Anisotropic Singular Integrals in Product Spaces
Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic sing...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
19.07.2010
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic singular integrals on \(\mathbb R^n\times\mathbb R^m\), whose kernels are adapted to \(\vec A\) in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on \(L^q_w(\mathbb R^n\times\mathbb R^m)\) with \(q\in(1, \infty)\) and \(w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A)\) or on \(H^p_w(\mathbb R^n\times\mathbb R^m; \vec A)\) with \(p\in(0, 1]\) and \(w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A)\). These results are also new even when \(w=1\). |
|---|---|
| AbstractList | Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by \({\mathcal A}_\infty(\rnm; \vec A)\) the class of Muckenhoupt weights associated with \(\vec A\). The authors introduce a class of anisotropic singular integrals on \(\mathbb R^n\times\mathbb R^m\), whose kernels are adapted to \(\vec A\) in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on \(L^q_w(\mathbb R^n\times\mathbb R^m)\) with \(q\in(1, \infty)\) and \(w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A)\) or on \(H^p_w(\mathbb R^n\times\mathbb R^m; \vec A)\) with \(p\in(0, 1]\) and \(w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A)\). These results are also new even when \(w=1\). |
| Author | Bownik, Marcin Li, Baode Yang, Dachun Zhou, Yuan |
| Author_xml | – sequence: 1 givenname: Baode surname: Li fullname: Li, Baode – sequence: 2 givenname: Marcin surname: Bownik fullname: Bownik, Marcin – sequence: 3 givenname: Dachun surname: Yang fullname: Yang, Dachun – sequence: 4 givenname: Yuan surname: Zhou fullname: Zhou, Yuan |
| BookMark | eNotjVFLwzAURoM4cM697zHgc-tNbrKkj2OoGwwUtvfRNjejYyQ1acWfb0GfvgMHzvfI7kMMxNhKQKms1vBSp5_uu4QKsFRGwh2bS0RRWCXlA1vmfAUAuTZSa5wz2IQuxyHFvmv5sQuX8VYnvg8DXVJ9y7wL_DNFN7YDP_Z1S_mJzfwkaPm_C3Z6ez1td8Xh432_3RyKWgsoaN0Iq4B0YxvnyJCxVDmpBAknUCjyrlEKW-eJELV2Boz21Go_cVV5XLDnv2yf4tdIeThf45jC9HiWYIWUBhHwF-K_RzU |
| ContentType | Paper |
| Copyright | 2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.0903.4720 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a510-e6b1840e5b8bdde7e78e9d241e1d1314efdb443cdfee3355d7075fec5f55d99f3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:20:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a510-e6b1840e5b8bdde7e78e9d241e1d1314efdb443cdfee3355d7075fec5f55d99f3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2081227330?pq-origsite=%requestingapplication% |
| PQID | 2081227330 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2081227330 |
| PublicationCentury | 2000 |
| PublicationDate | 20100719 |
| PublicationDateYYYYMMDD | 2010-07-19 |
| PublicationDate_xml | – month: 07 year: 2010 text: 20100719 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2010 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.4419969 |
| SecondaryResourceType | preprint |
| Snippet | Let \(A_i\) for \(i=1, 2\) be an expansive dilation, respectively, on \({\mathbb R}^n\) and \({\mathbb R}^m\) and \(\vec A\equiv(A_1, A_2)\). Denote by... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Anisotropy Integrals |
| Title | Anisotropic Singular Integrals in Product Spaces |
| URI | https://www.proquest.com/docview/2081227330 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BCxIT3-KzysDqksROHE8IUCs6UEW0Q5kqO75IkVASklLx87GTFAYkFjZbXmLZee989_QO4AaloGEYaCKlGxDDeJQozxpBYuSjsFoLJZtmE3w6jRYLEXcJt7qTVW4wsQFqXSQ2R24e6YaKDNdS9658J7ZrlK2udi00tqFvncpYD_oPo2n88p1l8UNuYmba1icb865bWX1m66FNTwwZ991fGNwQy3j_v590AP1YllgdwhbmR7DbCDqT-hjc-zyri1VVlFnizAw_WbmpM2nNId5qJ8uduDV7dWallWWdwHw8mj8-ka47ApHmPyIYKvs4w0BFykAURx6h0IaP0dMe9RimWjFGE50iUhNUaG6CgxSTIDVjIVJ6Cr28yPEMHKbQIHYkWVO35eao3MANfS0jqViQsHO42ux_2d3wevmz-Yu_ly9hr624c-KJK-itqg-8hp1kvcrqatAd2MBqLmdmFk-e49cv_7ai7g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT4NAEJ7UVqMn3_FRlYMeqTyW18EYozYlfYSkPdRTs8CQkBhAqFV_lP_RWSh6MPHWgzcSEgKz387HzHw7A3CJ3NFN0whlzhVDJsbTZV8VjSDR1tARWgufl8MmrNHInk4drwGf9VkYIausfWLpqMM0EDlyCtKJiohrdeU2e5HF1ChRXa1HaFSw6OPHG4VsxY37QOt7pWndx8l9T15OFZA54U9G0xdBDRq-7dPWttCy0QmJx1ANVV1lGIU-Y3oQRog6kXFoEalGGBgRXTtOpNNj16DFCOt2E1qeO_SevpM6mmnRL7pelUPLXmHXPH-PFx2RDekwS1N-ufySx7rb_8wCO_TlPMN8FxqY7MFGKVcNin1Q7pK4SOd5msWBNCb2FWJaya1aXzwXUpxIXtXKVhpnQnR2AJNVvOMhNJM0wSOQmI_ERzZnZVXaIiAqhmJqIbe5z4yAHUO7NvdsuX-L2Y-tT_6-fQGbvclwMBu4o_4pbFXaAktWnTY05_krnsF6sJjHRX6-xIoEsxWvzRfRTf60 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Singular+Integrals+in+Product+Spaces&rft.jtitle=arXiv.org&rft.au=Li%2C+Baode&rft.au=Bownik%2C+Marcin&rft.au=Yang%2C+Dachun&rft.au=Zhou%2C+Yuan&rft.date=2010-07-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.0903.4720 |