From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites

In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomacromolecules Ročník 12; číslo 7; s. 2456
Hlavní autoři: Goffin, Anne-Lise, Raquez, Jean-Marie, Duquesne, Emmanuel, Siqueira, Gilberto, Habibi, Youssef, Dufresne, Alain, Dubois, Philippe
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 11.07.2011
Témata:
ISSN:1526-4602, 1526-4602
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.
AbstractList In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.
In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.
Author Raquez, Jean-Marie
Duquesne, Emmanuel
Habibi, Youssef
Siqueira, Gilberto
Dufresne, Alain
Dubois, Philippe
Goffin, Anne-Lise
Author_xml – sequence: 1
  givenname: Anne-Lise
  surname: Goffin
  fullname: Goffin, Anne-Lise
  organization: Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons UMONS, Place du Parc 20, B-7000 Mons, Belgium
– sequence: 2
  givenname: Jean-Marie
  surname: Raquez
  fullname: Raquez, Jean-Marie
– sequence: 3
  givenname: Emmanuel
  surname: Duquesne
  fullname: Duquesne, Emmanuel
– sequence: 4
  givenname: Gilberto
  surname: Siqueira
  fullname: Siqueira, Gilberto
– sequence: 5
  givenname: Youssef
  surname: Habibi
  fullname: Habibi, Youssef
– sequence: 6
  givenname: Alain
  surname: Dufresne
  fullname: Dufresne, Alain
– sequence: 7
  givenname: Philippe
  surname: Dubois
  fullname: Dubois, Philippe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21623629$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAYhIOsuB968A9Ib56qSTZN06MsrgoLXvRc0vSNG81HbVJkPfnT7eoKnmYYHoZh5mjigweEzgm-IpiS68ZRjAtBtkdoRgrKc8YxnfzzUzSP8RVjXC1ZcYKmlHC65LSaoa91H1xmfIJeS2WkzXrjX_LQgR8164LdOejNp0wm-CyFzIFNWdcHBTHuiaAzBdYONkTIvPThY2viG_S5NtZC-9NgpUqmhbyRcUz2kAquC9EkiKfoWEsb4eygC_S8vn1a3eebx7uH1c0mlwUWKeeKtBVpxVJgVZYKl5xJvGyBlowJ0dBSVwXWtOCiIRUTJQjOmqphhSy1pkrQBbr87R23vw8QU-1M3C-XHsIQa1FyIgTDdCQvDuTQOGjrrjdO9rv67zT6DYXVclE
CitedBy_id crossref_primary_10_1016_j_indcrop_2014_12_052
crossref_primary_10_1016_j_ijbiomac_2019_11_135
crossref_primary_10_1002_app_43678
crossref_primary_10_1515_epoly_2015_0179
crossref_primary_10_1080_10408398_2016_1270254
crossref_primary_10_1016_j_eurpolymj_2013_04_035
crossref_primary_10_1016_j_eurpolymj_2013_07_017
crossref_primary_10_1016_j_polymer_2015_02_048
crossref_primary_10_1002_app_42101
crossref_primary_10_1007_s10570_016_0914_1
crossref_primary_10_1016_j_progpolymsci_2021_101418
crossref_primary_10_1016_j_carbpol_2020_117525
crossref_primary_10_1016_j_compscitech_2015_07_012
crossref_primary_10_1007_s00253_015_6722_y
crossref_primary_10_1080_09276440_2019_1637213
crossref_primary_10_1088_1757_899X_772_1_012006
crossref_primary_10_1007_s10570_013_0111_4
crossref_primary_10_1007_s10924_016_0767_6
crossref_primary_10_1002_pen_25369
crossref_primary_10_1007_s00289_017_1919_0
crossref_primary_10_1016_j_eurpolymj_2016_09_019
crossref_primary_10_1016_j_jcis_2013_06_072
crossref_primary_10_1016_j_reactfunctpolym_2020_104791
crossref_primary_10_3390_polym16131936
crossref_primary_10_1016_j_compscitech_2021_109167
crossref_primary_10_1016_j_eurpolymj_2017_04_020
crossref_primary_10_1002_polb_23490
crossref_primary_10_1016_j_compositesa_2015_10_038
crossref_primary_10_1016_j_biomaterials_2025_123522
crossref_primary_10_3390_polym9040117
crossref_primary_10_1007_s10570_022_04660_0
crossref_primary_10_1016_j_polymer_2016_07_013
crossref_primary_10_1016_j_eurpolymj_2014_05_020
crossref_primary_10_1007_s11051_024_06117_w
crossref_primary_10_1016_j_polymer_2015_06_045
crossref_primary_10_1002_pen_26439
crossref_primary_10_1016_j_carbpol_2016_09_003
crossref_primary_10_1016_j_sajce_2020_10_005
crossref_primary_10_1016_j_envpol_2023_121278
crossref_primary_10_1007_s10570_017_1455_y
crossref_primary_10_1002_polb_24333
crossref_primary_10_1016_j_polymer_2023_126472
crossref_primary_10_1016_j_carbpol_2024_122698
crossref_primary_10_1016_j_indcrop_2023_117307
crossref_primary_10_1016_j_eurpolymj_2016_06_015
crossref_primary_10_3390_polym14071477
crossref_primary_10_1016_j_eurpolymj_2012_06_013
crossref_primary_10_1016_j_eurpolymj_2015_11_030
crossref_primary_10_3390_polym10020177
crossref_primary_10_1016_j_indcrop_2024_118134
crossref_primary_10_1016_j_polymer_2015_02_056
crossref_primary_10_1002_pc_24676
crossref_primary_10_1039_C6CE02005D
crossref_primary_10_1002_app_41219
crossref_primary_10_3390_jcs8080317
crossref_primary_10_1007_s10570_018_2143_2
crossref_primary_10_3390_polym5020600
crossref_primary_10_1016_j_carbpol_2018_06_025
crossref_primary_10_1007_s10570_013_0141_y
crossref_primary_10_3390_polym13193417
crossref_primary_10_1016_j_polymer_2016_09_070
crossref_primary_10_1016_j_ijbiomac_2020_07_094
crossref_primary_10_1016_j_addma_2022_103346
crossref_primary_10_1002_cplu_202200204
crossref_primary_10_3390_nano12224064
crossref_primary_10_1039_C3CS60204D
crossref_primary_10_1007_s10570_016_1143_3
crossref_primary_10_1016_j_ccr_2021_214263
crossref_primary_10_1080_14328917_2019_1686559
crossref_primary_10_1007_s11051_013_1636_z
crossref_primary_10_1002_pol_20230558
crossref_primary_10_3390_ijms17040595
crossref_primary_10_3390_ma9080644
crossref_primary_10_1016_j_compscitech_2013_06_004
crossref_primary_10_1016_j_reactfunctpolym_2016_11_003
crossref_primary_10_1016_j_carbpol_2020_116762
crossref_primary_10_1007_s10965_017_1367_4
crossref_primary_10_1002_app_50343
crossref_primary_10_1002_app_41320
crossref_primary_10_1016_j_carbpol_2025_123629
crossref_primary_10_1016_j_progpolymsci_2018_07_008
crossref_primary_10_1016_j_ijbiomac_2025_141685
crossref_primary_10_1038_nature21001
crossref_primary_10_5004_dwt_2017_21376
crossref_primary_10_1155_2017_4308261
crossref_primary_10_1002_pi_4610
crossref_primary_10_1016_j_ijbiomac_2019_06_205
crossref_primary_10_1016_j_ijbiomac_2019_06_204
crossref_primary_10_1002_mame_202100091
crossref_primary_10_1016_j_ijbiomac_2017_08_136
crossref_primary_10_1016_j_carbpol_2016_08_012
crossref_primary_10_1016_j_eurpolymj_2013_09_031
crossref_primary_10_1016_j_progpolymsci_2022_101556
crossref_primary_10_1007_s10570_013_0015_3
crossref_primary_10_3390_ijms18122569
crossref_primary_10_1016_j_heliyon_2023_e19598
crossref_primary_10_1016_j_indcrop_2017_12_044
crossref_primary_10_1002_app_44493
crossref_primary_10_1007_s00289_017_2131_y
crossref_primary_10_1016_j_polymdegradstab_2018_04_012
crossref_primary_10_1007_s10570_015_0657_4
crossref_primary_10_3390_ma12203435
crossref_primary_10_3390_nano8060383
crossref_primary_10_1007_s10570_014_0446_5
crossref_primary_10_1016_j_bioactmat_2021_07_006
crossref_primary_10_1016_j_colsurfa_2018_05_054
crossref_primary_10_1002_pen_25899
crossref_primary_10_3139_217_2603
crossref_primary_10_1007_s00289_015_1468_3
crossref_primary_10_1016_j_carbpol_2022_119790
crossref_primary_10_1002_pat_5264
crossref_primary_10_1007_s10973_014_4062_2
crossref_primary_10_3390_ma11020323
crossref_primary_10_1016_j_matdes_2021_109774
crossref_primary_10_1016_j_foodchem_2020_126479
crossref_primary_10_1002_app_44482
crossref_primary_10_3390_ma9040303
crossref_primary_10_3390_nano8060395
crossref_primary_10_1016_j_copbio_2016_01_002
crossref_primary_10_1016_j_jclepro_2022_135487
crossref_primary_10_1002_jctb_5444
crossref_primary_10_1002_smll_202202470
crossref_primary_10_1016_j_cis_2018_05_004
crossref_primary_10_1007_s10570_020_03460_8
crossref_primary_10_1016_j_carbpol_2013_03_091
crossref_primary_10_1016_j_carbpol_2015_09_041
crossref_primary_10_1002_app_55273
crossref_primary_10_3390_ma15010314
crossref_primary_10_1016_j_ijbiomac_2017_03_085
crossref_primary_10_1155_2021_9076170
crossref_primary_10_1080_01932691_2019_1626739
crossref_primary_10_1016_j_cej_2013_10_034
crossref_primary_10_1002_app_42850
crossref_primary_10_1016_j_polymdegradstab_2014_01_004
crossref_primary_10_1002_pc_27643
crossref_primary_10_3390_polym14112268
crossref_primary_10_1002_pc_24259
crossref_primary_10_3390_polym12010178
crossref_primary_10_3390_polym14194009
crossref_primary_10_1016_j_polymertesting_2019_03_039
crossref_primary_10_1016_j_ijbiomac_2020_10_045
crossref_primary_10_1080_20550324_2018_1529713
crossref_primary_10_1007_s10570_014_0523_9
crossref_primary_10_1016_j_indcrop_2022_115217
crossref_primary_10_1007_s11164_014_1530_z
crossref_primary_10_1016_j_carbpol_2018_05_087
crossref_primary_10_1007_s10570_014_0476_z
crossref_primary_10_1007_s10570_018_2061_3
crossref_primary_10_1002_pc_26225
crossref_primary_10_1016_j_jtice_2018_09_016
crossref_primary_10_1016_j_carbpol_2016_07_016
crossref_primary_10_1016_j_carbpol_2012_12_066
crossref_primary_10_3390_nano7030057
crossref_primary_10_1002_pen_25623
crossref_primary_10_1007_s00396_014_3369_7
crossref_primary_10_1016_j_carbpol_2015_02_062
crossref_primary_10_1016_j_ijbiomac_2016_04_040
crossref_primary_10_1007_s10570_020_03167_w
crossref_primary_10_1016_j_polymer_2017_08_064
crossref_primary_10_1016_j_carbpol_2020_115899
crossref_primary_10_1016_j_polymer_2014_11_054
crossref_primary_10_1088_1757_899X_223_1_012032
crossref_primary_10_1002_pc_26332
crossref_primary_10_1016_j_carres_2022_108519
crossref_primary_10_1016_j_compscitech_2012_07_003
crossref_primary_10_1016_j_carbpol_2016_11_024
crossref_primary_10_1016_j_ijbiomac_2014_01_053
crossref_primary_10_1016_j_ijbiomac_2017_01_152
crossref_primary_10_1016_j_carbpol_2015_04_015
crossref_primary_10_1016_j_progpolymsci_2018_03_001
crossref_primary_10_1016_j_cossms_2018_11_005
crossref_primary_10_1007_s10965_015_0823_2
crossref_primary_10_1016_j_carbpol_2016_01_041
crossref_primary_10_1177_0892705717734600
crossref_primary_10_1007_s10570_019_02889_w
crossref_primary_10_1016_j_carbpol_2024_122405
crossref_primary_10_1016_j_ifset_2022_103200
crossref_primary_10_1039_C9MH01727E
crossref_primary_10_1002_pol_20210029
crossref_primary_10_1002_app_44683
crossref_primary_10_1016_j_compscitech_2011_11_017
crossref_primary_10_1002_pc_24583
crossref_primary_10_1016_j_eurpolymj_2015_06_007
crossref_primary_10_1007_s10570_013_0058_5
crossref_primary_10_1016_j_carbpol_2015_01_054
crossref_primary_10_1016_j_ijbiomac_2023_126851
crossref_primary_10_1002_app_41607
crossref_primary_10_1002_pi_5675
crossref_primary_10_1007_s10570_018_2196_2
crossref_primary_10_3390_colloids8030037
crossref_primary_10_7569_JRM_2014_634106
crossref_primary_10_1016_j_carbpol_2015_09_005
crossref_primary_10_1016_j_ijbiomac_2017_06_039
crossref_primary_10_1016_j_cattod_2025_115420
crossref_primary_10_1002_pc_24690
crossref_primary_10_1016_j_eurpolymj_2015_01_037
crossref_primary_10_1007_s10570_017_1324_8
crossref_primary_10_1038_pj_2016_24
crossref_primary_10_1016_j_polymer_2018_06_035
crossref_primary_10_1016_j_mencom_2019_03_036
crossref_primary_10_1016_j_carbpol_2012_10_021
crossref_primary_10_1016_j_ijbiomac_2017_08_095
crossref_primary_10_1016_j_carbpol_2013_02_068
crossref_primary_10_3390_polym14061254
crossref_primary_10_1002_macp_201300272
crossref_primary_10_1002_app_42004
crossref_primary_10_1007_s10924_019_01581_1
crossref_primary_10_1016_j_carbpol_2015_05_047
crossref_primary_10_3390_polym16212964
crossref_primary_10_1016_j_compscitech_2017_01_007
crossref_primary_10_1016_j_carbpol_2018_04_124
crossref_primary_10_1016_j_carbpol_2022_119200
crossref_primary_10_1002_app_53346
crossref_primary_10_1007_s10118_021_2635_7
crossref_primary_10_1007_s10570_013_9916_4
crossref_primary_10_1016_j_carbpol_2017_09_065
crossref_primary_10_1016_j_compscitech_2014_11_014
crossref_primary_10_1016_j_progpolymsci_2020_101221
crossref_primary_10_1016_j_ijbiomac_2024_137392
crossref_primary_10_1007_s11051_018_4306_3
crossref_primary_10_1002_app_42356
crossref_primary_10_1016_j_progpolymsci_2013_05_014
crossref_primary_10_1016_j_progpolymsci_2013_05_013
crossref_primary_10_1007_s10570_017_1479_3
crossref_primary_10_1016_j_ijbiomac_2018_11_064
crossref_primary_10_1016_j_progpolymsci_2013_05_010
crossref_primary_10_1111_1541_4337_12343
crossref_primary_10_1016_j_matpr_2019_06_260
crossref_primary_10_1002_app_46035
crossref_primary_10_1002_polb_24139
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/bm200581h
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
ExternalDocumentID 21623629
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
23N
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
XKZ
ZCA
~02
7X8
ID FETCH-LOGICAL-a508t-6c1d91d8380c77c0764a03de274488b27f950f2568b19487e864b9b45a7ff2c82
IEDL.DBID 7X8
ISICitedReferencesCount 321
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292617700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-4602
IngestDate Wed Oct 01 13:38:56 EDT 2025
Mon Jul 21 05:49:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a508t-6c1d91d8380c77c0764a03de274488b27f950f2568b19487e864b9b45a7ff2c82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21623629
PQID 876188402
PQPubID 23479
ParticipantIDs proquest_miscellaneous_876188402
pubmed_primary_21623629
PublicationCentury 2000
PublicationDate 2011-07-11
PublicationDateYYYYMMDD 2011-07-11
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2011
SSID ssj0009345
Score 2.5215998
Snippet In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2456
SubjectTerms Boehmeria - chemistry
Cellulose - chemical synthesis
Cellulose - chemistry
Nanocomposites - chemistry
Polyesters - chemical synthesis
Polyesters - chemistry
Polymerization
Surface Properties
Title From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites
URI https://www.ncbi.nlm.nih.gov/pubmed/21623629
https://www.proquest.com/docview/876188402
Volume 12
WOSCitedRecordID wos000292617700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLa4JFi4j3LJA6tFHKc-JoQQFQsVA0jdKp8C0calKSA2fjp-SQoTYmBJFsdKXmy_z5_fex9CZ5o5xrzJiEnuhxTMUiIT8iWOBp-ZrvJd3YhNiH5fDgbqro3NqdqwyvmaWC_ULlrgyM_TrKUy7Ubyi8kLAdEoOFxtFTQW0TJLSAYiusTgp1i4YrVGcfJQnBQcAnmawkI5PTdjYFMkffwdWNYOprfxz1fbROstssSXzVDYQgu-3EarV3NBtx302ZvGMYb6ENOggSnHwOkR0M9KdzyJow84vmnyMvEs4rEfzfCkySSAFjFg4PlfR7HyuNRlfH98qp79lARIKHR1DyNIlHCegHd0dSMIWofIMF_toofe9f3VDWkFGIhOuG1GuKVOUSeZzKwQNhO80BlzHqoKSmlyEVQ3Cwk0SUNV2vl4yQujTNHVIoTcynwPLZWx9AcI55YJx6nlRrBCU69E2vwlbBm4CIJr20F4btthMgt8jS59fK2G39btoP3m_wwnTSGOYU5TFzxXh38_fITWGjZYEEqP0XJIk9ufoBX7Nnuqpqf1wEnX_t3tF3Xt0RA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+interfacial+ring-opening+polymerization+to+melt+processing+of+cellulose+nanowhisker-filled+polylactide-based+nanocomposites&rft.jtitle=Biomacromolecules&rft.au=Goffin%2C+Anne-Lise&rft.au=Raquez%2C+Jean-Marie&rft.au=Duquesne%2C+Emmanuel&rft.au=Siqueira%2C+Gilberto&rft.date=2011-07-11&rft.eissn=1526-4602&rft.volume=12&rft.issue=7&rft.spage=2456&rft_id=info:doi/10.1021%2Fbm200581h&rft_id=info%3Apmid%2F21623629&rft_id=info%3Apmid%2F21623629&rft.externalDocID=21623629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-4602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-4602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-4602&client=summon