)\) or on \(H^p_w(\mathbb R^n\times\mathbb R^m; \vec A)\) with \(p\in(0, 1]\) and \(w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A)\). These results are also new even when \(w=1\).
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.0903.4720