Field evidence of pore pressure diffusion in clayey soils prone to landsliding

The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Earth Surface Jg. 115; H. F3
Hauptverfasser: Berti, Matteo, Simoni, Alessandro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington, DC Blackwell Publishing Ltd 01.09.2010
American Geophysical Union
Schlagworte:
ISSN:0148-0227, 2169-9003, 2156-2202, 2169-9011
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rainfall. Although we did not measure pore pressure distributions that triggered slope failure, we obtained three years of field data that provided reliable and largely reproducible documentation of transient pore pressure responses. At depths of tens of centimeters to a few meters below the ground surface, moisture and pressure sensors recorded relatively fast, transient responses to precipitation. The speeds of pore pressure pulses advancing downward in the saturated zone were much larger than those of advective fronts driven by gravity, and the amplitudes of the pulses attenuated with depth. Statistical assessment of 129 pressure head responses demonstrates that this behavior is consistent with predictions of a linear, one‐dimensional pore pressure diffusion model. However, the model best simulates measurements if diffusivity is treated as a calibration parameter and if initial moisture conditions match model assumptions. For regional assessment of slope stability, the predictive accuracy of the linear‐diffusion model is limited by inherent uncertainties in defining the initial conditions and in assigning the values of hydraulic parameters.
AbstractList The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rainfall. Although we did not measure pore pressure distributions that triggered slope failure, we obtained three years of field data that provided reliable and largely reproducible documentation of transient pore pressure responses. At depths of tens of centimeters to a few meters below the ground surface, moisture and pressure sensors recorded relatively fast, transient responses to precipitation. The speeds of pore pressure pulses advancing downward in the saturated zone were much larger than those of advective fronts driven by gravity, and the amplitudes of the pulses attenuated with depth. Statistical assessment of 129 pressure head responses demonstrates that this behavior is consistent with prediction
The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rainfall. Although we did not measure pore pressure distributions that triggered slope failure, we obtained three years of field data that provided reliable and largely reproducible documentation of transient pore pressure responses. At depths of tens of centimeters to a few meters below the ground surface, moisture and pressure sensors recorded relatively fast, transient responses to precipitation. The speeds of pore pressure pulses advancing downward in the saturated zone were much larger than those of advective fronts driven by gravity, and the amplitudes of the pulses attenuated with depth. Statistical assessment of 129 pressure head responses demonstrates that this behavior is consistent with predictions of a linear, one‐dimensional pore pressure diffusion model. However, the model best simulates measurements if diffusivity is treated as a calibration parameter and if initial moisture conditions match model assumptions. For regional assessment of slope stability, the predictive accuracy of the linear‐diffusion model is limited by inherent uncertainties in defining the initial conditions and in assigning the values of hydraulic parameters.
Author Berti, Matteo
Simoni, Alessandro
Author_xml – sequence: 1
  givenname: Matteo
  surname: Berti
  fullname: Berti, Matteo
  email: matteo.berti@unibo.it
  organization: Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Bologna, Italy
– sequence: 2
  givenname: Alessandro
  surname: Simoni
  fullname: Simoni, Alessandro
  organization: Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Bologna, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23394995$$DView record in Pascal Francis
BookMark eNp9kF1rFDEUhoO04Lr2zh-QG_HGqfmcSS6luKtt2UJb6GXIZE4kms6sObPV_fembCkiaG5OCM9z8vK-IkfjNAIhbzg75UzYD4Ixe75ijKtWviALwXXbCMHEEVnUN9MwIbqX5ATxG6tH6VYxviCbVYI8UHhIA4wB6BTpdipAtwUQd_UypBh3mKaRppGG7PewpziljBWpAeg80ezHAXMa0vj1NTmOPiOcPM0luV19uj373Fxerb-cfbxsvGbKNqbzHVfR9Db6CNoMJgTOuegtNxpY34bYBuN1Dz1ToHqQttPDIPsYpPFSLsm7w9qa4ccOcHb3CQPkmgSmHTrLOiu5qE0sydsn0mPwORY_hoRuW9K9L3snpLTKWl259wculAmxQHxGOHOP_bo_-624-AsPafZzrWkuPuV_Sfwg_UwZ9v_9wJ2vr1etsdVpDk7CGX49O758d20nO-3uNmt3sblR7d1auwv5G0BwnIA
CitedBy_id crossref_primary_10_1002_wat2_1126
crossref_primary_10_1029_2020JF005758
crossref_primary_10_1016_j_earscirev_2019_102981
crossref_primary_10_1007_s10346_017_0892_x
crossref_primary_10_1109_JSTARS_2025_3581934
crossref_primary_10_1016_j_geomorph_2015_02_013
crossref_primary_10_1029_2011TC002924
crossref_primary_10_1109_JSTARS_2021_3069010
crossref_primary_10_1002_hyp_7981
crossref_primary_10_1016_j_epsl_2013_06_047
crossref_primary_10_1002_2016GL068378
crossref_primary_10_1002_hyp_13212
crossref_primary_10_1007_s12040_024_02437_6
crossref_primary_10_1007_s10346_023_02039_1
crossref_primary_10_1016_j_geomorph_2018_02_020
crossref_primary_10_1007_s10346_020_01364_z
crossref_primary_10_1051_e3sconf_202341502024
crossref_primary_10_1007_s12665_023_10951_x
crossref_primary_10_1007_s10064_018_1295_5
crossref_primary_10_1007_s10064_025_04374_0
crossref_primary_10_1016_j_jhydrol_2016_10_015
crossref_primary_10_1029_2021JF006415
crossref_primary_10_1016_j_geomorph_2012_10_022
crossref_primary_10_3390_rs11202347
crossref_primary_10_5194_nhess_17_971_2017
crossref_primary_10_1016_j_proeps_2016_10_014
crossref_primary_10_1109_TGRS_2017_2648885
crossref_primary_10_5194_essd_17_1055_2025
crossref_primary_10_5194_nhess_24_3357_2024
crossref_primary_10_1038_s41598_025_11399_8
crossref_primary_10_1016_j_jhydrol_2016_11_019
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1007_s10346_018_1102_1
crossref_primary_10_1016_j_enggeo_2019_105459
crossref_primary_10_1016_j_enggeo_2023_107078
crossref_primary_10_1016_j_catena_2023_107243
crossref_primary_10_1016_j_enggeo_2023_107250
crossref_primary_10_1061__ASCE_NH_1527_6996_0000478
crossref_primary_10_1007_s10346_023_02158_9
crossref_primary_10_1016_j_gsf_2023_101773
crossref_primary_10_1007_s10346_010_0207_y
crossref_primary_10_1016_j_enggeo_2021_106486
Cites_doi 10.1029/2000WR900090
10.1029/WR017i005p01419
10.1002/esp.1491
10.1130/REG10-p79
10.1016/0022-1694(84)90248-8
10.1139/t84-011
10.1061/(ASCE)1084-0699(2006)11:6(597)
10.1029/TR021i002p00574
10.1016/0022-1694(77)90097-X
10.1029/2005WR004369
10.1029/1998WR900047
10.1029/WR021i006p00821
10.1016/0022-1694(70)90255-6
10.1086/629714
10.1063/1.1745010
10.1007/s00254-006-0229-x
10.1016/j.enggeo.2003.12.004
10.1002/hyp.1365
10.1029/93WR02979
10.1029/93WR02930
10.1016/0013-7952(91)90004-5
10.1029/WR012i003p00423
10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2
10.1111/j.1745-6584.1989.tb00453.x
10.1139/t04-101
10.2136/vzj2006.0009
10.1029/WR018i005p01311
10.1097/00010694-198510000-00008
ContentType Journal Article
Copyright Copyright 2010 by the American Geophysical Union.
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2010 by the American Geophysical Union.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
FR3
H8D
KR7
L7M
DOI 10.1029/2009JF001463
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 23394995
10_1029_2009JF001463
JGRF689
ark_67375_WNG_KNS46WG5_K
Genre article
GroupedDBID 12K
1OC
7XC
88I
8FE
8FH
8G5
8R4
8R5
AAHQN
AAMNL
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AGYGG
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
24P
AAYXX
CITATION
IQODW
05W
0R~
33P
52M
702
8FD
8FG
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
CCPQU
DPXWK
EBS
FEDTE
FR3
H8D
HGLYW
HVGLF
HZ~
KR7
L6V
L7M
LEEKS
LK5
M7R
M7S
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
R.K
SUPJJ
WBKPD
ID FETCH-LOGICAL-a5049-87a714f8b9fafe58d8cc1112b9185e0b6cf6c8a5beb04e4be3975dd3bfc38a33
IEDL.DBID DRFUL
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281632400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-0227
2169-9003
IngestDate Thu Sep 04 16:15:02 EDT 2025
Mon Jul 21 09:13:23 EDT 2025
Tue Nov 18 20:38:51 EST 2025
Sat Nov 29 03:57:05 EST 2025
Wed Jan 22 16:23:06 EST 2025
Tue Sep 09 05:32:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F3
Keywords water pressure
slopes
clay
rupture
amplitude
pore pressure
Ground surface
pore water
Diffusion
soils
calibration
clastic rocks
Gravity
models
Transient response
rainfall
atmospheric precipitation
documentation
Pressure distribution
monitoring
sedimentary rocks
depth
diffusivity
prediction
transient phenomena
saturated zone
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5049-87a714f8b9fafe58d8cc1112b9185e0b6cf6c8a5beb04e4be3975dd3bfc38a33
Notes Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.
ArticleID:2009JF001463
istex:8C96D79EC5A5BE1AD5647CD7A62884619BBA41CD
ark:/67375/WNG-KNS46WG5-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2009JF001463
PQID 907931246
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_907931246
pascalfrancis_primary_23394995
crossref_primary_10_1029_2009JF001463
crossref_citationtrail_10_1029_2009JF001463
wiley_primary_10_1029_2009JF001463_JGRF689
istex_primary_ark_67375_WNG_KNS46WG5_K
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research: Earth Surface
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2010
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Beven, K. (1981), Kinematic subsurface stormflow, Water Resour. Res., 17(5), 1419-1424, doi:10.1029/WR017i005p01419.
Neuzil, C. E. (1994), How permeable are clays and shales? Water Resour. Res., 30(2), 145-150, doi:10.1029/93WR02930.
Bouwer, H., and R. C. Rice (1976), A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res., 12(3), 423-428.
Iverson, R. M., and J. J. Major (1987), Rainfall, gound-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations, Geol. Soc. Am. Bull., 99, 579-594.
Crank, J. (1956), The Mathematics of Diffusion, 166 pp., Oxford Univ. Press, London.
Freeze, R. A., and J. A. Cherry (1979), Groundwater, 604 pp., Prentice Hall, Englewood Cliffs, N. J.
Haneberg, W. C. (1991), Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio, Eng. Geol., 31, 159-184.
Montgomery, D. R., and W. E. Dietrich (1994), A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30(4), 1153-1171, doi:10.1029/93WR02979.
Stephens, D. B. (1995), Vadose Zone Hydrology, vol. 11, 386 pp., CRC Press, Danvers, Mass.
Rosso, R., M. C. Rulli, and G. Vannucchi (2006), A physically based model for the hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, doi:10.1029/2005WR004369.
Richards, L. A. (1931) Capillary conduction of liquids in porous mediums, Physics, 1, 318-333.
Harr, R. D. (1977), Water flux in soil and subsoil on a steep forested slope, J. Hydrol., 33, 37-58
Hurley, D. G., and G. Pantelis (1985), Unsaturated and saturated flow through a thin porous layer on a hillslope, Water Resour. Res., 21(6), 821-824, doi:10.1029/WR021i006p00821.
Gillham, R. W. (1984), The capillary fringe and its effect on water table response, J. Hydrol., 67, 307-324.
Bouwer, H. (1989), The Bouwer and Rice slug test: An update, Ground Water, 27(3), 304-309.
Matsushi, Y., and Y. Matsukura (2007), Rainfall threshold for shallow landsliding, Earth Surf. Processes Landforms, 32, 1308-1322.
Jacob, C. E. (1940), On the flow of water in an elastic artesian aquifer, Eos Trans. AGU, 21, 574-586.
Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910, doi:10.1029/2000WR900090.
McCuen, R. H., Z. Knight, and A. G. Cutter (2006), Evaluation of the Nash-Sutcliffe Efficiency Index, J. Hydrol. Eng., 11(6), 597-602.
Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrol., 10(3), 282-290.
Beven, K., and P. Germann (1982), Macropores and water flow in soils, Water Resour. Res., 18(5), 1311-1325, doi:10.1029/WR018i005p01311.
Rahardjo, H., T. T. Lee, E. C. Leong, and R. B. Rezaur (2005), Response of a residual soil slope to rainfall, Can. Geotech. J., 42, 340-351.
Simoni, A., M. Berti, M. Generali, C. Elmi, and M. Ghirotti (2004), Preliminary results from pore pressure monitoring on an unstable clay slope, Eng. Geol., 73, 117-128.
Dhakal, A. S., and R. C. Sidle (2004), Distributed simulations of landslides for different rainfall conditions, Hydrol. Processes, 18, 757-776.
Reynolds, W. D., and D. E. Elrick (1985), In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α-parameter using the Guelph permeameter, Soil Sci., 140(4), 292-302.
Kenney, T. C., and K. C. Lau (1984), Temporal changes of groundwater pressure in a natural slope of nonfissured clay, Can. Geotech. J., 20, 138-146.
Schwank, M., T. R. Green, C. Matzler, H. Benedickter, and H. Fluhler (2006), Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content, Vadose Zone J., 5, 1048-1064.
Reid, M. E. (1994), A pore pressure diffusion model for estimating landslide-inducing rainfall, J. Geol., 102, 709-717.
Tsai, T. L., and J. C. Yang (2006), Modeling of rainfall-triggered shallow landslide, Environ. Geol., 50(4), 525-534.
1987; 99
1984; 20
1982; 18
2006; 50
2006; 11
1991; 31
1984; 67
1995; 11
1995; 10
1998
2008
1970; 10
2005; 42
2006; 5
2002
1996; 247
1989; 27
2007; 32
1985; 21
1985; 140
1979
1956
1994; 102
2006; 42
2004; 73
1976; 12
2004; 18
2000; 36
1940; 21
1977; 33
1981; 17
1999; 335
1994; 30
1931; 1
Crank J. (e_1_2_10_10_1) 1956
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Cruden D. M. (e_1_2_10_11_1) 1996
Stephens D. B. (e_1_2_10_35_1) 1995
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Pini G. A. (e_1_2_10_27_1) 1999
McCuen R. H. (e_1_2_10_23_1) 2006; 11
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – reference: Hurley, D. G., and G. Pantelis (1985), Unsaturated and saturated flow through a thin porous layer on a hillslope, Water Resour. Res., 21(6), 821-824, doi:10.1029/WR021i006p00821.
– reference: Schwank, M., T. R. Green, C. Matzler, H. Benedickter, and H. Fluhler (2006), Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content, Vadose Zone J., 5, 1048-1064.
– reference: Beven, K. (1981), Kinematic subsurface stormflow, Water Resour. Res., 17(5), 1419-1424, doi:10.1029/WR017i005p01419.
– reference: Beven, K., and P. Germann (1982), Macropores and water flow in soils, Water Resour. Res., 18(5), 1311-1325, doi:10.1029/WR018i005p01311.
– reference: Reid, M. E. (1994), A pore pressure diffusion model for estimating landslide-inducing rainfall, J. Geol., 102, 709-717.
– reference: Bouwer, H., and R. C. Rice (1976), A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res., 12(3), 423-428.
– reference: Freeze, R. A., and J. A. Cherry (1979), Groundwater, 604 pp., Prentice Hall, Englewood Cliffs, N. J.
– reference: Jacob, C. E. (1940), On the flow of water in an elastic artesian aquifer, Eos Trans. AGU, 21, 574-586.
– reference: Gillham, R. W. (1984), The capillary fringe and its effect on water table response, J. Hydrol., 67, 307-324.
– reference: McCuen, R. H., Z. Knight, and A. G. Cutter (2006), Evaluation of the Nash-Sutcliffe Efficiency Index, J. Hydrol. Eng., 11(6), 597-602.
– reference: Haneberg, W. C. (1991), Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio, Eng. Geol., 31, 159-184.
– reference: Kenney, T. C., and K. C. Lau (1984), Temporal changes of groundwater pressure in a natural slope of nonfissured clay, Can. Geotech. J., 20, 138-146.
– reference: Neuzil, C. E. (1994), How permeable are clays and shales? Water Resour. Res., 30(2), 145-150, doi:10.1029/93WR02930.
– reference: Harr, R. D. (1977), Water flux in soil and subsoil on a steep forested slope, J. Hydrol., 33, 37-58
– reference: Reynolds, W. D., and D. E. Elrick (1985), In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α-parameter using the Guelph permeameter, Soil Sci., 140(4), 292-302.
– reference: Montgomery, D. R., and W. E. Dietrich (1994), A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30(4), 1153-1171, doi:10.1029/93WR02979.
– reference: Simoni, A., M. Berti, M. Generali, C. Elmi, and M. Ghirotti (2004), Preliminary results from pore pressure monitoring on an unstable clay slope, Eng. Geol., 73, 117-128.
– reference: Tsai, T. L., and J. C. Yang (2006), Modeling of rainfall-triggered shallow landslide, Environ. Geol., 50(4), 525-534.
– reference: Rahardjo, H., T. T. Lee, E. C. Leong, and R. B. Rezaur (2005), Response of a residual soil slope to rainfall, Can. Geotech. J., 42, 340-351.
– reference: Bouwer, H. (1989), The Bouwer and Rice slug test: An update, Ground Water, 27(3), 304-309.
– reference: Stephens, D. B. (1995), Vadose Zone Hydrology, vol. 11, 386 pp., CRC Press, Danvers, Mass.
– reference: Rosso, R., M. C. Rulli, and G. Vannucchi (2006), A physically based model for the hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, doi:10.1029/2005WR004369.
– reference: Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrol., 10(3), 282-290.
– reference: Matsushi, Y., and Y. Matsukura (2007), Rainfall threshold for shallow landsliding, Earth Surf. Processes Landforms, 32, 1308-1322.
– reference: Iverson, R. M., and J. J. Major (1987), Rainfall, gound-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations, Geol. Soc. Am. Bull., 99, 579-594.
– reference: Richards, L. A. (1931) Capillary conduction of liquids in porous mediums, Physics, 1, 318-333.
– reference: Crank, J. (1956), The Mathematics of Diffusion, 166 pp., Oxford Univ. Press, London.
– reference: Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910, doi:10.1029/2000WR900090.
– reference: Dhakal, A. S., and R. C. Sidle (2004), Distributed simulations of landslides for different rainfall conditions, Hydrol. Processes, 18, 757-776.
– volume: 5
  start-page: 1048
  year: 2006
  end-page: 1064
  article-title: Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content
  publication-title: Vadose Zone J.
– volume: 10
  start-page: 79
  year: 1995
  end-page: 105
– year: 1956
– volume: 32
  start-page: 1308
  year: 2007
  end-page: 1322
  article-title: Rainfall threshold for shallow landsliding
  publication-title: Earth Surf. Processes Landforms
– volume: 21
  start-page: 574
  year: 1940
  end-page: 586
  article-title: On the flow of water in an elastic artesian aquifer
  publication-title: Eos Trans. AGU
– volume: 140
  start-page: 292
  issue: 4
  year: 1985
  end-page: 302
  article-title: In situ measurement of field‐saturated hydraulic conductivity, sorptivity, and the ‐parameter using the Guelph permeameter
  publication-title: Soil Sci.
– volume: 21
  start-page: 821
  issue: 6
  year: 1985
  end-page: 824
  article-title: Unsaturated and saturated flow through a thin porous layer on a hillslope
  publication-title: Water Resour. Res.
– volume: 20
  start-page: 138
  year: 1984
  end-page: 146
  article-title: Temporal changes of groundwater pressure in a natural slope of nonfissured clay
  publication-title: Can. Geotech. J.
– volume: 335
  year: 1999
– volume: 42
  year: 2006
  article-title: A physically based model for the hydrologic control on shallow landsliding
  publication-title: Water Resour. Res.
– year: 1979
– volume: 73
  start-page: 117
  year: 2004
  end-page: 128
  article-title: Preliminary results from pore pressure monitoring on an unstable clay slope
  publication-title: Eng. Geol.
– volume: 42
  start-page: 340
  year: 2005
  end-page: 351
  article-title: Response of a residual soil slope to rainfall
  publication-title: Can. Geotech. J.
– volume: 11
  year: 1995
– year: 1998
– volume: 11
  start-page: 597
  issue: 6
  year: 2006
  end-page: 602
  article-title: Evaluation of the Nash‐Sutcliffe Efficiency Index
  publication-title: J. Hydrol. Eng.
– volume: 18
  start-page: 1311
  issue: 5
  year: 1982
  end-page: 1325
  article-title: Macropores and water flow in soils
  publication-title: Water Resour. Res.
– volume: 102
  start-page: 709
  year: 1994
  end-page: 717
  article-title: A pore pressure diffusion model for estimating landslide‐inducing rainfall
  publication-title: J. Geol.
– volume: 33
  start-page: 37
  year: 1977
  end-page: 58
  article-title: Water flux in soil and subsoil on a steep forested slope
  publication-title: J. Hydrol.
– volume: 1
  start-page: 318
  year: 1931
  end-page: 333
  article-title: Capillary conduction of liquids in porous mediums
  publication-title: Physics
– volume: 17
  start-page: 1419
  issue: 5
  year: 1981
  end-page: 1424
  article-title: Kinematic subsurface stormflow
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 1897
  issue: 7
  year: 2000
  end-page: 1910
  article-title: Landslide triggering by rain infiltration
  publication-title: Water Resour. Res.
– year: 2002
– volume: 67
  start-page: 307
  year: 1984
  end-page: 324
  article-title: The capillary fringe and its effect on water table response
  publication-title: J. Hydrol.
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: J. Hydrol.
– year: 2008
– volume: 31
  start-page: 159
  year: 1991
  end-page: 184
  article-title: Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio
  publication-title: Eng. Geol.
– volume: 27
  start-page: 304
  issue: 3
  year: 1989
  end-page: 309
  article-title: The Bouwer and Rice slug test: An update
  publication-title: Ground Water
– volume: 30
  start-page: 145
  issue: 2
  year: 1994
  end-page: 150
  article-title: How permeable are clays and shales?
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 757
  year: 2004
  end-page: 776
  article-title: Distributed simulations of landslides for different rainfall conditions
  publication-title: Hydrol. Processes
– volume: 12
  start-page: 423
  issue: 3
  year: 1976
  end-page: 428
  article-title: A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 1153
  issue: 4
  year: 1994
  end-page: 1171
  article-title: A physically based model for the topographic control on shallow landsliding
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 525
  issue: 4
  year: 2006
  end-page: 534
  article-title: Modeling of rainfall‐triggered shallow landslide
  publication-title: Environ. Geol.
– volume: 99
  start-page: 579
  year: 1987
  end-page: 594
  article-title: Rainfall, gound‐water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations
  publication-title: Geol. Soc. Am. Bull.
– volume: 247
  start-page: 36
  year: 1996
  end-page: 75
– ident: e_1_2_10_18_1
  doi: 10.1029/2000WR900090
– ident: e_1_2_10_5_1
– ident: e_1_2_10_2_1
– ident: e_1_2_10_6_1
  doi: 10.1029/WR017i005p01419
– ident: e_1_2_10_22_1
  doi: 10.1002/esp.1491
– ident: e_1_2_10_3_1
  doi: 10.1130/REG10-p79
– ident: e_1_2_10_14_1
  doi: 10.1016/0022-1694(84)90248-8
– ident: e_1_2_10_21_1
  doi: 10.1139/t84-011
– volume: 11
  start-page: 597
  issue: 6
  year: 2006
  ident: e_1_2_10_23_1
  article-title: Evaluation of the Nash‐Sutcliffe Efficiency Index
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
– ident: e_1_2_10_20_1
  doi: 10.1029/TR021i002p00574
– ident: e_1_2_10_16_1
  doi: 10.1016/0022-1694(77)90097-X
– ident: e_1_2_10_32_1
  doi: 10.1029/2005WR004369
– ident: e_1_2_10_13_1
  doi: 10.1029/1998WR900047
– ident: e_1_2_10_17_1
  doi: 10.1029/WR021i006p00821
– ident: e_1_2_10_25_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_10_29_1
  doi: 10.1086/629714
– volume-title: The Mathematics of Diffusion
  year: 1956
  ident: e_1_2_10_10_1
– ident: e_1_2_10_31_1
  doi: 10.1063/1.1745010
– ident: e_1_2_10_36_1
  doi: 10.1007/s00254-006-0229-x
– year: 1999
  ident: e_1_2_10_27_1
– ident: e_1_2_10_34_1
  doi: 10.1016/j.enggeo.2003.12.004
– ident: e_1_2_10_12_1
  doi: 10.1002/hyp.1365
– start-page: 36
  volume-title: Landslides: Investigation and Mitigation
  year: 1996
  ident: e_1_2_10_11_1
– ident: e_1_2_10_24_1
  doi: 10.1029/93WR02979
– ident: e_1_2_10_26_1
  doi: 10.1029/93WR02930
– volume-title: Vadose Zone Hydrology
  year: 1995
  ident: e_1_2_10_35_1
– ident: e_1_2_10_15_1
  doi: 10.1016/0013-7952(91)90004-5
– ident: e_1_2_10_4_1
– ident: e_1_2_10_9_1
  doi: 10.1029/WR012i003p00423
– ident: e_1_2_10_19_1
  doi: 10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2
– ident: e_1_2_10_8_1
  doi: 10.1111/j.1745-6584.1989.tb00453.x
– ident: e_1_2_10_28_1
  doi: 10.1139/t04-101
– ident: e_1_2_10_33_1
  doi: 10.2136/vzj2006.0009
– ident: e_1_2_10_7_1
  doi: 10.1029/WR018i005p01311
– ident: e_1_2_10_30_1
  doi: 10.1097/00010694-198510000-00008
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.2340524
Snippet The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Assessments
clayey soil
Earth sciences
Earth, ocean, space
Exact sciences and technology
Failure
hydrologic modeling
Hydrology
Meters
monitoring
pore pressure
Porosity
Pressure sensors
shallow slope stability
Soils
Water pressure
Title Field evidence of pore pressure diffusion in clayey soils prone to landsliding
URI https://api.istex.fr/ark:/67375/WNG-KNS46WG5-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JF001463
https://www.proquest.com/docview/907931246
Volume 115
WOSCitedRecordID wos000281632400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 0148-0227
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 0148-0227
  databaseCode: PCBAR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 0148-0227
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 0148-0227
  databaseCode: PATMY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121215
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121215
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: M2P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: M2P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 0148-0227
  databaseCode: M2P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030586
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030584
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030583
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030583
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030584
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030586
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChJC4mOAFj4qP8AeQBFdYifO4zRIYR-h2gadeIlsx5YqQoKaFtH_njsnLekDSIgXy6eeGys-2z9fzr8j5AXjhSiSQvpypITPksL6KohCP2LSYrLtmDsC089ncZaJ6-tk0jnc8C5Myw-xcbjhzHDrNU5wqZqObAA5MtGtf5IixI_CHTLAe1Vw-Bq8vUg_nW28LI4t5XfQxyFz1zhbASxdbAlBXwj7AusLvC9Ea4HBTG2THzLhIy9fF2UPnX3T7-rW_jfAofyJ8ZiygSGxbS6NLbDbh8xuz0vv_e_buk_udmiXHrXm-YDcMNUe2T9q0P9ef1vRA-rqrXul2SO32tSYK6iNTVfzzgHX13MnQYPjcgYgu_vtzkdtZNWxbkOjSftHD0mWYmQeNV3OVFpbCgcNQ13Y7xIqmBhmiZ5COquoLuXKrGhTz8oGVOrK0EVN3S3ocoab-yNylb67On7vd6kjfMnhzANrvIwPmRUqsdIaLgqhNazqgUoAn5iRirSNtJBcGTVihikDsIwXRaisDoUMw8dkt4KH7RPKrDaxETYcacZGRaDgzBZabkygleC88Mjr9XjmuqNVx-weZe4-7wdJ3n_1Hnm50f7e0on8Qe_AmcZGSc6_YghezPNpNs5Ps0sWTcc8P_XIcMt2Ng2CMETeIe4RujamHFYO_BwkK1MvmzxBbkSAd5FHXjnT-WuP8pPxRRqJ5Mm_KD8lt9toC4zJe0Z2F_OleU5u6h-LWTMfdpN1SHbOgwmW8SWUE_4FyumH7BfmkjS7
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegBYGQ-BhMCx_DD7AHUEQX24nzOA3SsXZhGoXtLbIdW6pWEtS0iP73-By3pA8gIV4in3JOrPhs_3w5_w6hV5SVvExLEYqB5CFNSxPKKCZhTIWBZNsJcwSmX8dJnvOrq_Tc5zmFszAtP8TG4QYjw83XMMDBIe3ZBoAkE_z6pxlg_JjcRH17TXgP9d9fZF_GGzeLo0v5HfVxSN05zlawps63hKgrkK5AuwLrCvFaoHaottkPKQ-BmM-H2dvGvus2dWsB7ENf_oSATNHYPjFtMo0ttNvFzG7Ryx789-d6iO57vIuPWgN9hG7oagftHTXgga-_rfABduXWwdLsoNttcsyVLQ21LwVnFtnXcyfZCsezqYXZ_t69T0qLyvNu20rn7YMeozyD2DysfdZUXBtstxoau8DfpS1Aapgl-ArxtMJqJlZ6hZt6OmusSl1pvKixOwc9m8Ly_gRNsg-T45PQJ48IBbO7HjvLi-SQGi5TI4xmvORK2Xk9kqlFKHogY2VixQWTWg6oplJbYMbKkkijCBeE7KJeZV-2hzA1SieaGzJQlA7KSNpdGzFM60hJzlgZoLfrDi2UJ1aH_B6zwv3gj9Ki--kD9Hqj_b0lFPmD3oGzjY2SmF9DEF7Cist8WIzyzzS-HLJiFKD9LePZVIgIAeYhFiC8tqbCzh3wQ0hUul42RQrsiBbgxQF642znry0qTocXWczTp_-i_BLdOZmcjYvxx3z0DN1tYy8gQu856i3mS_0C3VI_FtNmvu9H7i9rgjS0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgA4SQ-BighY_hB9gDKCKL7dR5nAYpW0eoYKJ7i2zHlipKMjUtov89d05a0geQEG8-5ZxY8dn--Xz-HSEvuShlmZYqVJGWIU9LF-o4YWHClcNk2wPhCUy_ng_yXF5epuMuzynehWn5ITYONxwZfr7GAW6vStexDSBJJvr1zzLE-Am7TnY5QHGM6Zqc5hsniydL-R3zccT9Lc5WAEOXW0LcF1hf4H1B9IVkLXAYqG3uQy5DpOXrguyhqW_7Dd1a_naxJ39iOKZqoEdcm0pjC-v2EbNf8rJ7__2z7pO7Hdqlx615PiDXbLVH9o8b9L_X31f0kPpy615p9sjNNjXmCkpD25WCj4Dr67mXoMLJbAogu3t255OxqupYt6HSuH3RQ5JnGJlHbZczldaOwkbDUh_2u4QCJoZZoqeQTitqZmplV7Spp7MGVOrK0kVN_S3o2RQX90fkInt_cfIh7FJHhErAngfmeDU44k7q1ClnhSylMTCrxzoFfGIjnRiXGKmEtjrilmsLsEyUJdPOMKkYe0x2KvjYPqHcGTuw0rHIcB6VsYY9G3PC2thoKUQZkDfrDi1MR6uO2T1mhT_ej9Oi_-sD8mqjfdXSifxB79DbxkZJzb9hCN5AFJN8WIzyLzyZDEUxCsjBlvFsKsSMIe-QCAhdW1MBMwceB6nK1sumSJEbEeBdEpDX3nb-2qLibPg5S2T65F-UX5Bb43dZcX6aj56S223gBYbnPSM7i_nSPic3zI_FtJkf-GH7C9YCMwo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+evidence+of+pore+pressure+diffusion+in+clayey+soils+prone+to+landsliding&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Berti%2C+Matteo&rft.au=Simoni%2C+Alessandro&rft.date=2010-09-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=115&rft.issue=F3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2009JF001463&rft.externalDBID=10.1029%252F2009JF001463&rft.externalDocID=JGRF689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon