Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere

Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical reviews Ročník 122; číslo 14; s. 11974
Hlavní autoři: Van Stappen, Casey, Deng, Yunling, Liu, Yiwei, Heidari, Hirbod, Wang, Jing-Xiang, Zhou, Yu, Ledray, Aaron P, Lu, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 27.07.2022
Témata:
ISSN:1520-6890, 1520-6890
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
AbstractList Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Author Wang, Jing-Xiang
Heidari, Hirbod
Liu, Yiwei
Ledray, Aaron P
Van Stappen, Casey
Zhou, Yu
Lu, Yi
Deng, Yunling
Author_xml – sequence: 1
  givenname: Casey
  surname: Van Stappen
  fullname: Van Stappen, Casey
  organization: Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
– sequence: 2
  givenname: Yunling
  surname: Deng
  fullname: Deng, Yunling
  organization: Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
– sequence: 3
  givenname: Yiwei
  orcidid: 0000-0002-7899-2279
  surname: Liu
  fullname: Liu, Yiwei
  organization: Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
– sequence: 4
  givenname: Hirbod
  surname: Heidari
  fullname: Heidari, Hirbod
  organization: Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
– sequence: 5
  givenname: Jing-Xiang
  orcidid: 0000-0003-3381-7976
  surname: Wang
  fullname: Wang, Jing-Xiang
  organization: Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
– sequence: 6
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
  organization: Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
– sequence: 7
  givenname: Aaron P
  surname: Ledray
  fullname: Ledray, Aaron P
  organization: Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
– sequence: 8
  givenname: Yi
  orcidid: 0000-0003-1221-6709
  surname: Lu
  fullname: Lu, Yi
  organization: Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35816578$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAYhYNM3If-AkFy6U3nm3Rp08sx5wdMFJzXJUnfbpE2mU07qL9e2SZ4dQ6Hh8PhjMnAeYeEXDOYMuDsTpkwNVusG9xPuQFgkJyRERMcokRmMPjnh2QcwicACMHTCzKMhWSJSOWIbO4x2I2zbkPnTWtLa6yq6Au2qqo8uu--xkB1T9fdgfElbbdIl25vG-9qdC3V2HtXHOK3xtaq6enC-6awTrXWO_q-22KDl-S8VFXAq5NOyMfDcr14ilavj8-L-SpSAtI20iYppM50nJYolE64UFzFhWGGa-CpjFUiy7TIpADGM54VwCGVONPlrGQxU3xCbo-9u8Z_dRjavLbBYFUph74LOU-kFJxnAL_ozQntdI1Fvjuuz__O4T_tRGwY
CitedBy_id crossref_primary_10_1002_asia_202401806
crossref_primary_10_1021_jacs_5c00503
crossref_primary_10_3390_catal13020415
crossref_primary_10_1038_s41586_025_09308_0
crossref_primary_10_1073_pnas_2308286120
crossref_primary_10_1134_S1070428024030011
crossref_primary_10_1016_j_cej_2025_166966
crossref_primary_10_1021_jacs_2c09683
crossref_primary_10_1371_journal_pone_0293972
crossref_primary_10_1002_ange_202219034
crossref_primary_10_1016_j_xcrp_2025_102794
crossref_primary_10_1016_j_envres_2025_122019
crossref_primary_10_31857_S0514749224010011
crossref_primary_10_1007_s00775_025_02095_z
crossref_primary_10_1021_acsami_5c13465
crossref_primary_10_1002_anie_202211552
crossref_primary_10_1002_cbic_202300849
crossref_primary_10_1073_pnas_2419434122
crossref_primary_10_1002_anie_202212440
crossref_primary_10_1002_anie_202215719
crossref_primary_10_1002_anie_202218907
crossref_primary_10_1016_j_seppur_2024_129794
crossref_primary_10_1016_j_cej_2024_157658
crossref_primary_10_1021_jacs_4c18547
crossref_primary_10_1007_s00775_024_02070_0
crossref_primary_10_1016_j_jinorgbio_2024_112740
crossref_primary_10_1021_jacs_3c07399
crossref_primary_10_1002_ange_202314019
crossref_primary_10_1021_jacs_2c08885
crossref_primary_10_1002_anie_202311259
crossref_primary_10_1016_j_jinorgbio_2024_112669
crossref_primary_10_1021_acs_chemrev_4c00264
crossref_primary_10_1039_D5SC02177D
crossref_primary_10_1002_psc_3606
crossref_primary_10_1016_j_ccr_2024_216301
crossref_primary_10_1002_cbic_202500208
crossref_primary_10_1039_D3CY01648J
crossref_primary_10_1016_j_jece_2023_110914
crossref_primary_10_1021_jacs_4c16952
crossref_primary_10_1021_acscatal_5c03335
crossref_primary_10_1038_s41929_025_01350_5
crossref_primary_10_1016_j_ijbiomac_2023_128083
crossref_primary_10_1016_j_jinorgbio_2025_112976
crossref_primary_10_1016_j_jinorgbio_2023_112298
crossref_primary_10_1016_j_jinorgbio_2024_112595
crossref_primary_10_1002_cctc_202300701
crossref_primary_10_1039_D3SC02857G
crossref_primary_10_1002_ange_202311259
crossref_primary_10_1002_cctc_202301759
crossref_primary_10_1002_ange_202303151
crossref_primary_10_1039_D3SC02982D
crossref_primary_10_1016_j_jinorgbio_2025_112912
crossref_primary_10_1002_bkcs_12635
crossref_primary_10_1016_j_envpol_2025_125649
crossref_primary_10_1002_adma_202300943
crossref_primary_10_1021_jacs_2c08050
crossref_primary_10_1002_anie_202314019
crossref_primary_10_1021_jacs_4c03344
crossref_primary_10_3390_nano13182585
crossref_primary_10_1080_00958972_2025_2495055
crossref_primary_10_1002_cctc_202400598
crossref_primary_10_1021_acscatal_5c00525
crossref_primary_10_1021_jacs_4c05040
crossref_primary_10_1039_D4CS00561A
crossref_primary_10_1021_jacs_5c07009
crossref_primary_10_1039_D4SC03896G
crossref_primary_10_59324_ejaset_2025_3_4__13
crossref_primary_10_1039_D5RA00632E
crossref_primary_10_1016_j_cbpa_2024_102508
crossref_primary_10_1038_s41467_025_57904_5
crossref_primary_10_1002_cctc_202402043
crossref_primary_10_1039_D3SC05974J
crossref_primary_10_1002_anie_202303151
crossref_primary_10_1002_ange_202215719
crossref_primary_10_1016_S1872_2067_24_60150_6
crossref_primary_10_1002_anie_202219034
crossref_primary_10_1016_j_procbio_2025_05_018
crossref_primary_10_1002_chem_202501245
crossref_primary_10_1038_s44160_025_00788_6
crossref_primary_10_1002_advs_202501897
crossref_primary_10_1007_s10895_025_04283_1
crossref_primary_10_3390_molecules29215090
crossref_primary_10_1002_ange_202212440
crossref_primary_10_1021_jacs_5c07853
crossref_primary_10_1515_pac_2025_0454
crossref_primary_10_1002_ange_202211552
crossref_primary_10_1007_s12010_025_05305_1
crossref_primary_10_1016_j_bbapap_2023_140897
crossref_primary_10_1002_ange_202218907
crossref_primary_10_1002_adma_202210098
crossref_primary_10_1007_s00775_025_02116_x
crossref_primary_10_1038_s41557_024_01562_5
crossref_primary_10_1016_j_jinorgbio_2024_112694
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.chemrev.2c00106
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
ExternalDocumentID 35816578
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM141931
GroupedDBID ---
-DZ
-~X
.DC
.K2
29B
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a507t-bc6d8b9b37fe5ab625a2a3dc1c2b02783a68f7d985012929d02078e4bf4f131a2
IEDL.DBID 7X8
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863189200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6890
IngestDate Thu Jul 10 23:14:29 EDT 2025
Thu Jan 02 22:53:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a507t-bc6d8b9b37fe5ab625a2a3dc1c2b02783a68f7d985012929d02078e4bf4f131a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7899-2279
0000-0003-3381-7976
0000-0003-1221-6709
OpenAccessLink https://pmc.ncbi.nlm.nih.gov/articles/PMC10199331/pdf/nihms-1890580.pdf
PMID 35816578
PQID 2688522900
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2688522900
pubmed_primary_35816578
PublicationCentury 2000
PublicationDate 2022-07-27
PublicationDateYYYYMMDD 2022-07-27
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem Rev
PublicationYear 2022
SSID ssj0005527
Score 2.6585665
SecondaryResourceType review_article
Snippet Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 11974
SubjectTerms Catalysis
Catalytic Domain
Heme - chemistry
Metalloproteins - metabolism
Metals - chemistry
Title Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere
URI https://www.ncbi.nlm.nih.gov/pubmed/35816578
https://www.proquest.com/docview/2688522900
Volume 122
WOSCitedRecordID wos000863189200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvAa2t1NspuTSG3xYEvBCr2VfUV7aFJNK9Rf7-wmoSdB8JJD2ITszmTnm5mdbxC6U1LTWCRhQIk24KAoHigiaUCMIY4dnBjrJf3MBwMxHifDKuBWVMcq6z3Rb9Qm1y5G3oI3isiRk7fv5x-B6xrlsqtVC41N1GAAZZxW8_GaLTwqW7aCiQIXSSTtmnWIkpbUINJ3O3ONXqj2ntHvGNPbmt7-f7_yAO1VKBM_lGpxiDZsdoR2OnVzt2P09uhPboDd8oNKGgnctwuXh7fZ92pmC6xWeLT0Y_IUA1DE3XVVHFa-9MXfHpaMFbiTgyc7LcOL-MXxFdgT9NrrjjpPQdVzIZCADBeB0rERKlGMpzaSCrwjSSUzmmiqXJKSyVik3CQichEsmhiAm1zYUKVhShhI-RRtZXlmzxFmmotIgf1PLA8VJYrRNEqk44gLWRjqJrqt13ACs3eJCpnZfFlM1qvYRGelICbzcioTx9cWwzZz8YenL9EuddUKbR5QfoUaKfzR9hpt66_FtPi88coC18Gw_wNW0cr5
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Artificial+Metalloenzymes+by+Tuning+of+the+Environment+beyond+the+Primary+Coordination+Sphere&rft.jtitle=Chemical+reviews&rft.au=Van+Stappen%2C+Casey&rft.au=Deng%2C+Yunling&rft.au=Liu%2C+Yiwei&rft.au=Heidari%2C+Hirbod&rft.date=2022-07-27&rft.eissn=1520-6890&rft.volume=122&rft.issue=14&rft.spage=11974&rft_id=info:doi/10.1021%2Facs.chemrev.2c00106&rft_id=info%3Apmid%2F35816578&rft_id=info%3Apmid%2F35816578&rft.externalDocID=35816578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon