Anisotropic Singular Integrals in Product Spaces

Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic sing...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Li, Baode, Bownik, Marcin, Yang, Dachun, Zhou, Yuan
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 19.07.2010
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic singular integrals on \(\mathbb R^n\times\mathbb R^m\), whose kernels are adapted to \(\vec A\) in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on \(L^q_w(\mathbb R^n\times\mathbb R^m)\) with \(q\in(1, \infty)\) and \(w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A)\) or on \(H^p_w(\mathbb R^n\times\mathbb R^m; \vec A)\) with \(p\in(0, 1]\) and \(w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A)\). These results are also new even when \(w=1\).
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.0903.4720