Machine Learning Force Fields

In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical reviews Ročník 121; číslo 16; s. 10142
Hlavní autoři: Unke, Oliver T, Chmiela, Stefan, Sauceda, Huziel E, Gastegger, Michael, Poltavsky, Igor, Schütt, Kristof T, Tkatchenko, Alexandre, Müller, Klaus-Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.08.2021
ISSN:1520-6890, 1520-6890
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
AbstractList In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
Author Sauceda, Huziel E
Poltavsky, Igor
Unke, Oliver T
Gastegger, Michael
Müller, Klaus-Robert
Schütt, Kristof T
Tkatchenko, Alexandre
Chmiela, Stefan
Author_xml – sequence: 1
  givenname: Oliver T
  orcidid: 0000-0001-7503-406X
  surname: Unke
  fullname: Unke, Oliver T
  organization: DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany
– sequence: 2
  givenname: Stefan
  surname: Chmiela
  fullname: Chmiela, Stefan
  organization: Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
– sequence: 3
  givenname: Huziel E
  orcidid: 0000-0001-6091-3408
  surname: Sauceda
  fullname: Sauceda, Huziel E
  organization: BASLEARN, BASF-TU Joint Lab, Technische Universität Berlin, 10587 Berlin, Germany
– sequence: 4
  givenname: Michael
  surname: Gastegger
  fullname: Gastegger, Michael
  organization: BASLEARN, BASF-TU Joint Lab, Technische Universität Berlin, 10587 Berlin, Germany
– sequence: 5
  givenname: Igor
  orcidid: 0000-0002-3188-7017
  surname: Poltavsky
  fullname: Poltavsky, Igor
  organization: Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
– sequence: 6
  givenname: Kristof T
  orcidid: 0000-0001-8342-0964
  surname: Schütt
  fullname: Schütt, Kristof T
  organization: Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
– sequence: 7
  givenname: Alexandre
  orcidid: 0000-0002-1012-4854
  surname: Tkatchenko
  fullname: Tkatchenko, Alexandre
  organization: Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
– sequence: 8
  givenname: Klaus-Robert
  orcidid: 0000-0002-3861-7685
  surname: Müller
  fullname: Müller, Klaus-Robert
  organization: Google Research, Brain Team, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33705118$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAURYOMOB_6C0Tp0k3ry0uTNksZHBUqbnRdkvTVqbTpmEwF_70DjuDdnLs4XLhLNvOjJ8YuOWQckN8aFzO3pSHQVwYO-CEnbMElQqpKDbN_fc6WMX4AgJRYnLG5EAVIzssFu3o2btt5SioywXf-PdmMwVGy6ahv4jk7bU0f6eLIFXvb3L-uH9Pq5eFpfVelRoLap4qMlIWyHJumddaVKJyRutRFrrXR1uatI8yRa2M1couFzKlxRSmQCyFaXLGb391dGD8nivt66KKjvjeexinWKIGjypWWB_X6qE52oKbehW4w4bv-u4Q_PoZPbg
CitedBy_id crossref_primary_10_1016_j_commatsci_2024_113486
crossref_primary_10_1063_5_0276535
crossref_primary_10_1088_2516_1075_adbf5a
crossref_primary_10_1063_5_0252566
crossref_primary_10_1063_5_0197986
crossref_primary_10_1039_D3NR05966A
crossref_primary_10_3390_polym17121667
crossref_primary_10_1002_wcms_70024
crossref_primary_10_1021_acs_jpclett_4c03474
crossref_primary_10_1039_D3MH00125C
crossref_primary_10_1088_1361_648X_ad9f09
crossref_primary_10_1016_j_jmps_2024_105927
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1038_s41467_024_48609_2
crossref_primary_10_1038_s42256_025_01009_7
crossref_primary_10_1088_2515_7655_ad0d00
crossref_primary_10_1063_5_0274240
crossref_primary_10_1063_5_0139611
crossref_primary_10_1088_1361_6463_ad365c
crossref_primary_10_1038_s41467_022_28526_y
crossref_primary_10_1039_D4TA08189G
crossref_primary_10_1021_acsenergylett_5c01519
crossref_primary_10_1021_acs_jpcc_5c02064
crossref_primary_10_1038_s43588_023_00424_3
crossref_primary_10_1021_acs_jpcc_5c02180
crossref_primary_10_1002_anie_202219170
crossref_primary_10_1021_acs_jcim_5c01193
crossref_primary_10_1038_s41467_023_37115_6
crossref_primary_10_1088_2516_1075_ad48ec
crossref_primary_10_1002_pol_20230126
crossref_primary_10_1007_s12567_025_00656_1
crossref_primary_10_3390_ijms25158530
crossref_primary_10_1007_s11837_022_05306_z
crossref_primary_10_1021_acscentsci_4c00578
crossref_primary_10_1038_s41524_024_01332_4
crossref_primary_10_1002_adma_202510115
crossref_primary_10_1002_jcc_70081
crossref_primary_10_1021_acsmaterialslett_5c00336
crossref_primary_10_1016_j_cis_2025_103492
crossref_primary_10_1016_j_ailsci_2022_100041
crossref_primary_10_1088_2515_7639_ada996
crossref_primary_10_1002_mgea_70019
crossref_primary_10_1038_s41597_025_04720_7
crossref_primary_10_1063_5_0284063
crossref_primary_10_1088_2632_2153_ad3ee6
crossref_primary_10_1038_s41570_022_00416_3
crossref_primary_10_1002_jcc_27006
crossref_primary_10_1002_ange_202208681
crossref_primary_10_1002_jcc_27366
crossref_primary_10_1016_j_sbi_2022_102502
crossref_primary_10_1002_ange_202410088
crossref_primary_10_1016_j_mtcomm_2025_112504
crossref_primary_10_1063_5_0241645
crossref_primary_10_1002_jcc_70071
crossref_primary_10_1093_nsr_nwad335
crossref_primary_10_1038_s41467_022_31093_x
crossref_primary_10_1021_acs_jctc_4c00907
crossref_primary_10_5802_crchim_315
crossref_primary_10_1016_j_isci_2024_109673
crossref_primary_10_1029_2024GC011951
crossref_primary_10_1088_2632_2153_ad612b
crossref_primary_10_1038_s41524_024_01441_0
crossref_primary_10_1039_D4NR00589A
crossref_primary_10_1039_D3CY01160G
crossref_primary_10_1093_nsr_nwad321
crossref_primary_10_1021_acs_jctc_5c00218
crossref_primary_10_1039_D2SC06696C
crossref_primary_10_1016_j_sbi_2025_103128
crossref_primary_10_1039_D3SC02482B
crossref_primary_10_1016_j_jallcom_2024_175751
crossref_primary_10_1016_j_commatsci_2024_113484
crossref_primary_10_1073_pnas_2212250120
crossref_primary_10_1039_D5IM00021A
crossref_primary_10_1088_2632_2153_ace418
crossref_primary_10_1007_s00339_025_08560_5
crossref_primary_10_1002_chem_202501632
crossref_primary_10_1021_acs_jcim_5c00079
crossref_primary_10_1039_D4NR00017J
crossref_primary_10_1002_aenm_202203307
crossref_primary_10_1038_s41524_023_01073_w
crossref_primary_10_1016_j_bpj_2022_08_045
crossref_primary_10_1038_s41524_025_01623_4
crossref_primary_10_1088_2632_2153_ad6120
crossref_primary_10_1063_5_0268948
crossref_primary_10_1038_s41598_025_05205_8
crossref_primary_10_1016_j_scitotenv_2023_167028
crossref_primary_10_1038_s41467_024_48453_4
crossref_primary_10_1109_TPAMI_2023_3339980
crossref_primary_10_3389_fchem_2025_1618025
crossref_primary_10_1016_j_matt_2025_102203
crossref_primary_10_1039_D4NR05487C
crossref_primary_10_1098_rsta_2022_0239
crossref_primary_10_1038_s41524_025_01594_6
crossref_primary_10_1209_0295_5075_acf33f
crossref_primary_10_1021_acsmaterialslett_5c00761
crossref_primary_10_1002_chem_202402036
crossref_primary_10_1063_5_0128774
crossref_primary_10_1021_acs_jctc_5c01214
crossref_primary_10_1063_5_0126475
crossref_primary_10_1088_2632_2153_ac9955
crossref_primary_10_1002_aisy_202200073
crossref_primary_10_1103_g49f_b1x5
crossref_primary_10_1016_j_compositesb_2024_111369
crossref_primary_10_1016_j_pmatsci_2025_101474
crossref_primary_10_1021_acs_jcim_5c01032
crossref_primary_10_1098_rsta_2022_0250
crossref_primary_10_1016_j_jece_2024_113732
crossref_primary_10_1021_acs_jpcc_5c03470
crossref_primary_10_1103_PhysRevE_111_034303
crossref_primary_10_1007_s11244_021_01521_1
crossref_primary_10_1073_pnas_2410910122
crossref_primary_10_1002_kin_21759
crossref_primary_10_1088_2632_2153_ae0244
crossref_primary_10_1103_PhysRevMaterials_9_053805
crossref_primary_10_1016_j_actamat_2023_118734
crossref_primary_10_1063_5_0275244
crossref_primary_10_3390_ph15070873
crossref_primary_10_1021_acsomega_5c02543
crossref_primary_10_1021_acs_jctc_5c00474
crossref_primary_10_1002_advs_202506240
crossref_primary_10_1038_s41467_024_47997_9
crossref_primary_10_1002_eom2_12330
crossref_primary_10_1088_1361_648X_ada65b
crossref_primary_10_1016_j_apcatb_2025_125192
crossref_primary_10_1038_s41524_025_01668_5
crossref_primary_10_1002_ange_202216383
crossref_primary_10_1039_D5CP00523J
crossref_primary_10_1063_5_0157078
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_1088_2632_2153_ad0ab5
crossref_primary_10_1002_batt_202500494
crossref_primary_10_1016_S1872_2067_21_63852_4
crossref_primary_10_1002_ijch_202100106
crossref_primary_10_1017_qrd_2022_11
crossref_primary_10_1039_D2QO00188H
crossref_primary_10_1088_2632_2153_ac568d
crossref_primary_10_1039_D3RA08650J
crossref_primary_10_1016_j_inffus_2024_102923
crossref_primary_10_1063_5_0206974
crossref_primary_10_1103_PhysRevResearch_7_L012013
crossref_primary_10_1039_D2SC04056E
crossref_primary_10_1016_j_fuel_2023_129909
crossref_primary_10_1039_D5CP01180A
crossref_primary_10_1002_adfm_202400773
crossref_primary_10_1002_smll_202409092
crossref_primary_10_1016_j_csbj_2022_10_038
crossref_primary_10_1007_s10118_024_3221_6
crossref_primary_10_1016_j_gee_2025_06_001
crossref_primary_10_1002_qua_27389
crossref_primary_10_1016_j_jnucmat_2025_156004
crossref_primary_10_1038_s41467_024_53028_4
crossref_primary_10_1088_1367_2630_ac3261
crossref_primary_10_1021_acs_jpcc_3c07398
crossref_primary_10_1063_5_0064075
crossref_primary_10_1038_s41467_022_33414_6
crossref_primary_10_1063_5_0252043
crossref_primary_10_1002_anie_202410088
crossref_primary_10_1002_sstr_202400268
crossref_primary_10_1021_acselectrochem_5c00170
crossref_primary_10_1103_PhysRevLett_134_216301
crossref_primary_10_1038_s41467_025_59232_0
crossref_primary_10_1039_D5MH01343G
crossref_primary_10_1038_s41524_022_00843_2
crossref_primary_10_1039_D4CP00535J
crossref_primary_10_1016_j_pecs_2025_101220
crossref_primary_10_1021_jacs_4c18223
crossref_primary_10_1063_5_0143724
crossref_primary_10_1080_08927022_2022_2156561
crossref_primary_10_1360_SSC_2025_0054
crossref_primary_10_1021_acs_biochem_4c00737
crossref_primary_10_1088_2632_2153_adc871
crossref_primary_10_1002_smtd_202500547
crossref_primary_10_1016_j_chaos_2025_116440
crossref_primary_10_1039_D1SC02742E
crossref_primary_10_1063_5_0197592
crossref_primary_10_1038_s41598_025_04482_7
crossref_primary_10_1021_jacs_4c17015
crossref_primary_10_1038_s41598_023_50978_5
crossref_primary_10_1016_j_scib_2024_08_039
crossref_primary_10_1039_D5DD00025D
crossref_primary_10_1002_qua_26870
crossref_primary_10_1016_j_cbpa_2022_102175
crossref_primary_10_1063_5_0155600
crossref_primary_10_1016_j_jnucmat_2025_156025
crossref_primary_10_1002_admi_202101734
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1002_jim4_70004
crossref_primary_10_1109_TC_2025_3540646
crossref_primary_10_3390_nano14151272
crossref_primary_10_1016_j_sbi_2023_102533
crossref_primary_10_1063_5_0278798
crossref_primary_10_1002_cphc_202400254
crossref_primary_10_1016_j_medidd_2025_100223
crossref_primary_10_1038_s42004_025_01471_9
crossref_primary_10_1038_s41524_025_01791_3
crossref_primary_10_1002_ange_202219170
crossref_primary_10_1038_s41467_024_47999_7
crossref_primary_10_1039_D5CP00163C
crossref_primary_10_1002_adfm_202423024
crossref_primary_10_1007_s12274_024_6983_9
crossref_primary_10_1021_acs_jpca_5c02649
crossref_primary_10_1038_s41467_022_30530_1
crossref_primary_10_1021_acs_jctc_4c01393
crossref_primary_10_1038_s43588_022_00270_9
crossref_primary_10_1063_5_0139245
crossref_primary_10_1038_s41467_025_62824_5
crossref_primary_10_1126_science_abj6511
crossref_primary_10_1063_5_0154710
crossref_primary_10_3390_catal11091129
crossref_primary_10_1016_j_cpc_2024_109446
crossref_primary_10_1016_j_sbi_2024_102821
crossref_primary_10_1063_5_0201241
crossref_primary_10_1039_D3SC04317G
crossref_primary_10_1002_jcc_27527
crossref_primary_10_1038_s43246_025_00924_x
crossref_primary_10_1039_D5TA03325J
crossref_primary_10_1016_j_cplett_2021_138853
crossref_primary_10_1007_s12312_024_01337_6
crossref_primary_10_1088_2516_1075_ac59ca
crossref_primary_10_1002_adts_202200206
crossref_primary_10_1007_s41745_025_00475_7
crossref_primary_10_1088_2632_2153_ada248
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1016_j_tibs_2022_05_003
crossref_primary_10_1016_j_cej_2024_151492
crossref_primary_10_1038_s41524_023_01092_7
crossref_primary_10_1038_s41467_024_54554_x
crossref_primary_10_1016_j_chemphys_2022_111518
crossref_primary_10_1063_5_0211053
crossref_primary_10_1039_D2CP02864F
crossref_primary_10_1038_s41524_025_01790_4
crossref_primary_10_1021_acs_jctc_5c00178
crossref_primary_10_1002_smsc_202500153
crossref_primary_10_1080_08927022_2021_1980215
crossref_primary_10_1038_s41467_023_42148_y
crossref_primary_10_1063_5_0155992
crossref_primary_10_1007_s00292_024_01308_7
crossref_primary_10_1038_s42256_021_00418_8
crossref_primary_10_1063_5_0151033
crossref_primary_10_1063_5_0215869
crossref_primary_10_1016_j_mtcomm_2024_110628
crossref_primary_10_1002_jcc_70053
crossref_primary_10_1038_s41598_025_93874_w
crossref_primary_10_1039_D4SC03523B
crossref_primary_10_1038_s42256_024_00818_6
crossref_primary_10_1016_j_sbi_2024_102847
crossref_primary_10_1038_s43588_025_00839_0
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1063_5_0141233
crossref_primary_10_1140_epjp_s13360_024_05348_z
crossref_primary_10_1088_2632_2153_ad1626
crossref_primary_10_1088_2632_2153_acb314
crossref_primary_10_1109_TPAMI_2021_3115452
crossref_primary_10_1021_acs_jcim_5c00341
crossref_primary_10_1038_s41524_024_01278_7
crossref_primary_10_1360_CSB_2025_0249
crossref_primary_10_1016_j_cossms_2025_101228
crossref_primary_10_1021_acs_jcim_5c00586
crossref_primary_10_1016_j_ces_2025_121494
crossref_primary_10_1021_acsnano_5c12854
crossref_primary_10_1063_5_0146803
crossref_primary_10_1063_5_0226764
crossref_primary_10_1063_5_0155760
crossref_primary_10_1016_j_cplett_2024_141223
crossref_primary_10_1016_j_cpc_2025_109859
crossref_primary_10_1063_5_0244175
crossref_primary_10_1016_j_cpc_2025_109618
crossref_primary_10_1103_PhysRevFluids_8_064004
crossref_primary_10_1038_s41597_022_01870_w
crossref_primary_10_1088_1361_651X_ac4002
crossref_primary_10_1002_wcms_1730
crossref_primary_10_1186_s13321_024_00914_0
crossref_primary_10_1088_1361_6528_ac46d7
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1038_s41524_023_00996_8
crossref_primary_10_1360_TB_2024_1207
crossref_primary_10_1039_D4SC06529H
crossref_primary_10_1088_2632_2153_ac8e4f
crossref_primary_10_1002_chem_202202834
crossref_primary_10_1016_j_mattod_2023_05_029
crossref_primary_10_1016_j_microc_2025_115053
crossref_primary_10_61650_jip_dimas_v2i2_625
crossref_primary_10_1021_acs_jcim_5c01221
crossref_primary_10_1063_5_0227821
crossref_primary_10_1021_acs_jctc_5c01085
crossref_primary_10_1021_acs_chemrev_4c00893
crossref_primary_10_1107_S2053273323000268
crossref_primary_10_1038_s41524_024_01451_y
crossref_primary_10_1103_PhysRevB_111_085408
crossref_primary_10_1063_5_0280330
crossref_primary_10_3390_met15010048
crossref_primary_10_1002_wcms_1645
crossref_primary_10_1063_5_0214754
crossref_primary_10_1007_s12033_023_00726_x
crossref_primary_10_1063_5_0237876
crossref_primary_10_1002_ange_202305964
crossref_primary_10_1088_1361_648X_ac462b
crossref_primary_10_1088_2632_2153_ac7d3c
crossref_primary_10_1088_2632_2153_aca005
crossref_primary_10_1088_1361_648X_ada710
crossref_primary_10_1038_s41524_024_01254_1
crossref_primary_10_1002_jcc_70016
crossref_primary_10_1039_D4RA01861C
crossref_primary_10_1021_acs_jpcc_5c04020
crossref_primary_10_1063_5_0155621
crossref_primary_10_1063_5_0151266
crossref_primary_10_1073_pnas_2403497121
crossref_primary_10_1063_5_0175455
crossref_primary_10_1021_jacs_5c09558
crossref_primary_10_1002_jcc_27313
crossref_primary_10_1016_j_cej_2025_163847
crossref_primary_10_1063_5_0155618
crossref_primary_10_1103_PhysRevA_111_012806
crossref_primary_10_1080_23746149_2024_2358196
crossref_primary_10_1088_2515_7655_ac4ac3
crossref_primary_10_1021_acs_inorgchem_4c05218
crossref_primary_10_1107_S2052520624007492
crossref_primary_10_1039_D5ME00048C
crossref_primary_10_1039_D5NR02521D
crossref_primary_10_1007_s42514_024_00209_8
crossref_primary_10_1021_acsnano_5c05553
crossref_primary_10_1088_1361_648X_ac9d7d
crossref_primary_10_3390_bioengineering9030090
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1038_s41524_022_00863_y
crossref_primary_10_1039_D3QI02410E
crossref_primary_10_1109_MSP_2022_3153277
crossref_primary_10_1002_adma_202204272
crossref_primary_10_1038_s41524_025_01577_7
crossref_primary_10_1088_2632_2153_ad5f11
crossref_primary_10_1016_j_mtcomm_2025_113019
crossref_primary_10_1038_s41467_024_50620_6
crossref_primary_10_1038_s41524_023_01049_w
crossref_primary_10_1038_s41597_023_02369_8
crossref_primary_10_1021_jacs_3c07628
crossref_primary_10_1021_jacs_3c07506
crossref_primary_10_1107_S1600576725003620
crossref_primary_10_1021_acs_jpclett_4c02949
crossref_primary_10_1016_j_cplett_2025_141964
crossref_primary_10_1063_5_0041548
crossref_primary_10_1146_annurev_physchem_082720_034254
crossref_primary_10_1146_annurev_physchem_082820_112101
crossref_primary_10_1016_j_jpowsour_2022_232350
crossref_primary_10_1016_j_commatsci_2021_110939
crossref_primary_10_1002_minf_202400361
crossref_primary_10_1038_s41586_023_06587_3
crossref_primary_10_1063_5_0250837
crossref_primary_10_1088_1361_6463_acd1fd
crossref_primary_10_1088_2632_2153_aca1f7
crossref_primary_10_1002_smll_202404274
crossref_primary_10_1021_acs_jpcc_5c01522
crossref_primary_10_1021_acsnano_5c07838
crossref_primary_10_1073_pnas_2313023120
crossref_primary_10_1515_pac_2025_0476
crossref_primary_10_1002_wcms_1656
crossref_primary_10_1038_s41524_023_01123_3
crossref_primary_10_3390_polym14091642
crossref_primary_10_1038_s41578_025_00817_y
crossref_primary_10_1063_5_0202647
crossref_primary_10_1016_j_surfin_2024_105689
crossref_primary_10_1039_D5DD00044K
crossref_primary_10_1088_1361_648X_ad6bdb
crossref_primary_10_1016_j_nucengdes_2023_112566
crossref_primary_10_1088_1361_6463_ac6f97
crossref_primary_10_3390_molecules27041277
crossref_primary_10_1016_j_jcp_2023_112180
crossref_primary_10_1021_acs_jpclett_5c01037
crossref_primary_10_1021_acs_jpca_5c04423
crossref_primary_10_1039_D4SC04164J
crossref_primary_10_3390_ijms26189204
crossref_primary_10_1016_j_jms_2023_111774
crossref_primary_10_1016_j_bbagen_2023_130534
crossref_primary_10_1038_s41586_025_08628_5
crossref_primary_10_3389_fchem_2023_1286257
crossref_primary_10_1038_s43588_023_00571_7
crossref_primary_10_1038_s41467_023_39214_w
crossref_primary_10_1021_acscentsci_5c00547
crossref_primary_10_1088_2752_5724_ac681d
crossref_primary_10_1103_PhysRevResearch_5_L012028
crossref_primary_10_1007_s10462_024_10731_4
crossref_primary_10_3390_en16135003
crossref_primary_10_1038_s41524_025_01650_1
crossref_primary_10_1038_s41570_023_00516_8
crossref_primary_10_1016_j_jechem_2025_02_051
crossref_primary_10_1038_s41560_023_01417_2
crossref_primary_10_1007_s00214_023_02997_8
crossref_primary_10_1002_wcms_1679
crossref_primary_10_1016_S1872_2067_24_60264_0
crossref_primary_10_1038_s43588_024_00636_1
crossref_primary_10_1016_j_matdes_2025_113865
crossref_primary_10_1039_D5CS00104H
crossref_primary_10_3389_fmolb_2022_899805
crossref_primary_10_1063_5_0222798
crossref_primary_10_1063_5_0222557
crossref_primary_10_1088_2515_7655_acfe9b
crossref_primary_10_1016_j_commatsci_2024_112996
crossref_primary_10_1016_j_apcata_2024_119969
crossref_primary_10_1021_acscatal_5c02247
crossref_primary_10_1021_acs_jcim_4c02042
crossref_primary_10_1146_annurev_matsci_080921_085947
crossref_primary_10_1063_5_0212867
crossref_primary_10_1021_acscatal_5c04795
crossref_primary_10_1002_mgea_4
crossref_primary_10_3390_pr11092769
crossref_primary_10_1038_s41524_025_01579_5
crossref_primary_10_1016_j_bpj_2024_02_029
crossref_primary_10_1063_5_0230060
crossref_primary_10_1002_adfm_202313420
crossref_primary_10_1039_D5DD00085H
crossref_primary_10_3390_molecules28041715
crossref_primary_10_1002_anie_202216383
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1088_1742_6596_3107_1_012031
crossref_primary_10_3389_fmats_2024_1466793
crossref_primary_10_3390_ph17020158
crossref_primary_10_1016_j_chempr_2024_07_031
crossref_primary_10_1016_j_cpc_2023_108883
crossref_primary_10_1116_6_0004288
crossref_primary_10_1088_2632_2153_ac3845
crossref_primary_10_1016_j_desal_2025_119338
crossref_primary_10_1039_D5DD00170F
crossref_primary_10_1080_08927022_2025_2501382
crossref_primary_10_1088_1674_1056_ac5d2d
crossref_primary_10_1038_s41467_024_54631_1
crossref_primary_10_1063_1674_0068_cjcp2505067
crossref_primary_10_3390_molecules28114477
crossref_primary_10_1038_s43588_022_00228_x
crossref_primary_10_1073_pnas_2502684122
crossref_primary_10_1038_s41467_022_33783_y
crossref_primary_10_1063_5_0253919
crossref_primary_10_1016_j_rser_2025_115358
crossref_primary_10_1002_smll_202405299
crossref_primary_10_1073_pnas_2513693122
crossref_primary_10_1007_s11426_022_1506_1
crossref_primary_10_1042_BST20210499
crossref_primary_10_1021_acs_jctc_4c00498
crossref_primary_10_1146_annurev_chembioeng_092220_025342
crossref_primary_10_1088_1361_648X_adbb9c
crossref_primary_10_1021_jacs_1c12932
crossref_primary_10_1038_s43588_023_00406_5
crossref_primary_10_1063_5_0187154
crossref_primary_10_1016_j_greeac_2025_100273
crossref_primary_10_1002_adma_202301449
crossref_primary_10_1002_advs_202204684
crossref_primary_10_1038_s41524_024_01481_6
crossref_primary_10_1038_s41524_025_01547_z
crossref_primary_10_1002_adma_202416901
crossref_primary_10_1360_SSC_2025_0084
crossref_primary_10_1088_1402_4896_ad37ab
crossref_primary_10_1021_acs_jctc_4c01475
crossref_primary_10_1088_2632_2153_ad360e
crossref_primary_10_1016_j_heliyon_2024_e28124
crossref_primary_10_1038_s41578_023_00537_1
crossref_primary_10_1038_s41524_025_01523_7
crossref_primary_10_1039_D4SC01109K
crossref_primary_10_1063_5_0120386
crossref_primary_10_1016_j_commt_2024_100003
crossref_primary_10_1063_5_0222779
crossref_primary_10_1088_2632_2153_ac6ec6
crossref_primary_10_3390_ijms232314699
crossref_primary_10_1038_s41524_024_01227_4
crossref_primary_10_1038_s41597_023_01998_3
crossref_primary_10_1088_2632_2153_adeb46
crossref_primary_10_1038_s41597_025_05799_8
crossref_primary_10_3390_biom12091246
crossref_primary_10_1002_med_22008
crossref_primary_10_1016_j_cej_2024_148779
crossref_primary_10_1016_j_commatsci_2023_112715
crossref_primary_10_1038_s41570_022_00424_3
crossref_primary_10_1088_1361_648X_ad64a2
crossref_primary_10_1063_5_0070931
crossref_primary_10_1088_2632_2153_adea0b
crossref_primary_10_1002_chem_202401148
crossref_primary_10_1016_j_mtcomm_2023_107526
crossref_primary_10_1063_5_0209545
crossref_primary_10_1021_acs_jcim_5c00948
crossref_primary_10_1038_s41524_025_01550_4
crossref_primary_10_1063_5_0085081
crossref_primary_10_1038_s41467_025_57101_4
crossref_primary_10_1088_2516_1083_ad7220
crossref_primary_10_1016_j_scriptamat_2025_116568
crossref_primary_10_1088_2632_2153_ad9709
crossref_primary_10_1016_j_cma_2025_117990
crossref_primary_10_1002_adfm_202507094
crossref_primary_10_1088_1361_648X_ae0111
crossref_primary_10_1002_anie_202208681
crossref_primary_10_1016_j_scitotenv_2023_161871
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1063_5_0134317
crossref_primary_10_1103_PhysRevE_111_045308
crossref_primary_10_1021_acs_jpcb_5c00778
crossref_primary_10_1021_acs_jctc_4c01613
crossref_primary_10_3390_catal11040493
crossref_primary_10_1039_D5CS00146C
crossref_primary_10_1021_acs_jpclett_4c03727
crossref_primary_10_1038_s41524_023_00969_x
crossref_primary_10_1038_s41467_025_57134_9
crossref_primary_10_1063_5_0210866
crossref_primary_10_1038_s41597_022_01185_w
crossref_primary_10_1080_00268976_2024_2381617
crossref_primary_10_1021_acs_jctc_5c00865
crossref_primary_10_1016_j_trechm_2021_04_003
crossref_primary_10_1088_1361_651X_adf56d
crossref_primary_10_1039_D3NR01045G
crossref_primary_10_3389_fenrg_2025_1621807
crossref_primary_10_1088_2632_2153_ad652c
crossref_primary_10_3390_molecules30112440
crossref_primary_10_1088_2632_2153_ad27e1
crossref_primary_10_1016_j_commatsci_2024_113072
crossref_primary_10_1038_s41524_025_01742_y
crossref_primary_10_1016_j_nanoen_2023_108695
crossref_primary_10_1021_jacs_2c06833
crossref_primary_10_1007_s11664_025_12182_1
crossref_primary_10_1088_1367_2630_acf2bb
crossref_primary_10_1063_5_0087255
crossref_primary_10_1021_acs_jctc_5c00616
crossref_primary_10_1021_acs_jctc_5c00858
crossref_primary_10_3390_agriengineering5040106
crossref_primary_10_1063_5_0099469
crossref_primary_10_1038_s41467_025_62510_6
crossref_primary_10_1088_2632_2153_abfd96
crossref_primary_10_1021_acs_jctc_5c00850
crossref_primary_10_1016_j_str_2025_05_013
crossref_primary_10_1039_D1SC03564A
crossref_primary_10_1016_j_enconman_2023_117366
crossref_primary_10_1016_j_polymer_2024_127416
crossref_primary_10_1007_s10118_025_3389_4
crossref_primary_10_1038_s41529_024_00478_2
crossref_primary_10_1016_j_jmb_2023_168358
crossref_primary_10_1002_aesr_202300112
crossref_primary_10_1007_s10910_022_01334_x
crossref_primary_10_1021_acs_jctc_5c00523
crossref_primary_10_1016_j_jhazmat_2025_138429
crossref_primary_10_1038_s43588_022_00369_z
crossref_primary_10_1039_D5CP00223K
crossref_primary_10_1063_5_0156290
crossref_primary_10_1088_2632_2153_acf115
crossref_primary_10_1007_s10825_023_02062_4
crossref_primary_10_1371_journal_pone_0297502
crossref_primary_10_3389_fenrg_2021_695902
crossref_primary_10_1038_s41524_024_01339_x
crossref_primary_10_1016_j_jechem_2025_08_058
crossref_primary_10_1146_annurev_physchem_062123_024417
crossref_primary_10_1002_qua_27087
crossref_primary_10_1039_D4NR02114B
crossref_primary_10_1016_j_matt_2025_102272
crossref_primary_10_1021_acs_jctc_5c00996
crossref_primary_10_1039_D2NR05918E
crossref_primary_10_1016_j_gsf_2023_101735
crossref_primary_10_1063_5_0151833
crossref_primary_10_1021_acs_jpcb_5c02911
crossref_primary_10_1039_D5SC05579B
crossref_primary_10_1002_jsfa_70011
crossref_primary_10_1038_s41524_023_01053_0
crossref_primary_10_1073_pnas_2309884120
crossref_primary_10_1186_s41313_021_00027_3
crossref_primary_10_1088_1361_648X_ad9657
crossref_primary_10_1021_acsnano_4c18956
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1063_5_0219764
crossref_primary_10_1063_5_0259061
crossref_primary_10_3390_ijms25031448
crossref_primary_10_1016_j_compstruct_2025_119419
crossref_primary_10_1016_j_jechem_2022_01_018
crossref_primary_10_1016_j_gsf_2024_101925
crossref_primary_10_1016_j_icheatmasstransfer_2025_109231
crossref_primary_10_1021_acs_jctc_5c00666
crossref_primary_10_1021_acselectrochem_4c00102
crossref_primary_10_1093_bib_bbad008
crossref_primary_10_1038_s41524_025_01599_1
crossref_primary_10_1021_acs_jctc_5c00420
crossref_primary_10_1088_1361_651X_acda50
crossref_primary_10_1039_D1SC02574K
crossref_primary_10_1021_acs_jctc_5c00784
crossref_primary_10_1021_acs_jpcc_5c02769
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1038_s41467_024_47422_1
crossref_primary_10_3389_fmats_2023_1128954
crossref_primary_10_1002_advs_202409009
crossref_primary_10_1038_s41467_021_27504_0
crossref_primary_10_1063_5_0285103
crossref_primary_10_1016_j_ces_2025_121832
crossref_primary_10_1002_qute_202200131
crossref_primary_10_1140_epjb_s10051_021_00234_4
crossref_primary_10_1016_j_bpj_2025_06_019
crossref_primary_10_1002_anie_202305964
crossref_primary_10_1088_2632_2153_adfa68
crossref_primary_10_1016_j_matdes_2023_112012
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.chemrev.0c01111
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
ExternalDocumentID 33705118
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
29B
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
~02
7X8
ABBLG
ABLBI
ABUFD
ID FETCH-LOGICAL-a506t-6ea5576b12ddfcbc823ca59897499a9bb4fce24219ab921b2754edc78321333f2
IEDL.DBID 7X8
ISICitedReferencesCount 1023
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691784200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6890
IngestDate Sun Nov 09 11:35:19 EST 2025
Thu Apr 03 07:05:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a506t-6ea5576b12ddfcbc823ca59897499a9bb4fce24219ab921b2754edc78321333f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1012-4854
0000-0002-3861-7685
0000-0001-8342-0964
0000-0001-6091-3408
0000-0002-3188-7017
0000-0001-7503-406X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8391964
PMID 33705118
PQID 2501264695
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2501264695
pubmed_primary_33705118
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem Rev
PublicationYear 2021
SSID ssj0005527
Score 2.7532225
SecondaryResourceType review_article
Snippet In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10142
Title Machine Learning Force Fields
URI https://www.ncbi.nlm.nih.gov/pubmed/33705118
https://www.proquest.com/docview/2501264695
Volume 121
WOSCitedRecordID wos000691784200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3qCnrx-2PVlQpew7ZJ0yYnkcXiwS17UNhbSSaJerBdt6u_36Qf7EkQvORWSDpJZl7m8R5Ct8RSaxkDnHBQOBZGYG5CwKAoBwKJEq2I61Oa53w-F7Puwa3uaJX9ndhc1LoC_0Y-dqk6csk7Eexu8Ym9a5TvrnYWGptoQF0p4yld6XytFs5ay1aXohxE4iLsVYdINJbgQvpmPrzRSwjecD36vcZsck22_99ZHqC9rsoM7tttcYg2THmEdia9udsxGk0bEqUJOn3V1yCrlmCCzBPa6hP0kj08Tx5x55SAJQuTFU6MZA44qIhobUEBJxQkE9yBBSGkUCq2YHzzV0glSKRIymKjIfU2RZRSS07RVlmV5hwFLjpac-WAn-QxM7GKNNFRbBSHNLE2HqKbfuWFm7NvL8jSVF91sV77EJ21v69YtJIZBaVp6LHMxR--vkS7xBNHQneE2RUaWHcOzQhtw_fqvV5eNyF2Yz6b_gDahLAF
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Force+Fields&rft.jtitle=Chemical+reviews&rft.au=Unke%2C+Oliver+T&rft.au=Chmiela%2C+Stefan&rft.au=Sauceda%2C+Huziel+E&rft.au=Gastegger%2C+Michael&rft.date=2021-08-25&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=121&rft.issue=16&rft.spage=10142&rft_id=info:doi/10.1021%2Facs.chemrev.0c01111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon