Complex surveys a guide to analysis using R

A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lumley, Thomas
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Hoboken, N.J Wiley 2010
John Wiley & Sons, Incorporated
Wiley-Blackwell
Ausgabe:1st ed.
Schriftenreihe:Wiley Series in Survey Methodology
Schlagworte:
ISBN:9780470284308, 0470580054, 9780470580059, 0470284307, 9780470580066, 0470580062
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while also utilizing the most current data from health and social sciences studies to demonstrate the application of survey research methods in these fields. The book begins with coverage of basic tools and topics within survey analysis such as simple and stratified sampling, cluster sampling, linear regression, and categorical data regression. Subsequent chapters delve into more technical aspects of complex survey analysis, including post-stratification, two-phase sampling, missing data, and causal inference. Throughout the book, an emphasis is placed on graphics, regression modeling, and two-phase designs. In addition, the author supplies a unique discussion of epidemiological two-phase designs as well as probability-weighting for causal inference. All of the book's examples and figures are generated using R, and a related Web site provides the R code that allows readers to reproduce the presented content. Each chapter concludes with exercises that vary in level of complexity, and detailed appendices outline additional mathematical and computational descriptions to assist readers with comparing results from various software systems. Complex Surveys is an excellent book for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. It is also a practical reference guide for applied statisticians and practitioners in the social and health sciences who use statistics in their everyday work.
AbstractList A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while also utilizing the most current data from health and social sciences studies to demonstrate the application of survey research methods in these fields. The book begins with coverage of basic tools and topics within survey analysis such as simple and stratified sampling, cluster sampling, linear regression, and categorical data regression. Subsequent chapters delve into more technical aspects of complex survey analysis, including post-stratification, two-phase sampling, missing data, and causal inference. Throughout the book, an emphasis is placed on graphics, regression modeling, and two-phase designs. In addition, the author supplies a unique discussion of epidemiological two-phase designs as well as probability-weighting for causal inference. All of the book's examples and figures are generated using R, and a related Web site provides the R code that allows readers to reproduce the presented content. Each chapter concludes with exercises that vary in level of complexity, and detailed appendices outline additional mathematical and computational descriptions to assist readers with comparing results from various software systems. Complex Surveys is an excellent book for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. It is also a practical reference guide for applied statisticians and practitioners in the social and health sciences who use statistics in their everyday work.
Author Lumley, Thomas
Author_xml – sequence: 1
  fullname: Lumley, Thomas
BackLink https://cir.nii.ac.jp/crid/1130000795270093568$$DView record in CiNii
BookMark eNqFkc1PwkAQxdcoRkDiybsHY-IBnd3Zz6M0qCQkXozGU7PdbqFSW-wCyn9vESPenMNMXvLLvMybDjkoq9ITckrhigKwa6M0cAVCA0i5R3p_tDD7v5ppjqBbpMMADCAaYw5JW2iF2giOR6QXwis0xSkXirfJSVS9zQv_eRaW9cqvwzFpZbYIvvczu-TpdvgY3ffHD3ej6GbctwIam37qmHLGZzQxiUa0wvtMM81ciqm3QggrnZHMOyFV5lCgsqlUGqlm3MmUYpdcbhfbMPMfYVoVixCvCp9U1SzEzTmUNiwFg-x_dhdFw15s2XldvS99WMTfmPPlorZFPBxE3EhgvAHPt2CZ57HLN51S3GSjjGCqyQ-F1DvvfDJfJkUepnk5ied1_mbrdfw8Gg9fBs2DgAvAL12hdSU
ContentType eBook
Book
DBID WIIVT
RYH
DEWEY 515.0285
DOI 10.1002/9780470580066
DatabaseName Wiley
CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISBN 9780470580059
0470580054
9781118210932
111821093X
Edition 1st ed.
1
ExternalDocumentID 9781118210932
9780470580059
EBC496024
BB02129789
WILEYB0020450
GroupedDBID 089
20A
38.
3X9
3XJ
3XM
5VX
69Y
92K
A4I
A4J
AABBV
AAHOG
AARDG
ABARN
ABQPQ
ABQPW
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AIMYK
AJFER
ALMA_UNASSIGNED_HOLDINGS
AXBAO
AZZ
BBABE
CZZ
GEOUK
IVUIE
J-X
JFSCD
KKBTI
LQKAK
MYL
UZ6
W1A
WIIVT
YPLAZ
ZEEST
RYH
ID FETCH-LOGICAL-a50702-dc27c9ef1b9b833a5eef8282cd3dea555a6c962ec567fc3537ad67831824c6d13
ISBN 9780470284308
0470580054
9780470580059
0470284307
9780470580066
0470580062
IngestDate Fri Nov 08 04:13:46 EST 2024
Wed Oct 15 14:20:26 EDT 2025
Wed Dec 10 09:07:19 EST 2025
Thu Jun 26 22:04:11 EDT 2025
Tue Jul 08 08:27:54 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009033999
LCCallNum QA276.45 .R3L86 2010
LCCallNum_Ident QA276.45 .R3L86 2010
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a50702-dc27c9ef1b9b833a5eef8282cd3dea555a6c962ec567fc3537ad67831824c6d13
Notes A John Wiley & Sons, Inc., publication
Includes bibliographical references (p. 257-267) and indexes
OCLC 587389543
PQID EBC496024
PageCount 297
ParticipantIDs askewsholts_vlebooks_9781118210932
askewsholts_vlebooks_9780470580059
proquest_ebookcentral_EBC496024
nii_cinii_1130000795270093568
igpublishing_primary_WILEYB0020450
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2010.
c2010
2010
2010-03-11
2011-09-20
PublicationDateYYYYMMDD 2010-01-01
2010-03-11
2011-09-20
PublicationDate_xml – year: 2010
  text: 2010.
PublicationDecade 2010
PublicationPlace Hoboken, N.J
PublicationPlace_xml – name: Hoboken, N.J
– name: Newark
PublicationSeriesTitle Wiley Series in Survey Methodology
PublicationYear 2010
2011
Publisher Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0000414574
ssib010015360
ssib013445946
ssib017668223
Score 2.62387
Snippet A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research,...
SourceID askewsholts
proquest
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Mathematical statistics
Mathematical statistics -- Data processing
Mathematics
Probability & Statistics
R (Computer program language)
SubjectTermsDisplay Mathematical statistics-Data processing
Mathematics
Probability & Statistics
R (Computer program language)
Subtitle a guide to analysis using R
TableOfContents Intro -- Complex Surveys: A Guide to Analysis Using R -- Contents -- Acknowledgments -- Preface -- Acronyms -- 1 Basic Tools -- 1.1 Goals of inference -- 1.1.1 Population or process? -- 1.1.2 Probability samples -- 1.1.3 Sampling weights -- 1.1.4 Design effects -- 1.2 An introduction to the data -- 1.2.1 Real surveys -- 1.2.2 Populations -- 1.3 Obtaining the software -- 1.3.1 Obtaining R -- 1.3.2 Obtaining the survey package -- 1.4 Using R -- 1.4.1 Reading plain text data -- 1.4.2 Reading data from other packages -- 1.4.3 Simple computations -- Exercises -- 2. Simple and Stratified sampling -- 2.1 Analyzing simple random samples -- 2.1.1 Confidence intervals -- 2.1.2 Describing the sample to R -- 2.2 Stratified sampling -- 2.3 Replicate weights -- 2.3.1 Specifying replicate weights to R -- 2.3.2 Creating replicate weights in R -- 2.4 Other population summaries -- 2.4.1 Quantiles -- 2.4.2 Contingency tables -- 2.5 Estimates in subpopulations -- 2.6 Design of stratified samples -- Exercises -- 3. Cluster sampling -- 3.1 Introduction -- 3.1.1 Why clusters: the NHANES II design -- 3.1.2 Single-stage and multistage designs -- 3.2 Describing multistage designs to R -- 3.2.1 Strata with only one PSU -- 3.2.2 How good is the single-stage approximation? -- 3.2.3 Replicate weights for multistage samples -- 3.3 Sampling by size -- 3.3.1 Loss of information from sampling clusters -- 3.4 Repeated measurements -- Exercises -- 4. Graphics -- 4.1 Why is survey data different? -- 4.2 Plotting a table -- 4.3 One continuous variable -- 4.3.1 Graphs based on the distribution function -- 4.3.2 Graphs based on the density -- 4.4 Tho continuous variables -- 4.4.1 Scatterplots -- 4.4.2 Aggregation and smoothing -- 4.4.3 Scatterplot smoothers -- 4.5 Conditioning plots -- 4.6 Maps -- 4.6.1 Design and estimation issues -- 4.6.2 Drawing maps in R -- Exercises
5 Ratios and linear regression -- 5.1 Ratio estimation -- 5.1.1 Estimating ratios -- 5.1.2 Ratios for subpopulation estimates -- 5.1.3 Ratio estimators of totals -- 5.2 Linear regression -- 5.2.1 The least-squares slope as an estimated population summary -- 5.2.2 Regression estimation of population totals -- 5.2.3 Confounding and other criteria for model choice -- 5.2.4 Linear models in the survey package -- 5.3 Is weighting needed in regression models? -- Exercises -- 6 Categorical data regression -- 6.1 Logistic regression -- 6.1.1 Relative risk regression -- 6.2 Ordinal regression -- 6.2.1 Other cumulative link models -- 6.3 Loglinear models -- 6.3.1 Choosing models. -- 6.3.2 Linear association models -- Exercises -- 7 Post-stratification, raking and calibration -- 7.1 Introduction -- 7.2 Post-stratification -- 7.3 Raking -- 7.4 Generalized raking, GREG estimation, and calibration -- 7.4.1 Calibration in R -- 7.5 Basu's elephants -- 7.6 Selecting auxiliary variables for non-response -- 7.6.1 Direct standardization -- 7.6.2 Standard error estimation -- Exercises -- 8 Two-phase sampling -- 8.1 Multistage and multiphase sampling -- 8.2 Sampling for stratification -- 8.3 The case-control design -- 8.3.1 * Simulations: efficiency of the design-based estimator -- 8.3.2 Frequency matching -- 8.4 Sampling from existing cohorts -- 8.4.1 Logistic regression -- 8.4.2 Two-phase case-control designs in R -- 8.4.3 Survival analysis -- 8.4.4 Case-cohort designs in R -- 8.5 Using auxiliary information from phase one -- 8.5.1 Population calibration for regression models -- 8.5.2 Two-phase designs -- 8.5.3 Some history of the two-phase calibration estimator -- Exercises -- 9 Missing data -- 9.1 Item non-response -- 9.2 Two-phase estimation for missing data -- 9.2.1 Calibration for item non-response -- 9.2.2 Models for response probability
9.2.3 Effect on precision -- 9.2.4 * Doubly-robust estimators -- 9.3 Imputation of missing data -- 9.3.1 Describing multiple imputations to R -- 9.3.2 Example: NHANES III imputations -- Exercises -- 10 * Causal inference -- 10.1 IPTW estimators -- 10.1.1 Randomized trials and calibration -- 10.1.2 Estimated weights for IPTW -- 10.1.3 Double robustness -- 10.2 Marginal Structural Models -- Appendix A: Analytic Details -- A.1 Asymptotics -- A.1.1 Embedding in an infinite sequence -- A.1.2 Asymptotic unbiasedness -- A.1.3 Asymptotic normality and consistency -- A.2 Variances by linearization -- A.2.1 Subpopulation inference -- A.3 Tests in contingency tables -- A.4 Multiple imputation -- A.5 Calibration and influence functions -- A.6 Calibration in randomized trials and ANCOVA -- Appendix B: Basic R -- B.1 Reading data -- B.1.1 Plain text data -- B.2 Data manipulation -- B.2.1 Merging -- B.2.2 Factors -- B.3 Randomness -- B.4 Methods and objects -- B.5 * Writing functions -- B.5.1 Repetition -- B.5.2 Strings -- Appendix C: Computational details -- C.1 Linearization -- C.1.1 Generalized linear models and expected information -- C.2 Replicate weights -- C.2.1 Choice of estimators -- C.2.2 Hadamard matrices -- C.3 Scatterplot smoothers -- C.4 Quantiles -- C.5 Bug reports and feature requests -- Appendix D: Database-backed design objects -- D.1 Large data -- D.2 Setting up database interfaces -- D.2.1 ODBC -- D.2.2 DBI -- Appendix E: Extending the package -- E.1 A case study: negative binomial regression -- E.2 Using a Poisson model -- E.3 Replicate weights -- E.4 Linearization -- References -- Author Index -- Topic Index
Title Complex surveys
URI http://portal.igpublish.com/iglibrary/search/WILEYB0020450.html
https://cir.nii.ac.jp/crid/1130000795270093568
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=496024
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780470580059&uid=none
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781118210932
Volume 565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB7RhQN74imWUmohblXEJn7FHLdaWqlQECqot8i1nSoC0tVms9qf37HXSVMqgThwsZLIykgz1rw88w3AW8YUs0LZRJYyS1h6oVAPCpYwlWlpS62lycOwCXl6mp-fqy9xblgTxgnIus43G7X4r6LGbyhs3zr7D-Luf4of8BmFjiuKHdffPOL-NQIN-Opwtzlo2uUa5XOw7WO-bCsbxmPoDn6kDemB_obnY_sr5q0HxUIxDxDKyYZ5gKBEbgWHUybReWA04CbcVZVb6NW4j-fe97ixCX2l3mzmMeBxl9qBHSkwvL1_NP_87aTPY01Zyrhkodk_0pMdsFFHP2KbIsV3t-iNYaybH6jMUdGvGg8We7nok29o7OuqumMig90_ewQj3wvyGO65-gmMP_UQt81TSCK7SWQ3eU80CcwmqyvSMZsEZpOvz-D7h_nZ4XESZ08kGj1ktBLWZNIoV-Lpvcgp1dy5EqPTzFhqneaca2GUyJzhQpaGciq1RcOPKjJjRtiUPodRfVW7F0B46f0EMaVWWFYyql3qfVVj0JdyomQTeDNgQ7H-Ge7Jm2LAK67-sCn1QaKHBctw05CFxWKLWFIEfPZZaITm0wnsIWMLU_k19deZ6Ccq7isQFOUin8B-x_IiEIllwsV8dsgw4M3Yy7_8YRce3pzQVzBaLVu3Bw_MelU1y9fxBF0D8gQ5GA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Complex+surveys+%3A+a+guide+to+analysis+using+R&rft.au=Lumley%2C+Thomas&rft.date=2010-01-01&rft.pub=Wiley&rft.isbn=9780470284308&rft_id=info:doi/10.1002%2F9780470580066&rft.externalDocID=BB02129789
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97804705%2F9780470580059.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811182%2F9781118210932.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWILEYB0020450_null_0_320.png