MIS 5e sea-level history along the Pacific coast of North America
The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific coast of North America, from Washington (USA) to Baja California Sur (Mexico), are found in the deposits of erosional marine terraces. Warmer coasts along the southern Golfo de California host both erosional marin...
Uložené v:
| Vydané v: | Earth system science data Ročník 14; číslo 3; s. 1271 - 1330 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Katlenburg-Lindau
Copernicus GmbH
22.03.2022
Copernicus Publications |
| Predmet: | |
| ISSN: | 1866-3516, 1866-3508, 1866-3516 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The primary last interglacial, marine isotope substage
(MIS) 5e records on the Pacific coast of North America, from Washington
(USA) to Baja California Sur (Mexico), are found in the deposits of
erosional marine terraces. Warmer coasts along the southern Golfo de
California host both erosional marine terraces and constructional coral reef
terraces. Because the northern part of the region is tectonically active,
MIS 5e terrace elevations vary considerably, from a few meters above sea
level to as much as 70 m above sea level. The primary paleo-sea-level
indicator is the shoreline angle, the junction of the wave-cut platform with
the former sea cliff, which forms very close to mean sea level. Most areas
on the Pacific coast of North America have experienced uplift since MIS 5e
time, but the rate of uplift varies substantially as a function of tectonic
setting. Chronology in most places is based on uranium-series ages of the
solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites and
Pocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e often
can be accomplished using amino acid ratios of fossil mollusks, compared to
similar ratios in mollusks that also host dated corals. Uranium-series (U-series) analyses of
corals that have experienced largely closed-system histories range from
∼124 to ∼118 ka, in good agreement with ages
from MIS 5e reef terraces elsewhere in the world. There is no geomorphic,
stratigraphic, or geochronological evidence for more than one high-sea stand
during MIS 5e on the Pacific coast of North America. However, in areas of
low uplift rate, the outer parts of MIS 5e terraces apparently were
re-occupied by the high-sea stand at ∼100 ka (MIS 5c),
evident from mixes of coral ages and mixes of molluscan faunas with
differing thermal aspects. This sequence of events took place because
glacial isostatic adjustment processes acting on North America resulted in
regional high-sea stands at ∼100 and ∼80 ka
that were higher than is the case in far-field regions, distant from large
continental ice sheets. During MIS 5e time, sea surface temperatures (SSTs)
off the Pacific coast of North America were higher than is the case at
present, evident from extralimital southern species of mollusks found in
dated deposits. Apparently, no wholesale shifts in faunal provinces took
place, but in MIS 5e time, some species of bivalves and gastropods lived
hundreds of kilometers north of their present northern limits, in good
agreement with SST estimates derived from foraminiferal records and
alkenone-based reconstructions in deep-sea cores. Because many areas of the
Pacific coast of North America have been active tectonically for much or all
of the Quaternary, many earlier interglacial periods are recorded as
uplifted, higher-elevation terraces. In addition, from southern Oregon to
northern Baja California, there are U-series-dated corals from marine
terraces that formed at ∼80 ka, during MIS 5a. In contrast to
MIS 5e, these terrace deposits host molluscan faunas that contain
extralimital northern species, indicating cooler SST at the end of MIS 5.
Here I present a review and standardized database of MIS 5e sea-level
indicators along the Pacific coast of North America and the corresponding
dated samples. The database is available in Muhs et al. (2021b; https://doi.org/10.5281/zenodo.5903285). |
|---|---|
| AbstractList | The primary last interglacial, marine isotope substage
(MIS) 5e records on the Pacific coast of North America, from Washington
(USA) to Baja California Sur (Mexico), are found in the deposits of
erosional marine terraces. Warmer coasts along the southern Golfo de
California host both erosional marine terraces and constructional coral reef
terraces. Because the northern part of the region is tectonically active,
MIS 5e terrace elevations vary considerably, from a few meters above sea
level to as much as 70 m above sea level. The primary paleo-sea-level
indicator is the shoreline angle, the junction of the wave-cut platform with
the former sea cliff, which forms very close to mean sea level. Most areas
on the Pacific coast of North America have experienced uplift since MIS 5e
time, but the rate of uplift varies substantially as a function of tectonic
setting. Chronology in most places is based on uranium-series ages of the
solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites and
Pocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e often
can be accomplished using amino acid ratios of fossil mollusks, compared to
similar ratios in mollusks that also host dated corals. Uranium-series (U-series) analyses of
corals that have experienced largely closed-system histories range from
∼124 to ∼118 ka, in good agreement with ages
from MIS 5e reef terraces elsewhere in the world. There is no geomorphic,
stratigraphic, or geochronological evidence for more than one high-sea stand
during MIS 5e on the Pacific coast of North America. However, in areas of
low uplift rate, the outer parts of MIS 5e terraces apparently were
re-occupied by the high-sea stand at ∼100 ka (MIS 5c),
evident from mixes of coral ages and mixes of molluscan faunas with
differing thermal aspects. This sequence of events took place because
glacial isostatic adjustment processes acting on North America resulted in
regional high-sea stands at ∼100 and ∼80 ka
that were higher than is the case in far-field regions, distant from large
continental ice sheets. During MIS 5e time, sea surface temperatures (SSTs)
off the Pacific coast of North America were higher than is the case at
present, evident from extralimital southern species of mollusks found in
dated deposits. Apparently, no wholesale shifts in faunal provinces took
place, but in MIS 5e time, some species of bivalves and gastropods lived
hundreds of kilometers north of their present northern limits, in good
agreement with SST estimates derived from foraminiferal records and
alkenone-based reconstructions in deep-sea cores. Because many areas of the
Pacific coast of North America have been active tectonically for much or all
of the Quaternary, many earlier interglacial periods are recorded as
uplifted, higher-elevation terraces. In addition, from southern Oregon to
northern Baja California, there are U-series-dated corals from marine
terraces that formed at ∼80 ka, during MIS 5a. In contrast to
MIS 5e, these terrace deposits host molluscan faunas that contain
extralimital northern species, indicating cooler SST at the end of MIS 5.
Here I present a review and standardized database of MIS 5e sea-level
indicators along the Pacific coast of North America and the corresponding
dated samples. The database is available in Muhs et al. (2021b; https://doi.org/10.5281/zenodo.5903285). The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific coast of North America, from Washington (USA) to Baja California Sur (Mexico), are found in the deposits of erosional marine terraces. Warmer coasts along the southern Golfo de California host both erosional marine terraces and constructional coral reef terraces. Because the northern part of the region is tectonically active, MIS 5e terrace elevations vary considerably, from a few meters above sea level to as much as 70 m above sea level. The primary paleo-sea-level indicator is the shoreline angle, the junction of the wave-cut platform with the former sea cliff, which forms very close to mean sea level. Most areas on the Pacific coast of North America have experienced uplift since MIS 5e time, but the rate of uplift varies substantially as a function of tectonic setting. Chronology in most places is based on uranium-series ages of the solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites andPocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e often can be accomplished using amino acid ratios of fossil mollusks, compared to similar ratios in mollusks that also host dated corals. Uranium-series (U-series) analyses of corals that have experienced largely closed-system histories range from∼124 to ∼118 ka, in good agreement with ages from MIS 5e reef terraces elsewhere in the world. There is no geomorphic, stratigraphic, or geochronological evidence for more than one high-sea stand during MIS 5e on the Pacific coast of North America. However, in areas of low uplift rate, the outer parts of MIS 5e terraces apparently were re-occupied by the high-sea stand at ∼100 ka (MIS 5c), evident from mixes of coral ages and mixes of molluscan faunas with differing thermal aspects. This sequence of events took place because glacial isostatic adjustment processes acting on North America resulted in regional high-sea stands at ∼100 and ∼80 ka that were higher than is the case in far-field regions, distant from large continental ice sheets. During MIS 5e time, sea surface temperatures (SSTs) off the Pacific coast of North America were higher than is the case at present, evident from extralimital southern species of mollusks found in dated deposits. Apparently, no wholesale shifts in faunal provinces took place, but in MIS 5e time, some species of bivalves and gastropods lived hundreds of kilometers north of their present northern limits, in good agreement with SST estimates derived from foraminiferal records and alkenone-based reconstructions in deep-sea cores. Because many areas of the Pacific coast of North America have been active tectonically for much or all of the Quaternary, many earlier interglacial periods are recorded as uplifted, higher-elevation terraces. In addition, from southern Oregon to northern Baja California, there are U-series-dated corals from marine terraces that formed at ∼80 ka, during MIS 5a. In contrast to MIS 5e, these terrace deposits host molluscan faunas that contain extralimital northern species, indicating cooler SST at the end of MIS 5. Here I present a review and standardized database of MIS 5e sea-level indicators along the Pacific coast of North America and the corresponding dated samples. The database is available in Muhs et al. (2021b; 10.5281/zenodo.5903285). The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific coast of North America, from Washington (USA) to Baja California Sur (Mexico), are found in the deposits of erosional marine terraces. Warmer coasts along the southern Golfo de California host both erosional marine terraces and constructional coral reef terraces. Because the northern part of the region is tectonically active, MIS 5e terrace elevations vary considerably, from a few meters above sea level to as much as 70 m above sea level. The primary paleo-sea-level indicator is the shoreline angle, the junction of the wave-cut platform with the former sea cliff, which forms very close to mean sea level. Most areas on the Pacific coast of North America have experienced uplift since MIS 5e time, but the rate of uplift varies substantially as a function of tectonic setting. Chronology in most places is based on uranium-series ages of the solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites and Pocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e often can be accomplished using amino acid ratios of fossil mollusks, compared to similar ratios in mollusks that also host dated corals. Uranium-series (U-series) analyses of corals that have experienced largely closed-system histories range from â¼124 to â¼118 ka, in good agreement with ages from MIS 5e reef terraces elsewhere in the world. There is no geomorphic, stratigraphic, or geochronological evidence for more than one high-sea stand during MIS 5e on the Pacific coast of North America. However, in areas of low uplift rate, the outer parts of MIS 5e terraces apparently were re-occupied by the high-sea stand at â¼100 ka (MIS 5c), evident from mixes of coral ages and mixes of molluscan faunas with differing thermal aspects. This sequence of events took place because glacial isostatic adjustment processes acting on North America resulted in regional high-sea stands at â¼100 and â¼80 ka that were higher than is the case in far-field regions, distant from large continental ice sheets. During MIS 5e time, sea surface temperatures (SSTs) off the Pacific coast of North America were higher than is the case at present, evident from extralimital southern species of mollusks found in dated deposits. Apparently, no wholesale shifts in faunal provinces took place, but in MIS 5e time, some species of bivalves and gastropods lived hundreds of kilometers north of their present northern limits, in good agreement with SST estimates derived from foraminiferal records and alkenone-based reconstructions in deep-sea cores. Because many areas of the Pacific coast of North America have been active tectonically for much or all of the Quaternary, many earlier interglacial periods are recorded as uplifted, higher-elevation terraces. In addition, from southern Oregon to northern Baja California, there are U-series-dated corals from marine terraces that formed at â¼80 ka, during MIS 5a. In contrast to MIS 5e, these terrace deposits host molluscan faunas that contain extralimital northern species, indicating cooler SST at the end of MIS 5. Here I present a review and standardized database of MIS 5e sea-level indicators along the Pacific coast of North America and the corresponding dated samples. The database is available in Muhs et al. (2021b; The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific coast of North America, from Washington (USA) to Baja California Sur (Mexico), are found in the deposits of erosional marine terraces. Warmer coasts along the southern Golfo de California host both erosional marine terraces and constructional coral reef terraces. Because the northern part of the region is tectonically active, MIS 5e terrace elevations vary considerably, from a few meters above sea level to as much as 70 m above sea level. The primary paleo-sea-level indicator is the shoreline angle, the junction of the wave-cut platform with the former sea cliff, which forms very close to mean sea level. Most areas on the Pacific coast of North America have experienced uplift since MIS 5e time, but the rate of uplift varies substantially as a function of tectonic setting. Chronology in most places is based on uranium-series ages of the solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites and Pocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e often can be accomplished using amino acid ratios of fossil mollusks, compared to similar ratios in mollusks that also host dated corals. Uranium-series (U-series) analyses of corals that have experienced largely closed-system histories range from ∼124 to ∼118 ka, in good agreement with ages from MIS 5e reef terraces elsewhere in the world. There is no geomorphic, stratigraphic, or geochronological evidence for more than one high-sea stand during MIS 5e on the Pacific coast of North America. However, in areas of low uplift rate, the outer parts of MIS 5e terraces apparently were re-occupied by the high-sea stand at ∼100 ka (MIS 5c), evident from mixes of coral ages and mixes of molluscan faunas with differing thermal aspects. This sequence of events took place because glacial isostatic adjustment processes acting on North America resulted in regional high-sea stands at ∼100 and ∼80 ka that were higher than is the case in far-field regions, distant from large continental ice sheets. During MIS 5e time, sea surface temperatures (SSTs) off the Pacific coast of North America were higher than is the case at present, evident from extralimital southern species of mollusks found in dated deposits. Apparently, no wholesale shifts in faunal provinces took place, but in MIS 5e time, some species of bivalves and gastropods lived hundreds of kilometers north of their present northern limits, in good agreement with SST estimates derived from foraminiferal records and alkenone-based reconstructions in deep-sea cores. Because many areas of the Pacific coast of North America have been active tectonically for much or all of the Quaternary, many earlier interglacial periods are recorded as uplifted, higher-elevation terraces. In addition, from southern Oregon to northern Baja California, there are U-series-dated corals from marine terraces that formed at ∼80 ka, during MIS 5a. In contrast to MIS 5e, these terrace deposits host molluscan faunas that contain extralimital northern species, indicating cooler SST at the end of MIS 5. Here I present a review and standardized database of MIS 5e sea-level indicators along the Pacific coast of North America and the corresponding dated samples. The database is available in Muhs et al. (2021b; https://doi.org/10.5281/zenodo.5903285 ). |
| Audience | Academic |
| Author | Muhs, Daniel R. |
| Author_xml | – sequence: 1 givenname: Daniel R. surname: Muhs fullname: Muhs, Daniel R. |
| BookMark | eNp1kVuLFDEQhYOs4O7qD_At4JMPveaezuOweBlYL7j6HKqT9EyGns6aZMT996YdRUeUekhRnO9UqHOBzuY0B4SeUnIlqREvQim-o6KjTNOOEcYeoHPaK9VxSdXZH_0jdFHKjhAlqJbnaPV2fYtlwCVAN4WvYcLbWGrK9ximNG9w3Qb8AVwco8MuQak4jfhdynWLV_uQo4PH6OEIUwlPfr6X6POrl5-u33Q371-vr1c3HUiiascH43thnDEAzFHQRnhwAw9SCK6MUZ673pve-V56rSST2nHvvesHIQhT_BKtj74-wc7e5biHfG8TRPtjkPLGQq7RTcGyUWttBjVIRoQSGgZF1EhFrym0Jax5PTt63eX05RBKtbt0yHP7vmXtMJz2XJjfqg000ziPqWZw-1icXSmje8GJXryu_qFq5cM-upbSGNv8BHh-AjRNDd_qBg6l2PXtx1OtPmpdTqXkMFoXK9TYkAxxspTYJX67xG-psEv8dom_kfQv8tfJ_s98B-ZXsF0 |
| CitedBy_id | crossref_primary_10_1017_S1755691022000214 crossref_primary_10_1098_rsbl_2025_0181 crossref_primary_10_1016_j_catena_2025_108817 crossref_primary_10_5194_esurf_12_883_2024 crossref_primary_10_5194_essd_15_1_2023 crossref_primary_10_1002_jqs_3581 crossref_primary_10_1016_j_palaeo_2022_111328 crossref_primary_10_1017_cft_2025_10005 crossref_primary_10_52349_0869_7892_2024_100_95_114 crossref_primary_10_1016_j_quascirev_2022_107853 crossref_primary_10_1111_jbi_14716 |
| Cites_doi | 10.1130/GSAB-44-1041 10.1126/science.219.4591.1423 10.3354/meps001227 10.1016/j.quaint.2004.01.004 10.1130/0091-7613(1983)11<621b:CAROTU>2.0.CO;2 10.3398/064.078.0403 10.1038/nature08686 10.2110/pec.92.48.0363 10.1016/S0277-3791(01)00114-7 10.1007/s00338-009-0570-0 10.1016/j.quascirev.2015.01.003 10.1144/SP290.2 10.1016/0033-5894(92)90006-5 10.1126/science.1059209 10.2110/pec.92.48.0343 10.1130/0091-7613(1987)15<119:SICOFM>2.0.CO;2 10.3398/042.007.0110 10.1130/0016-7606(1994)106<0840:CLEAAF>2.3.CO;2 10.1029/98PA00069 10.1130/0016-7606(1969)80[2273:PCOTPL]2.0.CO;2 10.3133/ofr78701 10.1130/L251.1 10.1139/e86-039 10.1007/978-94-017-7499-4_5 10.1016/0033-5894(74)90007-6 10.1016/0277-3791(82)90001-4 10.1016/0012-821X(96)00062-3 10.1126/science.211.4479.233 10.1130/0016-7606(1974)85<553:GOCTHP>2.0.CO;2 10.1130/SPE292-p45 10.1130/0091-7613(1989)017<1020:IQURAT>2.3.CO;2 10.2110/pec.92.48.0333 10.2110/pec.92.48.0377 10.1016/0079-1946(79)90115-0 10.1016/j.quascirev.2006.07.014 10.1785/0120150378 10.1144/SP328.1 10.1086/627765 10.1016/0016-7037(79)90144-3 10.1038/s41561-018-0195-4 10.1016/0277-3791(89)90035-8 10.2112/JCOASTRES-D-11T-00009.1 10.1016/j.quaint.2004.01.002 10.1016/j.quascirev.2020.106571 10.1007/s003380050220 10.1007/BF00686718 10.1130/0091-7613(1985)13<58:AAAEOM>2.0.CO;2 10.1029/2003GL017732 10.1175/1520-0442(2002)015<2261:GOCSST>2.0.CO;2 10.1016/S0277-3791(97)00086-3 10.1029/95JB01816 10.32375/1992-GB71.1 10.3133/ofr75552 10.1130/0016-7606(1958)69[39:SSMTOS]2.0.CO;2 10.1126/science.1065494 10.1130/0016-7606(1996)108<0843:QUPDIC>2.3.CO;2 10.1016/0012-821X(86)90108-1 10.1017/qua.2017.70 10.1130/0016-7606(1967)78[13:PPSACI]2.0.CO;2 10.1016/0033-5894(83)90016-9 10.1130/0016-7606(1960)71[1113:LPMTOS]2.0.CO;2 10.1126/science.276.5313.782 10.1126/science.234.4781.1225 10.1007/BF01705099 10.1130/GES00924.1 10.1126/science.263.5148.796 10.1130/0016-7606(1968)79[1203:AOFMTN]2.0.CO;2 10.1029/JB095iB05p06685 10.1139/e93-160 10.1130/0016-7606(2002)114<0569:TLIPOT>2.0.CO;2 10.1016/0012-821X(71)90181-6 10.1130/0091-7613(1983)11<35:TUOAMW>2.0.CO;2 10.1029/TC009i005p00983 10.1130/B31299.1 10.1080/02723646.1980.10642196 10.1130/0091-7613(2001)029<0151:HFBRIR>2.0.CO;2 10.1130/0016-7606(1962)73[113:MOFOMF]2.0.CO;2 10.1029/RF004p0413 10.2973/odp.proc.sr.146-2.299.1995 10.1130/0016-7606(1967)78[547:RAOPFF]2.0.CO;2 10.1038/299545a0 10.1002/jqs.1423 10.1016/S0031-0182(02)00300-0 10.1016/j.palaeo.2013.11.015 10.1029/1999TC001177 10.1017/CBO9781139024440 10.5194/essd-13-3155-2021 10.2475/ajs.247.12.833 10.1130/0016-7606(1977)88<1553:OAHOUP>2.0.CO;2 10.1016/0033-5894(92)90066-R 10.1130/0016-7606(1969)80[1415:RAOPTF]2.0.CO;2 10.7773/cm.v33i2.1011 10.1098/rsta.2013.0097 10.1038/324137a0 10.1006/qres.1999.2061 10.1126/science.1104035 10.1126/science.167.3919.862 10.5962/p.214243 10.1016/j.quaint.2007.03.013 10.1016/j.quascirev.2005.03.014 10.1086/623576 10.1016/S0016-7878(82)80032-1 10.1086/626295 10.1139/e95-098 10.1006/qres.1994.1055 10.1016/0031-0182(83)90004-4 10.1016/S0277-3791(99)00015-3 10.1038/ngeo1253 10.1016/j.quascirev.2014.09.017 10.1016/j.palaeo.2017.11.042 10.1130/GSAB-53-691 10.1006/qres.1995.1088 10.3133/pp207 10.1038/ngeo.2007.28 10.1029/JB084iB03p01049 10.1016/j.quascirev.2017.06.013 10.1016/S0012-8252(03)00043-6 10.1130/0016-7606(1974)85<1713:UAOTUP>2.0.CO;2 10.1016/S1571-0866(03)01008-X 10.1016/j.geomorph.2012.08.012 10.7202/032834ar 10.1016/j.quaint.2006.12.006 10.1016/0277-3791(85)90002-2 10.1086/625888 10.1002/9781118452547 10.1016/S0012-821X(02)01107-X 10.1016/j.geomorph.2021.107826 10.1029/2002TC001474 10.1016/0277-3791(91)90005-F 10.1006/qres.1995.1017 10.1007/978-94-017-7499-4_6 10.1016/S0012-821X(03)00121-3 10.1130/0016-7606(1994)106<0649:TQMTOS>2.3.CO;2 10.1016/0033-5894(80)90062-9 10.1016/0016-7037(71)90031-7 10.1016/j.quageo.2012.05.008 10.1002/jqs.721 10.1130/0091-7613(2001)029<0879:UOANBA>2.0.CO;2 10.1029/2010JB007979 10.1130/SPE254-p95 10.1016/1040-6182(92)90033-X 10.1139/e83-110 10.1016/0168-9622(91)90031-Q 10.3133/ofr77517 10.1130/0091-7613(1994)022<0195:CUAWTC>2.3.CO;2 10.1007/978-94-007-6326-5_59-6 10.1016/j.quageo.2006.12.002 10.1016/j.yqres.2015.03.001 10.2307/1931949 10.1130/0016-7606(1998)110<0711:LQSOTS>2.3.CO;2 10.1086/627434 10.1029/93JB03236 10.1130/B30211.1 10.1130/0016-7606(1976)87<433:FGADOC>2.0.CO;2 10.1016/0033-5894(78)90037-6 10.1130/GES02032.1 10.1130/B31738.1 10.1130/0091-7613(1999)027<1031:LQUAEP>2.3.CO;2 10.1006/qres.1993.1070 10.1126/science.258.5088.1611 10.1002/9781118452547.ch5 10.1016/0016-7037(91)90069-H 10.1086/626796 10.1306/BC7438ED-16BE-11D7-8645000102C1865D 10.1016/j.quascirev.2012.01.010 10.1029/JB074i012p03253 10.1130/0091-7613(1989)017<0084:CAROLP>2.3.CO;2 10.1016/0016-7037(81)90172-1 10.4319/lo.1966.11.2.0198 10.3133/pp369 10.2475/ajs.s5-25.146.123 10.3133/ofr77680 10.3133/pp523C 10.1144/GSL.SP.1999.146.01.04 10.1130/0091-7613(1998)026<0467:EOSSFR>2.3.CO;2 10.1016/j.earscirev.2016.06.006 10.1098/rspb.1969.0085 10.1139/e81-011 10.3133/om193 10.1130/0016-7606(1994)106<0607:AFAGFI>2.3.CO;2 10.1130/0091-7613(1987)15<139:USAOCF>2.0.CO;2 10.1086/515938 10.1017/S0094837300016031 10.1016/S0169-555X(98)00074-9 10.1126/science.159.3812.297 10.5194/essd-2021-345 10.7773/cm.v24i2.744 10.1130/0016-7606(1986)97<850:AOQSIT>2.0.CO;2 10.1016/0016-7037(81)90173-3 10.1016/0016-7037(93)90416-T 10.32375/1990-GB67.13 10.1016/j.epsl.2013.04.006 10.1016/j.quascirev.2017.03.003 10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2 10.1016/0033-5894(87)90046-9 10.2110/pec.92.48.0317 10.1130/SPE270-p253 10.1029/JB095iB05p06699 10.1029/2011GL048280 10.2307/j.ctv1t4m2dk |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/essd-14-1271-2022 |
| DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-3516 |
| EndPage | 1330 |
| ExternalDocumentID | oai_doaj_org_article_2f7779b6b5204647ab606f14871ac8d2 A697843072 10_5194_essd_14_1271_2022 |
| GeographicLocations | Mexico North America San Andreas Fault Cascadia Central America Canada United States--US Panama California Baja California Mexico |
| GeographicLocations_xml | – name: Mexico – name: North America – name: San Andreas Fault – name: Canada – name: California – name: Panama – name: Baja California Mexico – name: Cascadia – name: Central America – name: United States--US |
| GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-a506t-3b9d849c99aa2c1a794dacb3e54436996d3c8d98cd85d765257c3dddc8b440263 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773402900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1866-3516 1866-3508 |
| IngestDate | Fri Oct 03 12:44:05 EDT 2025 Fri Jul 25 10:35:58 EDT 2025 Tue Nov 11 10:52:33 EST 2025 Tue Nov 04 18:25:45 EST 2025 Thu Nov 13 15:58:27 EST 2025 Sat Nov 29 03:31:53 EST 2025 Tue Nov 18 22:31:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a506t-3b9d849c99aa2c1a794dacb3e54436996d3c8d98cd85d765257c3dddc8b440263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2641318349?pq-origsite=%requestingapplication% |
| PQID | 2641318349 |
| PQPubID | 105729 |
| PageCount | 60 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f7779b6b5204647ab606f14871ac8d2 proquest_journals_2641318349 gale_infotracmisc_A697843072 gale_infotracacademiconefile_A697843072 gale_incontextgauss_ISR_A697843072 crossref_citationtrail_10_5194_essd_14_1271_2022 crossref_primary_10_5194_essd_14_1271_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-22 |
| PublicationDateYYYYMMDD | 2022-03-22 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Earth system science data |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 ref128 ref249 ref129 ref97 ref126 ref247 ref96 ref127 ref248 ref99 ref124 ref245 ref98 ref125 ref246 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref253 ref250 ref130 ref251 ref91 ref90 ref89 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref88 ref135 ref256 ref87 ref136 ref257 ref82 ref144 ref265 ref81 ref145 ref266 ref84 ref142 ref263 ref83 ref143 ref264 ref140 ref261 ref141 ref262 ref80 ref260 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref226 ref77 ref102 ref223 ref76 ref103 ref224 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref230 ref72 ref110 ref231 ref68 ref119 ref67 ref117 ref238 ref69 ref118 ref239 ref64 ref115 ref236 ref63 ref116 ref237 ref66 ref113 ref234 ref65 ref114 ref235 ref60 ref122 ref243 ref123 ref244 ref62 ref120 ref241 ref61 ref121 ref242 ref240 ref168 ref289 ref169 ref290 ref170 ref291 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref292 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref269 ref149 ref146 ref267 ref147 ref268 ref155 ref276 ref156 ref277 ref153 ref274 ref154 ref275 ref151 ref272 ref152 ref273 ref270 ref150 ref271 ref159 ref157 ref278 ref158 ref279 ref280 ref166 ref287 ref167 ref288 ref164 ref285 ref165 ref286 ref162 ref283 ref163 ref284 ref160 ref281 ref161 ref282 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
| References_xml | – ident: ref292 – ident: ref58 doi: 10.1130/GSAB-44-1041 – ident: ref64 doi: 10.1126/science.219.4591.1423 – ident: ref87 doi: 10.3354/meps001227 – ident: ref59 doi: 10.1016/j.quaint.2004.01.004 – ident: ref161 doi: 10.1130/0091-7613(1983)11<621b:CAROTU>2.0.CO;2 – ident: ref174 doi: 10.3398/064.078.0403 – ident: ref135 doi: 10.1038/nature08686 – ident: ref178 doi: 10.2110/pec.92.48.0363 – ident: ref181 doi: 10.1016/S0277-3791(01)00114-7 – ident: ref240 – ident: ref9 doi: 10.1007/s00338-009-0570-0 – ident: ref50 doi: 10.1016/j.quascirev.2015.01.003 – ident: ref151 doi: 10.1144/SP290.2 – ident: ref24 doi: 10.1016/0033-5894(92)90006-5 – ident: ref103 doi: 10.1126/science.1059209 – ident: ref130 doi: 10.2110/pec.92.48.0343 – ident: ref175 doi: 10.1130/0091-7613(1987)15<119:SICOFM>2.0.CO;2 – ident: ref186 doi: 10.3398/042.007.0110 – ident: ref123 doi: 10.1130/0016-7606(1994)106<0840:CLEAAF>2.3.CO;2 – ident: ref102 doi: 10.1029/98PA00069 – ident: ref68 doi: 10.1130/0016-7606(1969)80[2273:PCOTPL]2.0.CO;2 – ident: ref286 doi: 10.3133/ofr78701 – ident: ref86 doi: 10.1130/L251.1 – ident: ref148 – ident: ref8 doi: 10.1139/e86-039 – ident: ref89 doi: 10.1007/978-94-017-7499-4_5 – ident: ref96 – ident: ref257 – ident: ref21 doi: 10.1016/0033-5894(74)90007-6 – ident: ref277 doi: 10.1016/0277-3791(82)90001-4 – ident: ref39 doi: 10.1016/0012-821X(96)00062-3 – ident: ref114 – ident: ref246 – ident: ref3 – ident: ref52 doi: 10.1126/science.211.4479.233 – ident: ref275 – ident: ref120 – ident: ref37 doi: 10.1130/0016-7606(1974)85<553:GOCTHP>2.0.CO;2 – ident: ref99 doi: 10.1130/SPE292-p45 – ident: ref74 – ident: ref166 doi: 10.1130/0091-7613(1989)017<1020:IQURAT>2.3.CO;2 – ident: ref220 doi: 10.2110/pec.92.48.0333 – ident: ref134 doi: 10.2110/pec.92.48.0377 – ident: ref147 – ident: ref32 – ident: ref139 doi: 10.1016/0079-1946(79)90115-0 – ident: ref291 doi: 10.1016/j.quascirev.2006.07.014 – ident: ref55 – ident: ref221 doi: 10.1785/0120150378 – ident: ref211 doi: 10.1144/SP328.1 – ident: ref136 – ident: ref142 – ident: ref119 – ident: ref19 doi: 10.1086/627765 – ident: ref138 doi: 10.1016/0016-7037(79)90144-3 – ident: ref14 doi: 10.1038/s41561-018-0195-4 – ident: ref170 doi: 10.1016/0277-3791(89)90035-8 – ident: ref250 doi: 10.2112/JCOASTRES-D-11T-00009.1 – ident: ref287 doi: 10.1016/j.quaint.2004.01.002 – ident: ref238 – ident: ref236 doi: 10.1016/j.quascirev.2020.106571 – ident: ref10 – ident: ref88 doi: 10.1007/s003380050220 – ident: ref237 doi: 10.1007/BF00686718 – ident: ref173 doi: 10.1130/0091-7613(1985)13<58:AAAEOM>2.0.CO;2 – ident: ref164 – ident: ref66 – ident: ref90 doi: 10.1029/2003GL017732 – ident: ref141 – ident: ref273 – ident: ref169 doi: 10.1175/1520-0442(2002)015<2261:GOCSST>2.0.CO;2 – ident: ref118 doi: 10.1016/S0277-3791(97)00086-3 – ident: ref72 – ident: ref229 – ident: ref95 – ident: ref165 doi: 10.1029/95JB01816 – ident: ref17 – ident: ref34 doi: 10.32375/1992-GB71.1 – ident: ref270 doi: 10.3133/ofr75552 – ident: ref61 – ident: ref78 doi: 10.1130/0016-7606(1958)69[39:SSMTOS]2.0.CO;2 – ident: ref83 doi: 10.1126/science.1065494 – ident: ref125 doi: 10.1130/0016-7606(1996)108<0843:QUPDIC>2.3.CO;2 – ident: ref40 doi: 10.1016/0012-821X(86)90108-1 – ident: ref176 doi: 10.1017/qua.2017.70 – ident: ref196 – ident: ref23 – ident: ref70 doi: 10.1130/0016-7606(1967)78[13:PPSACI]2.0.CO;2 – ident: ref172 doi: 10.1016/0033-5894(83)90016-9 – ident: ref200 doi: 10.1130/0016-7606(1960)71[1113:LPMTOS]2.0.CO;2 – ident: ref71 doi: 10.1126/science.276.5313.782 – ident: ref31 doi: 10.1126/science.234.4781.1225 – ident: ref245 doi: 10.1007/BF01705099 – ident: ref201 – ident: ref254 doi: 10.1130/GES00924.1 – ident: ref290 – ident: ref82 doi: 10.1126/science.263.5148.796 – ident: ref25 doi: 10.1130/0016-7606(1968)79[1203:AOFMTN]2.0.CO;2 – ident: ref45 – ident: ref217 – ident: ref177 doi: 10.1029/JB095iB05p06685 – ident: ref22 – ident: ref15 doi: 10.1139/e93-160 – ident: ref180 doi: 10.1130/0016-7606(2002)114<0569:TLIPOT>2.0.CO;2 – ident: ref244 doi: 10.1016/0012-821X(71)90181-6 – ident: ref152 – ident: ref160 doi: 10.1130/0091-7613(1983)11<35:TUOAMW>2.0.CO;2 – ident: ref121 doi: 10.1029/TC009i005p00983 – ident: ref235 doi: 10.1130/B31299.1 – ident: ref4 – ident: ref199 doi: 10.1080/02723646.1980.10642196 – ident: ref84 doi: 10.1130/0091-7613(2001)029<0151:HFBRIR>2.0.CO;2 – ident: ref67 – ident: ref113 doi: 10.1130/0016-7606(1962)73[113:MOFOMF]2.0.CO;2 – ident: ref128 doi: 10.1029/RF004p0413 – ident: ref131 doi: 10.2973/odp.proc.sr.146-2.299.1995 – ident: ref272 doi: 10.1130/0016-7606(1967)78[547:RAOPFF]2.0.CO;2 – ident: ref129 doi: 10.1038/299545a0 – ident: ref234 – ident: ref73 – ident: ref253 doi: 10.1002/jqs.1423 – ident: ref146 – ident: ref163 doi: 10.1016/S0031-0182(02)00300-0 – ident: ref262 – ident: ref187 doi: 10.1016/j.palaeo.2013.11.015 – ident: ref56 – ident: ref157 doi: 10.1029/1999TC001177 – ident: ref194 doi: 10.1017/CBO9781139024440 – ident: ref42 doi: 10.5194/essd-13-3155-2021 – ident: ref98 doi: 10.2475/ajs.247.12.833 – ident: ref1 – ident: ref133 doi: 10.1130/0016-7606(1977)88<1553:OAHOUP>2.0.CO;2 – ident: ref219 – ident: ref150 doi: 10.1016/0033-5894(92)90066-R – ident: ref267 doi: 10.1130/0016-7606(1969)80[1415:RAOPTF]2.0.CO;2 – ident: ref112 doi: 10.7773/cm.v33i2.1011 – ident: ref197 – ident: ref205 doi: 10.1098/rsta.2013.0097 – ident: ref38 doi: 10.1038/324137a0 – ident: ref213 doi: 10.1006/qres.1999.2061 – ident: ref247 doi: 10.1126/science.1104035 – ident: ref76 – ident: ref271 doi: 10.1126/science.167.3919.862 – ident: ref53 – ident: ref115 doi: 10.5962/p.214243 – ident: ref30 – ident: ref63 doi: 10.1016/j.quaint.2007.03.013 – ident: ref184 doi: 10.1016/j.quascirev.2005.03.014 – ident: ref65 – ident: ref6 – ident: ref208 doi: 10.1086/623576 – ident: ref232 doi: 10.1016/S0016-7878(82)80032-1 – ident: ref79 doi: 10.1086/626295 – ident: ref145 doi: 10.1139/e95-098 – ident: ref179 doi: 10.1006/qres.1994.1055 – ident: ref100 doi: 10.1016/0031-0182(83)90004-4 – ident: ref195 doi: 10.1016/S0277-3791(99)00015-3 – ident: ref249 doi: 10.1038/ngeo1253 – ident: ref188 doi: 10.1016/j.quascirev.2014.09.017 – ident: ref190 doi: 10.1016/j.palaeo.2017.11.042 – ident: ref215 doi: 10.1130/GSAB-53-691 – ident: ref260 – ident: ref47 – ident: ref116 doi: 10.1006/qres.1995.1088 – ident: ref127 – ident: ref288 doi: 10.3133/pp207 – ident: ref222 doi: 10.1038/ngeo.2007.28 – ident: ref256 doi: 10.1029/JB084iB03p01049 – ident: ref62 doi: 10.1016/j.quascirev.2017.06.013 – ident: ref12 – ident: ref227 doi: 10.1016/S0012-8252(03)00043-6 – ident: ref137 doi: 10.1130/0016-7606(1974)85<1713:UAOTUP>2.0.CO;2 – ident: ref162 – ident: ref183 doi: 10.1016/S1571-0866(03)01008-X – ident: ref228 doi: 10.1016/j.geomorph.2012.08.012 – ident: ref106 doi: 10.7202/032834ar – ident: ref60 – ident: ref210 doi: 10.1016/j.quaint.2006.12.006 – ident: ref168 doi: 10.1016/0277-3791(85)90002-2 – ident: ref255 doi: 10.1086/625888 – ident: ref233 doi: 10.1002/9781118452547 – ident: ref57 doi: 10.1016/S0012-821X(02)01107-X – ident: ref191 doi: 10.1016/j.geomorph.2021.107826 – ident: ref225 doi: 10.1029/2002TC001474 – ident: ref126 doi: 10.1016/0277-3791(91)90005-F – ident: ref27 doi: 10.1006/qres.1995.1017 – ident: ref251 doi: 10.1007/978-94-017-7499-4_6 – ident: ref248 doi: 10.1016/S0012-821X(03)00121-3 – ident: ref11 doi: 10.1130/0016-7606(1994)106<0649:TQMTOS>2.3.CO;2 – ident: ref224 – ident: ref218 – ident: ref289 doi: 10.1016/0033-5894(80)90062-9 – ident: ref117 doi: 10.1016/0016-7037(71)90031-7 – ident: ref266 – ident: ref279 doi: 10.1016/j.quageo.2012.05.008 – ident: ref33 doi: 10.1002/jqs.721 – ident: ref209 doi: 10.1130/0091-7613(2001)029<0879:UOANBA>2.0.CO;2 – ident: ref46 – ident: ref171 doi: 10.1029/2010JB007979 – ident: ref202 doi: 10.1130/SPE254-p95 – ident: ref203 doi: 10.1016/1040-6182(92)90033-X – ident: ref198 – ident: ref107 doi: 10.1139/e83-110 – ident: ref283 – ident: ref207 – ident: ref77 – ident: ref16 doi: 10.1016/0168-9622(91)90031-Q – ident: ref94 – ident: ref284 doi: 10.3133/ofr77517 – ident: ref35 doi: 10.1130/0091-7613(1994)022<0195:CUAWTC>2.3.CO;2 – ident: ref18 – ident: ref280 doi: 10.1007/978-94-007-6326-5_59-6 – ident: ref44 doi: 10.1016/j.quageo.2006.12.002 – ident: ref189 doi: 10.1016/j.yqres.2015.03.001 – ident: ref261 doi: 10.2307/1931949 – ident: ref212 doi: 10.1130/0016-7606(1998)110<0711:LQSOTS>2.3.CO;2 – ident: ref167 doi: 10.1086/627434 – ident: ref124 doi: 10.1029/93JB03236 – ident: ref97 doi: 10.1130/B30211.1 – ident: ref26 doi: 10.1130/0016-7606(1976)87<433:FGADOC>2.0.CO;2 – ident: ref20 – ident: ref281 doi: 10.1016/0033-5894(78)90037-6 – ident: ref206 doi: 10.1130/GES02032.1 – ident: ref36 doi: 10.1130/B31738.1 – ident: ref91 doi: 10.1130/0091-7613(1999)027<1031:LQUAEP>2.3.CO;2 – ident: ref258 – ident: ref149 – ident: ref204 doi: 10.1006/qres.1993.1070 – ident: ref29 doi: 10.1126/science.258.5088.1611 – ident: ref69 – ident: ref122 doi: 10.1002/9781118452547.ch5 – ident: ref282 – ident: ref241 doi: 10.1016/0016-7037(91)90069-H – ident: ref263 doi: 10.1086/626796 – ident: ref81 doi: 10.1306/BC7438ED-16BE-11D7-8645000102C1865D – ident: ref185 doi: 10.1016/j.quascirev.2012.01.010 – ident: ref243 doi: 10.1029/JB074i012p03253 – ident: ref49 doi: 10.1130/0091-7613(1989)017<0084:CAROLP>2.3.CO;2 – ident: ref276 doi: 10.1016/0016-7037(81)90172-1 – ident: ref264 doi: 10.4319/lo.1966.11.2.0198 – ident: ref2 – ident: ref268 doi: 10.3133/pp369 – ident: ref155 – ident: ref75 – ident: ref239 doi: 10.2475/ajs.s5-25.146.123 – ident: ref285 doi: 10.3133/ofr77680 – ident: ref5 doi: 10.3133/pp523C – ident: ref144 – ident: ref252 doi: 10.1144/GSL.SP.1999.146.01.04 – ident: ref92 – ident: ref226 – ident: ref54 – ident: ref182 – ident: ref80 doi: 10.1130/0091-7613(1998)026<0467:EOSSFR>2.3.CO;2 – ident: ref223 doi: 10.1016/j.earscirev.2016.06.006 – ident: ref230 doi: 10.1098/rspb.1969.0085 – ident: ref105 doi: 10.1139/e81-011 – ident: ref269 doi: 10.3133/om193 – ident: ref7 – ident: ref143 – ident: ref231 doi: 10.1130/0016-7606(1994)106<0607:AFAGFI>2.3.CO;2 – ident: ref265 – ident: ref13 doi: 10.1130/0091-7613(1987)15<139:USAOCF>2.0.CO;2 – ident: ref108 doi: 10.1086/515938 – ident: ref153 doi: 10.1017/S0094837300016031 – ident: ref156 doi: 10.1016/S0169-555X(98)00074-9 – ident: ref28 doi: 10.1126/science.159.3812.297 – ident: ref48 – ident: ref193 doi: 10.5194/essd-2021-345 – ident: ref93 – ident: ref110 – ident: ref216 doi: 10.7773/cm.v24i2.744 – ident: ref101 doi: 10.1130/0016-7606(1986)97<850:AOQSIT>2.0.CO;2 – ident: ref140 doi: 10.1016/0016-7037(81)90173-3 – ident: ref192 doi: 10.5194/essd-2021-345 – ident: ref242 doi: 10.1016/0016-7037(93)90416-T – ident: ref274 doi: 10.32375/1990-GB67.13 – ident: ref41 doi: 10.1016/j.epsl.2013.04.006 – ident: ref109 – ident: ref214 – ident: ref51 doi: 10.1016/j.quascirev.2017.03.003 – ident: ref85 doi: 10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2 – ident: ref154 doi: 10.1016/0033-5894(87)90046-9 – ident: ref278 doi: 10.2110/pec.92.48.0317 – ident: ref43 doi: 10.1130/SPE270-p253 – ident: ref104 – ident: ref158 doi: 10.1029/JB095iB05p06699 – ident: ref159 doi: 10.1029/2011GL048280 – ident: ref259 – ident: ref132 – ident: ref111 doi: 10.2307/j.ctv1t4m2dk |
| SSID | ssj0064175 |
| Score | 2.291548 |
| SecondaryResourceType | review_article |
| Snippet | The primary last interglacial, marine isotope substage
(MIS) 5e records on the Pacific coast of North America, from Washington
(USA) to Baja California Sur... The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific coast of North America, from Washington (USA) to Baja California Sur... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1271 |
| SubjectTerms | Accuracy Age Amino acids Analysis Coral reefs Coral reefs and islands Corals Deep sea Deep water Deposits Far fields Fault lines Faunal provinces Foraminifera Fossils Gastropods Geochronology Geomorphology Glaciation Ice sheets Interglacial periods Isotopes Level indicators Marine invertebrates Marine molluscs Mean sea level Mollusca Mollusks Quaternary Ratios Records Sea level Sea surface Sea surface temperature Shellfish Shorelines Species Stratigraphy Surface temperature Tectonics Terraces Terraces (Geology) Uplift Uranium |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-UwEA4iK-zLXtwVjzeCCAtC8LRJm-bx7KKrD4p4Ad9CMmlEOLRyelzw3zvTRvE87PrgvrYTSOeWb8j0G8b2jJPGV-AFjIsoVOm0QNQ6FiYqL2PQUrrQD5vQZ2fVzY05fzXqi3rCBnrgQXEHedRaG1_6IqdbOO08Qu6IIF5nDqpA2RfdkELygma4DTm4VFlPsUtsbkIiBhnuMxGtqANMIEFkRNanM_SRPF84kXri_r-l5_7MOfr8jt1-YZ8S0OSTYclXtlQ3q2zldz_I9_Ebm5yeXPKi5ujpYkqNQ3xgHn7kbto2txxxIU8Nexxa1815G3l_ycPTJc93dn10ePXrWKRxCsIV43IupDehUgaMcS6HzGEkBgde1kSBV2LdEyRu0VQQqiLokmhSQYYQoPIKq8xSrrHlpm3qdcbxvPM-QO0RPKoMvENcEV0VJWC5YkCO2PhZpRYS1ziNvJharDnICpasgGWHJStYssKI7b8suR-INv4l_JNU_yJIHNn9A7SFTbawb9lixHbJypZYMBpqs7l1D11nTy4v7KTE4lph-kOhH0kotvgF4NJfC6gHIs5akNxakMQwhcXXz85kU5roLKLRjJKqMhv_44s22UfSDrXI5fkWW57PHupt9gH-zO-62U4fIU_TfAw3 priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUltNBLadOWbpoWEQKFgohtyZZ13JTm45BQmgZyE9LICoXFDvEmkH-fGVkbuoc0l1ztMdhvRqM3aPyGsV3jpPEteAFFHYVqnBbIWgthovIyBi2lC2nYhD49bS8uzK9_Rn1RT9gkDzwBt1dFrbXxja8rOoXTziPljkjidemgDSn7FtqsiqkpBzeqTBK7pOYmJHKQ6TwT2YrawwQSRElifbrEGKmqtR0pCfc_lp7TnnPwlr3JZJHPp5d8x150_SZ7dZiG8d69Z_OT4zNedxyjVSyo-YdP6sF33C2G_pIjt-O56Y7D4MYlHyJPBzU8H9R8YOcHP__8OBJ5JIJwddEshfQmtMqAMc5VUDpcTcGBlx3J2DVYuwSJoJgWQlsH3ZDUKcgQArReYaXYyI9sox_67hPjuGd5H6DzSABVCd4hN4iujRKw5DAgZ6xYwWIh64XT2IqFxbqBkLSEJJYOlpC0hOSMfX945GoSy_if8T5h_WBIOtfpAnrfZu_bp7w_YzvkKUtKFj21yly6m3G0x2e_7bzBAllhCkOjb9koDvgF4PKfB4gDiV-tWW6vWeJSg_Xbq4CweamPFhllSYlRma3n-KLP7DWhQ21uVbXNNpbXN90X9hJul3_H668pyu8B4gP6fQ priority: 102 providerName: Directory of Open Access Journals |
| Title | MIS 5e sea-level history along the Pacific coast of North America |
| URI | https://www.proquest.com/docview/2641318349 https://doaj.org/article/2f7779b6b5204647ab606f14871ac8d2 |
| Volume | 14 |
| WOSCitedRecordID | wos000773402900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: RKB dateStart: 20090101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: BFMQW dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: PCBAR dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: M7S dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3516 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA96p-CL3-LpWYIIghCuu9ndbJ6klTstcqW0CudTSCabIpTds9sT7r93Jk1P-uC9-LjJZNlkJpOZzOxvGHunrdSuBidgWAZRVFYJtFqHQofCyeCVlNbHYhNqOq0vLvQsXbj1Ka1ypxOjovYd0B35CR7cGclfoT9e_hJUNYqiq6mExl12SCgJWUzdW-w0MY6IQLuE6SYkWiLbqCbaLMUJqhEvMoLsUxlKSp7vnUsRvv9fSjqePGeP_vebH7OHyebko62QPGF3mvYpu_851vS9fsZG55MFLxuOQi9WlEPEtyDE19yuunbJ0UTkKXePQ2f7De8Cj_EenuI9z9n3s9Nvn76IVFlB2HJYbYR02teFBq2tzSGzuCm9BScbQsOr0AXyEmqva_B16VVFiKkgvfdQuwIdzkq-YAdt1zYvGcejzzkPjUM7ssjAWTQxgq2DBPRcNMgjNtytq4EEO07VL1YG3Q9ihSFWoAdiiBWGWHHEPtwMudxibtxGPCZm3RASXHZs6NZLk3afyYNSSrvKlTmFcpV16LcF9ARVZnGi-JK3xGpDgBgtZdws7VXfm8libkYV-tkFakIkep-IQoczAJt-YMB1IAytPcrjPUrcsbDfvRMXkzRGb_7Kyqvbu1-zBzRvyoPL82N2sFlfNW_YPfi9-dmvB-xwfDqdzQfxbmEQtwO2zSbnsx_4NP86_gMcKA7b |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFkQvvFELBSwEQkKyuomTOD4gtDxKo3ZXK1qkcjJ-xCukVVI2W9D-KX4jM4lTtAd664FrMokcz5d5ZCbfEPJCai5Nbg2zw9SzJNOCQdQ6ZNInhnsnONeuHTYhJpP89FRON8jv_l8YbKvsbWJrqF1t8Rv5HjjuCPGXyLdnPxhOjcLqaj9Co4PFYbn6BSlb86b4APp9Gcf7H0_eH7AwVYDpdJgtGTfS5Ym0Umod20gDIJ22hpfIBJdB-O-4zZ3MrctTJzJkC7XcOWdzk0CylXG47zWymSDYB2RzWoynX3vbD2tsqX2RRY5xiH26OipESckeGC7HIiQJFBFgM47XPGE7MOBfbqH1dfu3_7ddukNuhaiajrrX4C7ZKKt75Mandmrx6j4ZjYtjmpYUVsbm2CVFO5rlFdXzuppRCIJp6E6kttbNktaethUtGipaD8iXK1n_QzKo6qrcJhScuzHOlgYi5SSyRkMQ5XXuuYXcTFq-Q4a9HpUNxOo432OuIMFC1StUPeRYClWvUPU75PXFJWcdq8hlwu8QHBeCSAjeHqgXMxXsi4q9EEKazKQxFquFNpCZesh1RaThQeEmzxFaCik_KuwpmunzplHF8Wc1yqTIE7D1IPQqCPkansDq8IsG7AOyhK1J7q5Jgk2y66d7eKpgExv1F5uPLj_9jNw8OBkfqaNicviYbOEeYNdfHO-SwXJxXj4h1-3P5fdm8TS8fpR8u2os_wFThGgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3qiFAhYCISFZm8RJbB8Q2lIWVqWrQkH0ZvxIVpVWSdlsQfvX-HXMJE7RHuitB67xxHKcz_PITL4h5LkyXFnpLHNRVrI0N4KB1xoxVaaWl15wbnzbbEJMp_L4WB1ukN_9vzBYVtnrxFZR-9rhN_IhGO4Y8ZeqYRnKIg73xm9OfzDsIIWZ1r6dRgeR_WL1C8K35vVkD971iyQZv_vy9gMLHQaYyaJ8ybhVXqbKKWVM4mID4PTGWV4gK1wOoYDnTnolnZeZFzkyhzruvXfSphB45RzmvUI2ZZ7LaEA2d8cHn771dgDW29L8IqMc4-AHdTlV8JjSISgxz2IkDBQx4DRJ1qxi2zzgXyaitXvjW__zjt0mN4O3TUfd8bhDNorqLrn2vu1mvLpHRgeTI5oVFFbG5lg9RTv65RU187qaUXCOaahapK42zZLWJW0zXTRkuu6Tr5ey_gdkUNVVsUUoGH1rvSsseNBp7KwB56o0suQOYjbl-DaJ-neqXSBcx74fcw2BF8JAIwwg9tIIA40w2Cavzm857dhGLhLeRaCcCyJReHuhXsx00Ds6KYUQyuY2SzCJLYyFiLWEGFjEBh4UJnmGMNNIBVIhRGbmrGn05OizHuVKyBRsAAi9DEJlDU_gTPh1A_YB2cPWJHfWJEFXufXhHqo66MpG_8Xpw4uHn5LrAGD9cTLdf0Ru4BZgMWCS7JDBcnFWPCZX3c_lSbN4Ek4iJd8vG8p_AMQGcLA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIS+5e+sea-level+history+along+the+Pacific+coast+of+North+America&rft.jtitle=Earth+system+science+data&rft.au=Muhs%2C+Daniel+R&rft.date=2022-03-22&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.eissn=1866-3516&rft.volume=14&rft.issue=3&rft.spage=1271&rft.epage=1330&rft_id=info:doi/10.5194%2Fessd-14-1271-2022&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |