Field evidence of pore pressure diffusion in clayey soils prone to landsliding
The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rai...
Gespeichert in:
| Veröffentlicht in: | Journal of Geophysical Research: Earth Surface Jg. 115; H. F3 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington, DC
Blackwell Publishing Ltd
01.09.2010
American Geophysical Union |
| Schlagworte: | |
| ISSN: | 0148-0227, 2169-9003, 2156-2202, 2169-9011 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rainfall. Although we did not measure pore pressure distributions that triggered slope failure, we obtained three years of field data that provided reliable and largely reproducible documentation of transient pore pressure responses. At depths of tens of centimeters to a few meters below the ground surface, moisture and pressure sensors recorded relatively fast, transient responses to precipitation. The speeds of pore pressure pulses advancing downward in the saturated zone were much larger than those of advective fronts driven by gravity, and the amplitudes of the pulses attenuated with depth. Statistical assessment of 129 pressure head responses demonstrates that this behavior is consistent with predictions of a linear, one‐dimensional pore pressure diffusion model. However, the model best simulates measurements if diffusivity is treated as a calibration parameter and if initial moisture conditions match model assumptions. For regional assessment of slope stability, the predictive accuracy of the linear‐diffusion model is limited by inherent uncertainties in defining the initial conditions and in assigning the values of hydraulic parameters. |
|---|---|
| AbstractList | The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rainfall. Although we did not measure pore pressure distributions that triggered slope failure, we obtained three years of field data that provided reliable and largely reproducible documentation of transient pore pressure responses. At depths of tens of centimeters to a few meters below the ground surface, moisture and pressure sensors recorded relatively fast, transient responses to precipitation. The speeds of pore pressure pulses advancing downward in the saturated zone were much larger than those of advective fronts driven by gravity, and the amplitudes of the pulses attenuated with depth. Statistical assessment of 129 pressure head responses demonstrates that this behavior is consistent with prediction The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected by an automated monitoring system to assess the character of pore water pressure responses in a natural clay slope subject to intermittent rainfall. Although we did not measure pore pressure distributions that triggered slope failure, we obtained three years of field data that provided reliable and largely reproducible documentation of transient pore pressure responses. At depths of tens of centimeters to a few meters below the ground surface, moisture and pressure sensors recorded relatively fast, transient responses to precipitation. The speeds of pore pressure pulses advancing downward in the saturated zone were much larger than those of advective fronts driven by gravity, and the amplitudes of the pulses attenuated with depth. Statistical assessment of 129 pressure head responses demonstrates that this behavior is consistent with predictions of a linear, one‐dimensional pore pressure diffusion model. However, the model best simulates measurements if diffusivity is treated as a calibration parameter and if initial moisture conditions match model assumptions. For regional assessment of slope stability, the predictive accuracy of the linear‐diffusion model is limited by inherent uncertainties in defining the initial conditions and in assigning the values of hydraulic parameters. |
| Author | Berti, Matteo Simoni, Alessandro |
| Author_xml | – sequence: 1 givenname: Matteo surname: Berti fullname: Berti, Matteo email: matteo.berti@unibo.it organization: Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Bologna, Italy – sequence: 2 givenname: Alessandro surname: Simoni fullname: Simoni, Alessandro organization: Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Bologna, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23394995$$DView record in Pascal Francis |
| BookMark | eNp9kF1rFDEUhoO04Lr2zh-QG_HGqfmcSS6luKtt2UJb6GXIZE4kms6sObPV_fembCkiaG5OCM9z8vK-IkfjNAIhbzg75UzYD4Ixe75ijKtWviALwXXbCMHEEVnUN9MwIbqX5ATxG6tH6VYxviCbVYI8UHhIA4wB6BTpdipAtwUQd_UypBh3mKaRppGG7PewpziljBWpAeg80ezHAXMa0vj1NTmOPiOcPM0luV19uj373Fxerb-cfbxsvGbKNqbzHVfR9Db6CNoMJgTOuegtNxpY34bYBuN1Dz1ToHqQttPDIPsYpPFSLsm7w9qa4ccOcHb3CQPkmgSmHTrLOiu5qE0sydsn0mPwORY_hoRuW9K9L3snpLTKWl259wculAmxQHxGOHOP_bo_-624-AsPafZzrWkuPuV_Sfwg_UwZ9v_9wJ2vr1etsdVpDk7CGX49O758d20nO-3uNmt3sblR7d1auwv5G0BwnIA |
| CitedBy_id | crossref_primary_10_1002_wat2_1126 crossref_primary_10_1029_2020JF005758 crossref_primary_10_1016_j_earscirev_2019_102981 crossref_primary_10_1007_s10346_017_0892_x crossref_primary_10_1109_JSTARS_2025_3581934 crossref_primary_10_1016_j_geomorph_2015_02_013 crossref_primary_10_1029_2011TC002924 crossref_primary_10_1109_JSTARS_2021_3069010 crossref_primary_10_1002_hyp_7981 crossref_primary_10_1016_j_epsl_2013_06_047 crossref_primary_10_1002_2016GL068378 crossref_primary_10_1002_hyp_13212 crossref_primary_10_1007_s12040_024_02437_6 crossref_primary_10_1007_s10346_023_02039_1 crossref_primary_10_1016_j_geomorph_2018_02_020 crossref_primary_10_1007_s10346_020_01364_z crossref_primary_10_1051_e3sconf_202341502024 crossref_primary_10_1007_s12665_023_10951_x crossref_primary_10_1007_s10064_018_1295_5 crossref_primary_10_1007_s10064_025_04374_0 crossref_primary_10_1016_j_jhydrol_2016_10_015 crossref_primary_10_1029_2021JF006415 crossref_primary_10_1016_j_geomorph_2012_10_022 crossref_primary_10_3390_rs11202347 crossref_primary_10_5194_nhess_17_971_2017 crossref_primary_10_1016_j_proeps_2016_10_014 crossref_primary_10_1109_TGRS_2017_2648885 crossref_primary_10_5194_essd_17_1055_2025 crossref_primary_10_5194_nhess_24_3357_2024 crossref_primary_10_1038_s41598_025_11399_8 crossref_primary_10_1016_j_jhydrol_2016_11_019 crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_1007_s10346_018_1102_1 crossref_primary_10_1016_j_enggeo_2019_105459 crossref_primary_10_1016_j_enggeo_2023_107078 crossref_primary_10_1016_j_catena_2023_107243 crossref_primary_10_1016_j_enggeo_2023_107250 crossref_primary_10_1061__ASCE_NH_1527_6996_0000478 crossref_primary_10_1007_s10346_023_02158_9 crossref_primary_10_1016_j_gsf_2023_101773 crossref_primary_10_1007_s10346_010_0207_y crossref_primary_10_1016_j_enggeo_2021_106486 |
| Cites_doi | 10.1029/2000WR900090 10.1029/WR017i005p01419 10.1002/esp.1491 10.1130/REG10-p79 10.1016/0022-1694(84)90248-8 10.1139/t84-011 10.1061/(ASCE)1084-0699(2006)11:6(597) 10.1029/TR021i002p00574 10.1016/0022-1694(77)90097-X 10.1029/2005WR004369 10.1029/1998WR900047 10.1029/WR021i006p00821 10.1016/0022-1694(70)90255-6 10.1086/629714 10.1063/1.1745010 10.1007/s00254-006-0229-x 10.1016/j.enggeo.2003.12.004 10.1002/hyp.1365 10.1029/93WR02979 10.1029/93WR02930 10.1016/0013-7952(91)90004-5 10.1029/WR012i003p00423 10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2 10.1111/j.1745-6584.1989.tb00453.x 10.1139/t04-101 10.2136/vzj2006.0009 10.1029/WR018i005p01311 10.1097/00010694-198510000-00008 |
| ContentType | Journal Article |
| Copyright | Copyright 2010 by the American Geophysical Union. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright 2010 by the American Geophysical Union. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 8FD FR3 H8D KR7 L7M |
| DOI | 10.1029/2009JF001463 |
| DatabaseName | Istex CrossRef Pascal-Francis Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
| EISSN | 2156-2202 2169-9011 |
| EndPage | n/a |
| ExternalDocumentID | 23394995 10_1029_2009JF001463 JGRF689 ark_67375_WNG_KNS46WG5_K |
| Genre | article |
| GroupedDBID | 12K 1OC 7XC 88I 8FE 8FH 8G5 8R4 8R5 AAHQN AAMNL AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AGYGG AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A 24P AAYXX CITATION IQODW 05W 0R~ 33P 52M 702 8FD 8FG AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ CCPQU DPXWK EBS FEDTE FR3 H8D HGLYW HVGLF HZ~ KR7 L6V L7M LEEKS LK5 M7R M7S MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY R.K SUPJJ WBKPD |
| ID | FETCH-LOGICAL-a5049-87a714f8b9fafe58d8cc1112b9185e0b6cf6c8a5beb04e4be3975dd3bfc38a33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281632400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-0227 2169-9003 |
| IngestDate | Thu Sep 04 16:15:02 EDT 2025 Mon Jul 21 09:13:23 EDT 2025 Tue Nov 18 20:38:51 EST 2025 Sat Nov 29 03:57:05 EST 2025 Wed Jan 22 16:23:06 EST 2025 Tue Sep 09 05:32:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | F3 |
| Keywords | water pressure slopes clay rupture amplitude pore pressure Ground surface pore water Diffusion soils calibration clastic rocks Gravity models Transient response rainfall atmospheric precipitation documentation Pressure distribution monitoring sedimentary rocks depth diffusivity prediction transient phenomena saturated zone |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5049-87a714f8b9fafe58d8cc1112b9185e0b6cf6c8a5beb04e4be3975dd3bfc38a33 |
| Notes | Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4. ArticleID:2009JF001463 istex:8C96D79EC5A5BE1AD5647CD7A62884619BBA41CD ark:/67375/WNG-KNS46WG5-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2009JF001463 |
| PQID | 907931246 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_907931246 pascalfrancis_primary_23394995 crossref_primary_10_1029_2009JF001463 crossref_citationtrail_10_1029_2009JF001463 wiley_primary_10_1029_2009JF001463_JGRF689 istex_primary_ark_67375_WNG_KNS46WG5_K |
| PublicationCentury | 2000 |
| PublicationDate | September 2010 |
| PublicationDateYYYYMMDD | 2010-09-01 |
| PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC |
| PublicationTitle | Journal of Geophysical Research: Earth Surface |
| PublicationTitleAlternate | J. Geophys. Res |
| PublicationYear | 2010 |
| Publisher | Blackwell Publishing Ltd American Geophysical Union |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
| References | Beven, K. (1981), Kinematic subsurface stormflow, Water Resour. Res., 17(5), 1419-1424, doi:10.1029/WR017i005p01419. Neuzil, C. E. (1994), How permeable are clays and shales? Water Resour. Res., 30(2), 145-150, doi:10.1029/93WR02930. Bouwer, H., and R. C. Rice (1976), A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res., 12(3), 423-428. Iverson, R. M., and J. J. Major (1987), Rainfall, gound-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations, Geol. Soc. Am. Bull., 99, 579-594. Crank, J. (1956), The Mathematics of Diffusion, 166 pp., Oxford Univ. Press, London. Freeze, R. A., and J. A. Cherry (1979), Groundwater, 604 pp., Prentice Hall, Englewood Cliffs, N. J. Haneberg, W. C. (1991), Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio, Eng. Geol., 31, 159-184. Montgomery, D. R., and W. E. Dietrich (1994), A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30(4), 1153-1171, doi:10.1029/93WR02979. Stephens, D. B. (1995), Vadose Zone Hydrology, vol. 11, 386 pp., CRC Press, Danvers, Mass. Rosso, R., M. C. Rulli, and G. Vannucchi (2006), A physically based model for the hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, doi:10.1029/2005WR004369. Richards, L. A. (1931) Capillary conduction of liquids in porous mediums, Physics, 1, 318-333. Harr, R. D. (1977), Water flux in soil and subsoil on a steep forested slope, J. Hydrol., 33, 37-58 Hurley, D. G., and G. Pantelis (1985), Unsaturated and saturated flow through a thin porous layer on a hillslope, Water Resour. Res., 21(6), 821-824, doi:10.1029/WR021i006p00821. Gillham, R. W. (1984), The capillary fringe and its effect on water table response, J. Hydrol., 67, 307-324. Bouwer, H. (1989), The Bouwer and Rice slug test: An update, Ground Water, 27(3), 304-309. Matsushi, Y., and Y. Matsukura (2007), Rainfall threshold for shallow landsliding, Earth Surf. Processes Landforms, 32, 1308-1322. Jacob, C. E. (1940), On the flow of water in an elastic artesian aquifer, Eos Trans. AGU, 21, 574-586. Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910, doi:10.1029/2000WR900090. McCuen, R. H., Z. Knight, and A. G. Cutter (2006), Evaluation of the Nash-Sutcliffe Efficiency Index, J. Hydrol. Eng., 11(6), 597-602. Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrol., 10(3), 282-290. Beven, K., and P. Germann (1982), Macropores and water flow in soils, Water Resour. Res., 18(5), 1311-1325, doi:10.1029/WR018i005p01311. Rahardjo, H., T. T. Lee, E. C. Leong, and R. B. Rezaur (2005), Response of a residual soil slope to rainfall, Can. Geotech. J., 42, 340-351. Simoni, A., M. Berti, M. Generali, C. Elmi, and M. Ghirotti (2004), Preliminary results from pore pressure monitoring on an unstable clay slope, Eng. Geol., 73, 117-128. Dhakal, A. S., and R. C. Sidle (2004), Distributed simulations of landslides for different rainfall conditions, Hydrol. Processes, 18, 757-776. Reynolds, W. D., and D. E. Elrick (1985), In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α-parameter using the Guelph permeameter, Soil Sci., 140(4), 292-302. Kenney, T. C., and K. C. Lau (1984), Temporal changes of groundwater pressure in a natural slope of nonfissured clay, Can. Geotech. J., 20, 138-146. Schwank, M., T. R. Green, C. Matzler, H. Benedickter, and H. Fluhler (2006), Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content, Vadose Zone J., 5, 1048-1064. Reid, M. E. (1994), A pore pressure diffusion model for estimating landslide-inducing rainfall, J. Geol., 102, 709-717. Tsai, T. L., and J. C. Yang (2006), Modeling of rainfall-triggered shallow landslide, Environ. Geol., 50(4), 525-534. 1987; 99 1984; 20 1982; 18 2006; 50 2006; 11 1991; 31 1984; 67 1995; 11 1995; 10 1998 2008 1970; 10 2005; 42 2006; 5 2002 1996; 247 1989; 27 2007; 32 1985; 21 1985; 140 1979 1956 1994; 102 2006; 42 2004; 73 1976; 12 2004; 18 2000; 36 1940; 21 1977; 33 1981; 17 1999; 335 1994; 30 1931; 1 Crank J. (e_1_2_10_10_1) 1956 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Cruden D. M. (e_1_2_10_11_1) 1996 Stephens D. B. (e_1_2_10_35_1) 1995 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_33_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Pini G. A. (e_1_2_10_27_1) 1999 McCuen R. H. (e_1_2_10_23_1) 2006; 11 e_1_2_10_29_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – reference: Hurley, D. G., and G. Pantelis (1985), Unsaturated and saturated flow through a thin porous layer on a hillslope, Water Resour. Res., 21(6), 821-824, doi:10.1029/WR021i006p00821. – reference: Schwank, M., T. R. Green, C. Matzler, H. Benedickter, and H. Fluhler (2006), Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content, Vadose Zone J., 5, 1048-1064. – reference: Beven, K. (1981), Kinematic subsurface stormflow, Water Resour. Res., 17(5), 1419-1424, doi:10.1029/WR017i005p01419. – reference: Beven, K., and P. Germann (1982), Macropores and water flow in soils, Water Resour. Res., 18(5), 1311-1325, doi:10.1029/WR018i005p01311. – reference: Reid, M. E. (1994), A pore pressure diffusion model for estimating landslide-inducing rainfall, J. Geol., 102, 709-717. – reference: Bouwer, H., and R. C. Rice (1976), A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res., 12(3), 423-428. – reference: Freeze, R. A., and J. A. Cherry (1979), Groundwater, 604 pp., Prentice Hall, Englewood Cliffs, N. J. – reference: Jacob, C. E. (1940), On the flow of water in an elastic artesian aquifer, Eos Trans. AGU, 21, 574-586. – reference: Gillham, R. W. (1984), The capillary fringe and its effect on water table response, J. Hydrol., 67, 307-324. – reference: McCuen, R. H., Z. Knight, and A. G. Cutter (2006), Evaluation of the Nash-Sutcliffe Efficiency Index, J. Hydrol. Eng., 11(6), 597-602. – reference: Haneberg, W. C. (1991), Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio, Eng. Geol., 31, 159-184. – reference: Kenney, T. C., and K. C. Lau (1984), Temporal changes of groundwater pressure in a natural slope of nonfissured clay, Can. Geotech. J., 20, 138-146. – reference: Neuzil, C. E. (1994), How permeable are clays and shales? Water Resour. Res., 30(2), 145-150, doi:10.1029/93WR02930. – reference: Harr, R. D. (1977), Water flux in soil and subsoil on a steep forested slope, J. Hydrol., 33, 37-58 – reference: Reynolds, W. D., and D. E. Elrick (1985), In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α-parameter using the Guelph permeameter, Soil Sci., 140(4), 292-302. – reference: Montgomery, D. R., and W. E. Dietrich (1994), A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30(4), 1153-1171, doi:10.1029/93WR02979. – reference: Simoni, A., M. Berti, M. Generali, C. Elmi, and M. Ghirotti (2004), Preliminary results from pore pressure monitoring on an unstable clay slope, Eng. Geol., 73, 117-128. – reference: Tsai, T. L., and J. C. Yang (2006), Modeling of rainfall-triggered shallow landslide, Environ. Geol., 50(4), 525-534. – reference: Rahardjo, H., T. T. Lee, E. C. Leong, and R. B. Rezaur (2005), Response of a residual soil slope to rainfall, Can. Geotech. J., 42, 340-351. – reference: Bouwer, H. (1989), The Bouwer and Rice slug test: An update, Ground Water, 27(3), 304-309. – reference: Stephens, D. B. (1995), Vadose Zone Hydrology, vol. 11, 386 pp., CRC Press, Danvers, Mass. – reference: Rosso, R., M. C. Rulli, and G. Vannucchi (2006), A physically based model for the hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, doi:10.1029/2005WR004369. – reference: Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrol., 10(3), 282-290. – reference: Matsushi, Y., and Y. Matsukura (2007), Rainfall threshold for shallow landsliding, Earth Surf. Processes Landforms, 32, 1308-1322. – reference: Iverson, R. M., and J. J. Major (1987), Rainfall, gound-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations, Geol. Soc. Am. Bull., 99, 579-594. – reference: Richards, L. A. (1931) Capillary conduction of liquids in porous mediums, Physics, 1, 318-333. – reference: Crank, J. (1956), The Mathematics of Diffusion, 166 pp., Oxford Univ. Press, London. – reference: Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36(7), 1897-1910, doi:10.1029/2000WR900090. – reference: Dhakal, A. S., and R. C. Sidle (2004), Distributed simulations of landslides for different rainfall conditions, Hydrol. Processes, 18, 757-776. – volume: 5 start-page: 1048 year: 2006 end-page: 1064 article-title: Laboratory characterization of a commercial capacitance sensor for estimating permittivity and inferring soil water content publication-title: Vadose Zone J. – volume: 10 start-page: 79 year: 1995 end-page: 105 – year: 1956 – volume: 32 start-page: 1308 year: 2007 end-page: 1322 article-title: Rainfall threshold for shallow landsliding publication-title: Earth Surf. Processes Landforms – volume: 21 start-page: 574 year: 1940 end-page: 586 article-title: On the flow of water in an elastic artesian aquifer publication-title: Eos Trans. AGU – volume: 140 start-page: 292 issue: 4 year: 1985 end-page: 302 article-title: In situ measurement of field‐saturated hydraulic conductivity, sorptivity, and the ‐parameter using the Guelph permeameter publication-title: Soil Sci. – volume: 21 start-page: 821 issue: 6 year: 1985 end-page: 824 article-title: Unsaturated and saturated flow through a thin porous layer on a hillslope publication-title: Water Resour. Res. – volume: 20 start-page: 138 year: 1984 end-page: 146 article-title: Temporal changes of groundwater pressure in a natural slope of nonfissured clay publication-title: Can. Geotech. J. – volume: 335 year: 1999 – volume: 42 year: 2006 article-title: A physically based model for the hydrologic control on shallow landsliding publication-title: Water Resour. Res. – year: 1979 – volume: 73 start-page: 117 year: 2004 end-page: 128 article-title: Preliminary results from pore pressure monitoring on an unstable clay slope publication-title: Eng. Geol. – volume: 42 start-page: 340 year: 2005 end-page: 351 article-title: Response of a residual soil slope to rainfall publication-title: Can. Geotech. J. – volume: 11 year: 1995 – year: 1998 – volume: 11 start-page: 597 issue: 6 year: 2006 end-page: 602 article-title: Evaluation of the Nash‐Sutcliffe Efficiency Index publication-title: J. Hydrol. Eng. – volume: 18 start-page: 1311 issue: 5 year: 1982 end-page: 1325 article-title: Macropores and water flow in soils publication-title: Water Resour. Res. – volume: 102 start-page: 709 year: 1994 end-page: 717 article-title: A pore pressure diffusion model for estimating landslide‐inducing rainfall publication-title: J. Geol. – volume: 33 start-page: 37 year: 1977 end-page: 58 article-title: Water flux in soil and subsoil on a steep forested slope publication-title: J. Hydrol. – volume: 1 start-page: 318 year: 1931 end-page: 333 article-title: Capillary conduction of liquids in porous mediums publication-title: Physics – volume: 17 start-page: 1419 issue: 5 year: 1981 end-page: 1424 article-title: Kinematic subsurface stormflow publication-title: Water Resour. Res. – volume: 36 start-page: 1897 issue: 7 year: 2000 end-page: 1910 article-title: Landslide triggering by rain infiltration publication-title: Water Resour. Res. – year: 2002 – volume: 67 start-page: 307 year: 1984 end-page: 324 article-title: The capillary fringe and its effect on water table response publication-title: J. Hydrol. – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: J. Hydrol. – year: 2008 – volume: 31 start-page: 159 year: 1991 end-page: 184 article-title: Observation and analysis of pore pressure fluctuations in a thin colluvium landslide complex near Cincinnati, Ohio publication-title: Eng. Geol. – volume: 27 start-page: 304 issue: 3 year: 1989 end-page: 309 article-title: The Bouwer and Rice slug test: An update publication-title: Ground Water – volume: 30 start-page: 145 issue: 2 year: 1994 end-page: 150 article-title: How permeable are clays and shales? publication-title: Water Resour. Res. – volume: 18 start-page: 757 year: 2004 end-page: 776 article-title: Distributed simulations of landslides for different rainfall conditions publication-title: Hydrol. Processes – volume: 12 start-page: 423 issue: 3 year: 1976 end-page: 428 article-title: A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells publication-title: Water Resour. Res. – volume: 30 start-page: 1153 issue: 4 year: 1994 end-page: 1171 article-title: A physically based model for the topographic control on shallow landsliding publication-title: Water Resour. Res. – volume: 50 start-page: 525 issue: 4 year: 2006 end-page: 534 article-title: Modeling of rainfall‐triggered shallow landslide publication-title: Environ. Geol. – volume: 99 start-page: 579 year: 1987 end-page: 594 article-title: Rainfall, gound‐water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations publication-title: Geol. Soc. Am. Bull. – volume: 247 start-page: 36 year: 1996 end-page: 75 – ident: e_1_2_10_18_1 doi: 10.1029/2000WR900090 – ident: e_1_2_10_5_1 – ident: e_1_2_10_2_1 – ident: e_1_2_10_6_1 doi: 10.1029/WR017i005p01419 – ident: e_1_2_10_22_1 doi: 10.1002/esp.1491 – ident: e_1_2_10_3_1 doi: 10.1130/REG10-p79 – ident: e_1_2_10_14_1 doi: 10.1016/0022-1694(84)90248-8 – ident: e_1_2_10_21_1 doi: 10.1139/t84-011 – volume: 11 start-page: 597 issue: 6 year: 2006 ident: e_1_2_10_23_1 article-title: Evaluation of the Nash‐Sutcliffe Efficiency Index publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597) – ident: e_1_2_10_20_1 doi: 10.1029/TR021i002p00574 – ident: e_1_2_10_16_1 doi: 10.1016/0022-1694(77)90097-X – ident: e_1_2_10_32_1 doi: 10.1029/2005WR004369 – ident: e_1_2_10_13_1 doi: 10.1029/1998WR900047 – ident: e_1_2_10_17_1 doi: 10.1029/WR021i006p00821 – ident: e_1_2_10_25_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_10_29_1 doi: 10.1086/629714 – volume-title: The Mathematics of Diffusion year: 1956 ident: e_1_2_10_10_1 – ident: e_1_2_10_31_1 doi: 10.1063/1.1745010 – ident: e_1_2_10_36_1 doi: 10.1007/s00254-006-0229-x – year: 1999 ident: e_1_2_10_27_1 – ident: e_1_2_10_34_1 doi: 10.1016/j.enggeo.2003.12.004 – ident: e_1_2_10_12_1 doi: 10.1002/hyp.1365 – start-page: 36 volume-title: Landslides: Investigation and Mitigation year: 1996 ident: e_1_2_10_11_1 – ident: e_1_2_10_24_1 doi: 10.1029/93WR02979 – ident: e_1_2_10_26_1 doi: 10.1029/93WR02930 – volume-title: Vadose Zone Hydrology year: 1995 ident: e_1_2_10_35_1 – ident: e_1_2_10_15_1 doi: 10.1016/0013-7952(91)90004-5 – ident: e_1_2_10_4_1 – ident: e_1_2_10_9_1 doi: 10.1029/WR012i003p00423 – ident: e_1_2_10_19_1 doi: 10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2 – ident: e_1_2_10_8_1 doi: 10.1111/j.1745-6584.1989.tb00453.x – ident: e_1_2_10_28_1 doi: 10.1139/t04-101 – ident: e_1_2_10_33_1 doi: 10.2136/vzj2006.0009 – ident: e_1_2_10_7_1 doi: 10.1029/WR018i005p01311 – ident: e_1_2_10_30_1 doi: 10.1097/00010694-198510000-00008 |
| SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
| Score | 2.2340524 |
| Snippet | The hydrologic behavior of shallow weathered soils commonly determines the propensity for slope failure. Here we use laboratory data and field data collected... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Assessments clayey soil Earth sciences Earth, ocean, space Exact sciences and technology Failure hydrologic modeling Hydrology Meters monitoring pore pressure Porosity Pressure sensors shallow slope stability Soils Water pressure |
| Title | Field evidence of pore pressure diffusion in clayey soils prone to landsliding |
| URI | https://api.istex.fr/ark:/67375/WNG-KNS46WG5-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JF001463 https://www.proquest.com/docview/907931246 |
| Volume | 115 |
| WOSCitedRecordID | wos000281632400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0000816912 issn: 0148-0227 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0000816912 issn: 0148-0227 databaseCode: PCBAR dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0000816912 issn: 0148-0227 databaseCode: M7S dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0000816912 issn: 0148-0227 databaseCode: PATMY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121215 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121215 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: M2P dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: M2P dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0000816912 issn: 0148-0227 databaseCode: M2P dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030586 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030584 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: WIN dateStart: 20030101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: WIN dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030583 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030583 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: DRFUL dateStart: 20030101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030584 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030586 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChJC4mOAFj4qP8AeQBFdYifO4zRIYR-h2gadeIlsx5YqQoKaFtH_njsnLekDSIgXy6eeGys-2z9fzr8j5AXjhSiSQvpypITPksL6KohCP2LSYrLtmDsC089ncZaJ6-tk0jnc8C5Myw-xcbjhzHDrNU5wqZqObAA5MtGtf5IixI_CHTLAe1Vw-Bq8vUg_nW28LI4t5XfQxyFz1zhbASxdbAlBXwj7AusLvC9Ea4HBTG2THzLhIy9fF2UPnX3T7-rW_jfAofyJ8ZiygSGxbS6NLbDbh8xuz0vv_e_buk_udmiXHrXm-YDcMNUe2T9q0P9ef1vRA-rqrXul2SO32tSYK6iNTVfzzgHX13MnQYPjcgYgu_vtzkdtZNWxbkOjSftHD0mWYmQeNV3OVFpbCgcNQ13Y7xIqmBhmiZ5COquoLuXKrGhTz8oGVOrK0EVN3S3ocoab-yNylb67On7vd6kjfMnhzANrvIwPmRUqsdIaLgqhNazqgUoAn5iRirSNtJBcGTVihikDsIwXRaisDoUMw8dkt4KH7RPKrDaxETYcacZGRaDgzBZabkygleC88Mjr9XjmuqNVx-weZe4-7wdJ3n_1Hnm50f7e0on8Qe_AmcZGSc6_YghezPNpNs5Ps0sWTcc8P_XIcMt2Ng2CMETeIe4RujamHFYO_BwkK1MvmzxBbkSAd5FHXjnT-WuP8pPxRRqJ5Mm_KD8lt9toC4zJe0Z2F_OleU5u6h-LWTMfdpN1SHbOgwmW8SWUE_4FyumH7BfmkjS7 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegBYGQ-BhMCx_DD7AHUEQX24nzOA3SsXZhGoXtLbIdW6pWEtS0iP73-By3pA8gIV4in3JOrPhs_3w5_w6hV5SVvExLEYqB5CFNSxPKKCZhTIWBZNsJcwSmX8dJnvOrq_Tc5zmFszAtP8TG4QYjw83XMMDBIe3ZBoAkE_z6pxlg_JjcRH17TXgP9d9fZF_GGzeLo0v5HfVxSN05zlawps63hKgrkK5AuwLrCvFaoHaottkPKQ-BmM-H2dvGvus2dWsB7ENf_oSATNHYPjFtMo0ttNvFzG7Ryx789-d6iO57vIuPWgN9hG7oagftHTXgga-_rfABduXWwdLsoNttcsyVLQ21LwVnFtnXcyfZCsezqYXZ_t69T0qLyvNu20rn7YMeozyD2DysfdZUXBtstxoau8DfpS1Aapgl-ArxtMJqJlZ6hZt6OmusSl1pvKixOwc9m8Ly_gRNsg-T45PQJ48IBbO7HjvLi-SQGi5TI4xmvORK2Xk9kqlFKHogY2VixQWTWg6oplJbYMbKkkijCBeE7KJeZV-2hzA1SieaGzJQlA7KSNpdGzFM60hJzlgZoLfrDi2UJ1aH_B6zwv3gj9Ki--kD9Hqj_b0lFPmD3oGzjY2SmF9DEF7Cist8WIzyzzS-HLJiFKD9LePZVIgIAeYhFiC8tqbCzh3wQ0hUul42RQrsiBbgxQF642znry0qTocXWczTp_-i_BLdOZmcjYvxx3z0DN1tYy8gQu856i3mS_0C3VI_FtNmvu9H7i9rgjS0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgA4SQ-BighY_hB9gDKCKL7dR5nAYpW0eoYKJ7i2zHlipKMjUtov89d05a0geQEG8-5ZxY8dn--Xz-HSEvuShlmZYqVJGWIU9LF-o4YWHClcNk2wPhCUy_ng_yXF5epuMuzynehWn5ITYONxwZfr7GAW6vStexDSBJJvr1zzLE-Am7TnY5QHGM6Zqc5hsniydL-R3zccT9Lc5WAEOXW0LcF1hf4H1B9IVkLXAYqG3uQy5DpOXrguyhqW_7Dd1a_naxJ39iOKZqoEdcm0pjC-v2EbNf8rJ7__2z7pO7Hdqlx615PiDXbLVH9o8b9L_X31f0kPpy615p9sjNNjXmCkpD25WCj4Dr67mXoMLJbAogu3t255OxqupYt6HSuH3RQ5JnGJlHbZczldaOwkbDUh_2u4QCJoZZoqeQTitqZmplV7Spp7MGVOrK0kVN_S3o2RQX90fkInt_cfIh7FJHhErAngfmeDU44k7q1ClnhSylMTCrxzoFfGIjnRiXGKmEtjrilmsLsEyUJdPOMKkYe0x2KvjYPqHcGTuw0rHIcB6VsYY9G3PC2thoKUQZkDfrDi1MR6uO2T1mhT_ej9Oi_-sD8mqjfdXSifxB79DbxkZJzb9hCN5AFJN8WIzyLzyZDEUxCsjBlvFsKsSMIe-QCAhdW1MBMwceB6nK1sumSJEbEeBdEpDX3nb-2qLibPg5S2T65F-UX5Bb43dZcX6aj56S223gBYbnPSM7i_nSPic3zI_FtJkf-GH7C9YCMwo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+evidence+of+pore+pressure+diffusion+in+clayey+soils+prone+to+landsliding&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Berti%2C+Matteo&rft.au=Simoni%2C+Alessandro&rft.date=2010-09-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=115&rft.issue=F3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2009JF001463&rft.externalDBID=10.1029%252F2009JF001463&rft.externalDocID=JGRF689 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |