Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau
Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and...
Uložené v:
| Vydané v: | Journal of geophysical research. Atmospheres Ročník 120; číslo 16; s. 8276 - 8298 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
Blackwell Publishing Ltd
27.08.2015
|
| Predmet: | |
| ISSN: | 2169-897X, 2169-8996 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long‐term changes during 1962–2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May–September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation.
Key Points
Frozen soil is warming in the northern Tibetan Plateau
Surface hydrology enhancement is dominated by precipitation change
Frozen soil degradation plays secondary role in surface hydrology enhancement |
|---|---|
| AbstractList | Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long‐term changes during 1962–2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May–September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation.
Key Points
Frozen soil is warming in the northern Tibetan Plateau
Surface hydrology enhancement is dominated by precipitation change
Frozen soil degradation plays secondary role in surface hydrology enhancement Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962-2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long-term changes during 1962-2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May-September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation. Key Points * Frozen soil is warming in the northern Tibetan Plateau * Surface hydrology enhancement is dominated by precipitation change * Frozen soil degradation plays secondary role in surface hydrology enhancement Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long‐term changes during 1962–2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May–September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation. Frozen soil is warming in the northern Tibetan Plateau Surface hydrology enhancement is dominated by precipitation change Frozen soil degradation plays secondary role in surface hydrology enhancement |
| Author | Liu, Qiming Zhou, Bingrong Li, Jialuo Cuo, Lan Bohn, Theodore J. Zhao, Lin Zhang, Yongxin |
| Author_xml | – sequence: 1 givenname: Lan surname: Cuo fullname: Cuo, Lan email: lancuo@itpcas.ac.cn organization: Center for Excellence in Tibetan Plateau Earth Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Yongxin surname: Zhang fullname: Zhang, Yongxin organization: Research Applications Laboratory, National Center for Atmospheric Research, Colorado, Boulder, USA – sequence: 3 givenname: Theodore J. surname: Bohn fullname: Bohn, Theodore J. organization: School of Earth and Space Exploration, Arizona State University, Arizona, Tempe, USA – sequence: 4 givenname: Lin surname: Zhao fullname: Zhao, Lin organization: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China – sequence: 5 givenname: Jialuo surname: Li fullname: Li, Jialuo organization: Qinghai Meteorological Bureau, Xining, China – sequence: 6 givenname: Qiming surname: Liu fullname: Liu, Qiming organization: Haiyan Hydrological Station, Qinghai Hydrology and Water Resources Survey, Haiyan, China – sequence: 7 givenname: Bingrong surname: Zhou fullname: Zhou, Bingrong organization: Qinghai Meteorological Bureau, Xining, China |
| BookMark | eNqNkV1rFTEQhhepYK298wcEvPHC1Xxsks2l9tijbVEpR-qFEOZsZtvUbVKTLHr89aYeKVJQzM0bhueZkJmHzU6IAZvmMaPPGaX8BadMHi0oF8yIe80uZ8q0vTFq5_auPz1o9nO-pPX0VHSy220-H6b4AwPJ0U_E4XkCB8XHQCA44ksmOI441KylPKcRBiQXG5fiFM83xAdSLpCEmGqkQFZ-jQUC-TBBQZgfNfdHmDLu_8695uPh69XBm_bk_fLtwcuTFiTtWCvBoZBUKecMON4NIBnqAbhkAno1rnXPlKQMGJVr4aQTwjFuRqfFiEZwsdc83fa9TvHrjLnYK58HnCYIGOdsmZZCdp3q9X-gnDOtdX_T9ckd9DLOKdSPVIoJI5XgfaWebakhxZwTjvY6-StIG8uovVmM_XMxFed38MGXXxMvCfz0N0lspW9-ws0_H7BHy9OF5MKwarVby-eC328tSF-s0kJLe_Zuac9Oj18t5fHCrsRPa5muUw |
| CitedBy_id | crossref_primary_10_1007_s11629_019_5450_7 crossref_primary_10_1016_j_geoderma_2022_116195 crossref_primary_10_3390_rs15020455 crossref_primary_10_5194_hess_29_3703_2025 crossref_primary_10_1007_s00382_023_06919_z crossref_primary_10_1007_s12665_025_12413_y crossref_primary_10_1016_j_catena_2022_106836 crossref_primary_10_1016_j_catena_2024_108182 crossref_primary_10_1016_j_geoderma_2023_116634 crossref_primary_10_1016_j_jhydrol_2025_133437 crossref_primary_10_1016_j_jhydrol_2025_133678 crossref_primary_10_5194_bg_18_4211_2021 crossref_primary_10_3390_rs14133168 crossref_primary_10_1002_ldr_3575 crossref_primary_10_1016_j_rama_2019_06_001 crossref_primary_10_1002_ldr_4029 crossref_primary_10_1016_j_rse_2019_111269 crossref_primary_10_1016_j_jhydrol_2016_10_035 crossref_primary_10_1016_j_accre_2020_02_001 crossref_primary_10_1016_j_jhydrol_2022_128892 crossref_primary_10_1016_j_scitotenv_2022_155227 crossref_primary_10_1016_j_scitotenv_2017_06_188 crossref_primary_10_59717_j_xinn_geo_2024_100118 crossref_primary_10_3354_cr01601 crossref_primary_10_3390_rs15041168 crossref_primary_10_1007_s00704_020_03149_9 crossref_primary_10_1002_joc_6605 crossref_primary_10_1109_TGRS_2017_2705248 crossref_primary_10_1016_j_jhydrol_2018_07_078 crossref_primary_10_1007_s11769_020_1135_y crossref_primary_10_1029_2017JD028260 crossref_primary_10_5194_hess_27_1477_2023 crossref_primary_10_1016_j_gloplacha_2025_104833 crossref_primary_10_1007_s00704_021_03664_3 crossref_primary_10_3390_w11071432 crossref_primary_10_5194_hess_22_351_2018 crossref_primary_10_3390_s23031215 crossref_primary_10_1016_j_gloplacha_2018_09_016 crossref_primary_10_1016_j_jhydrol_2022_127448 crossref_primary_10_3390_en15072649 crossref_primary_10_1016_j_rse_2024_114563 crossref_primary_10_1029_2022JD036551 crossref_primary_10_1029_2020JD032916 crossref_primary_10_1016_j_scitotenv_2018_08_369 crossref_primary_10_1016_j_ejrh_2025_102528 crossref_primary_10_3390_su15021183 crossref_primary_10_1016_j_scitotenv_2024_175465 crossref_primary_10_3390_atmos15040450 crossref_primary_10_1007_s00376_023_2203_x crossref_primary_10_2136_vzj2017_05_0102 crossref_primary_10_1029_2022JG006987 crossref_primary_10_2136_vzj2016_01_0010 crossref_primary_10_1016_j_scitotenv_2022_159744 crossref_primary_10_1016_j_jhydrol_2020_125237 crossref_primary_10_1038_s41598_018_30320_0 crossref_primary_10_1016_j_catena_2024_108124 crossref_primary_10_1002_2017JD027691 crossref_primary_10_1002_ppp_2049 crossref_primary_10_1016_j_jhydrol_2020_125484 crossref_primary_10_1007_s00382_022_06197_1 crossref_primary_10_1016_j_jhydrol_2022_128796 crossref_primary_10_1002_ppp_2287 crossref_primary_10_1016_j_jhydrol_2018_01_050 crossref_primary_10_1007_s10584_023_03522_3 crossref_primary_10_1016_j_accre_2017_07_002 crossref_primary_10_1007_s12665_022_10655_8 crossref_primary_10_1029_2022WR033075 crossref_primary_10_3390_w9090666 crossref_primary_10_1029_2020MS002189 crossref_primary_10_1002_hyp_13765 crossref_primary_10_1080_02626667_2020_1851374 crossref_primary_10_1002_esp_6063 crossref_primary_10_1029_2019WR024969 crossref_primary_10_3390_f12121726 crossref_primary_10_1029_2023JG007593 crossref_primary_10_3390_w12061812 crossref_primary_10_3390_rs15010055 crossref_primary_10_5194_hess_27_4409_2023 crossref_primary_10_5194_hess_27_2681_2023 crossref_primary_10_1016_j_aosl_2020_100007 crossref_primary_10_1002_hyp_14748 crossref_primary_10_1080_02626667_2022_2114834 crossref_primary_10_1029_2017JD028050 crossref_primary_10_5194_essd_13_4207_2021 crossref_primary_10_1016_j_accre_2022_03_004 crossref_primary_10_1016_j_scitotenv_2019_02_110 crossref_primary_10_1080_02626667_2019_1632459 crossref_primary_10_1002_2017JD027477 crossref_primary_10_3390_w14030372 crossref_primary_10_1016_j_jhydrol_2021_126668 crossref_primary_10_1038_s41598_017_04140_7 crossref_primary_10_1029_2024GL113679 crossref_primary_10_1016_j_jhydrol_2019_03_043 crossref_primary_10_1016_j_jhydrol_2023_129647 crossref_primary_10_1007_s00382_016_3469_9 crossref_primary_10_1016_j_catena_2020_104608 crossref_primary_10_1007_s00704_018_2529_y crossref_primary_10_1016_j_geoderma_2021_115455 crossref_primary_10_1029_2020JD034064 crossref_primary_10_5194_bg_13_3533_2016 crossref_primary_10_1016_j_jhydrol_2025_133582 crossref_primary_10_3389_fpls_2022_974745 crossref_primary_10_3389_feart_2020_576838 crossref_primary_10_1016_j_scitotenv_2023_167136 crossref_primary_10_1016_j_geoderma_2024_116966 crossref_primary_10_1002_joc_5161 crossref_primary_10_1007_s10113_018_1407_6 crossref_primary_10_3390_rs13020180 crossref_primary_10_1016_j_palaeo_2020_109959 crossref_primary_10_3390_w15091692 crossref_primary_10_1016_j_coldregions_2022_103647 crossref_primary_10_1016_j_jhydrol_2023_130501 crossref_primary_10_1016_j_jhydrol_2018_06_024 crossref_primary_10_1007_s00704_020_03266_5 crossref_primary_10_1016_j_ecolind_2023_111462 crossref_primary_10_1016_j_jhydrol_2022_127894 crossref_primary_10_3390_rs13234829 crossref_primary_10_1016_j_quaint_2018_11_010 crossref_primary_10_1002_hyp_13311 crossref_primary_10_1029_2020MS002152 crossref_primary_10_1016_j_jhydrol_2025_132685 crossref_primary_10_1016_j_gloplacha_2018_01_009 crossref_primary_10_1016_j_scitotenv_2019_135632 crossref_primary_10_1016_j_jhydrol_2023_130581 crossref_primary_10_1175_JHM_D_16_0199_1 crossref_primary_10_1007_s00704_024_05334_6 crossref_primary_10_1016_j_jhydrol_2016_09_008 crossref_primary_10_3390_rs14235989 crossref_primary_10_1002_gj_4164 crossref_primary_10_1016_j_jhydrol_2018_11_068 crossref_primary_10_1016_j_scitotenv_2023_164914 crossref_primary_10_5194_tc_12_657_2018 crossref_primary_10_1016_j_ecolind_2019_105714 crossref_primary_10_1016_j_jhydrol_2024_132656 crossref_primary_10_1016_j_jhydrol_2020_124996 crossref_primary_10_1016_j_rama_2022_07_001 crossref_primary_10_1016_j_jhydrol_2024_132132 crossref_primary_10_5194_hess_25_2089_2021 crossref_primary_10_1111_sum_12910 crossref_primary_10_1016_j_rse_2022_113258 crossref_primary_10_3390_buildings15173155 crossref_primary_10_3390_rs13122356 |
| Cites_doi | 10.1175/JCLI-D-12-00321.1 10.1029/2011JF002143 10.1016/j.agrformet.2013.03.003 10.1016/j.earscirev.2014.06.006 10.1016/j.ejrh.2014.08.004 10.1002/ppp.3430050308 10.1175/JHM605.1 10.2136/sssaj1996.03615995006000010005x 10.1016/j.earscirev.2010.07.002 10.1029/2008JD011559 10.5194/tc-5-219-2011 10.5194/tc-6-607-2012 10.2151/jmsj.85B.1 10.1126/science.1077445 10.1029/2008GL035822 10.1016/j.earscirev.2011.06.007 10.1016/j.jhydrol.2009.06.046 10.2151/jmsj1965.70.1B_319 10.1175/2011JCLI3936.1 10.1002/ppp.613 10.1029/2003GL018268 10.1029/94JD00483 10.1007/s10584-005-9017-y 10.1029/2007JD008525 10.1007/s10040-012-0927-2 10.1016/j.chnaes.2009.12.006 10.1029/2003/JD003575 10.1029/WR009i005p01314 10.1016/S0022-1694(97)00061-9 10.1029/2002JD002542 10.1029/2005JD006387 10.1016/0921-8181(95)00046-1 10.1002/hyp.8025 10.1175/JCLI-D-11-00738.1 10.13031/2013.31041 10.2151/jmsj1965.78.3_199 10.2136/vzj2004.0693 10.1126/science.247.4939.192 10.1029/WR025i010p02205 10.1016/S1367-9120(02)00069-X 10.1007/s10584-005-5352-2 10.1029/97JD03630 10.1016/S0022-1694(03)00240-3 10.1016/j.coldregions.2004.01.002 10.1007/s11069-011-9923-4 10.13031/2013.31040 10.1002/ppp.683 10.1016/S0165-232X(01)00064-7 10.1175/2007JCLI1535.1 10.1017/CBO9780511805530 10.1007/s10040-012-0937-0 10.1175/JHM538.1 10.1016/j.jhydrol.2013.08.003 10.1029/1999JD900232 10.1002/9781118684931 10.1080/0143116021000020144 10.1016/j.coldregions.2012.12.004 10.1088/1748-9326/4/4/045206 10.1007/s12665-014-3117-9 10.1016/j.gloplacha.2004.02.003 10.1007/s13280-011-0162-4 10.1007/s11434-014-0347-x 10.1080/014311600210209 10.1029/1999JD900337 10.5194/tc-6-407-2012 10.1088/1748-9326/9/4/045005 10.1007/s10584-011-0099-4 10.1088/1748-9326/6/4/044024 |
| ContentType | Journal Article |
| Copyright | 2015. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. |
| DBID | BSCLL AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M 7QH |
| DOI | 10.1002/2015JD023193 |
| DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Aqualine |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Aqualine |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 2169-8996 |
| EndPage | 8298 |
| ExternalDocumentID | 3812940081 10_1002_2015JD023193 JGRD52391 ark_67375_WNG_WRKBG5KD_T |
| Genre | article |
| GeographicLocations | Tibetan Plateau China, People's Rep., Xizang, Tibetan Plateau |
| GeographicLocations_xml | – name: Tibetan Plateau – name: China, People's Rep., Xizang, Tibetan Plateau |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences – fundername: National Center for Atmospheric Research (NCAR)'s Advanced Study Program (ASP) – fundername: National Basic Research Program funderid: 2013CB956004 – fundername: National Natural Science Foundation of China funderid: 41190083 |
| GroupedDBID | 05W 0R~ 1OC 33P 50Y 52M 5VS 702 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI BSCLL DPXWK DRFUL DRSTM EBS EJD G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P2W R.K RNS ROL SUPJJ WBKPD WIN WXSBR ~OA 1OB AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M 7QH |
| ID | FETCH-LOGICAL-a5041-5ade35066dd9ad24ca51e7ca2513a86fb7816501a105b3d5d33d129fd73fe9323 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363425200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-897X |
| IngestDate | Thu Oct 02 07:09:55 EDT 2025 Tue Oct 07 09:40:48 EDT 2025 Wed Aug 13 09:45:48 EDT 2025 Sat Nov 29 02:33:27 EST 2025 Tue Nov 18 21:33:33 EST 2025 Sun Sep 21 06:18:35 EDT 2025 Tue Nov 11 03:31:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5041-5ade35066dd9ad24ca51e7ca2513a86fb7816501a105b3d5d33d129fd73fe9323 |
| Notes | Figures S1-S8 and Tables S1-S3 Chinese Academy of Sciences ArticleID:JGRD52391 National Center for Atmospheric Research (NCAR)'s Advanced Study Program (ASP) National Natural Science Foundation of China - No. 41190083 ark:/67375/WNG-WRKBG5KD-T istex:FE639EB377F4733B4AD5B6163129B3CAF61C333E National Basic Research Program - No. 2013CB956004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1713956328 |
| PQPubID | 54657 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_1753544687 proquest_miscellaneous_1722177782 proquest_journals_1713956328 crossref_primary_10_1002_2015JD023193 crossref_citationtrail_10_1002_2015JD023193 wiley_primary_10_1002_2015JD023193_JGRD52391 istex_primary_ark_67375_WNG_WRKBG5KD_T |
| PublicationCentury | 2000 |
| PublicationDate | 27 August 2015 |
| PublicationDateYYYYMMDD | 2015-08-27 |
| PublicationDate_xml | – month: 08 year: 2015 text: 27 August 2015 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of geophysical research. Atmospheres |
| PublicationTitleAlternate | J. Geophys. Res. Atmos |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Hansson, K., J. Simunek, M. Mizoguchi, L.-C. Laudin, and M. T. van Genuchten (2004), Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone, 3, 693-704. Seyfried, M. S., and M. D. Murdock (1997), Use of air permeability to estimate infiltrability of frozen soil, J. Hydrol., 202, 95-107. Bohn, T. J., B. Livneh, B. Nijssen, J. Oyler, S. W. Running, and D. P. Lettenmaier (2013), Global validation of MTCLIM and related algorithms for uncoupled ecological and hydrological model meteorological forcings, Agric. For. Meteorol., 176, 38-49, doi:10.1016/j.agrformet.2013.03.003. Xiao, Y., L. Zhao, Y. Dai, R. Li, Q. Pang, and J. Yao (2013), Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau, Cold Reg. Sci. Technol., 87, 68-77. Manabe, S., and A. J. Brocoli (1990), Mountains and arid climate of middle latitude, Science, 247, 192-195. Cherkauer, K. A., and D. P. Lettenmaier (2003), Simulation of spatial variability in snow and frozen soil, J. Geophys. Res., 108(D22), 8858, doi:10.1029/2003/JD003575. Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su (2013a), Climate change on the Northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms, J. Clim., 26, 85-109. Flerchinger, G. N., and K. E. Saxton (1989b), Simultaneous heat and water model of a freezing snow-residues-soil system II, Field verification, Trans. ASAE, 32, 573-578. Niu, G., and Z. Yang (2006), Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale, J. Hydrometeorol., 7, 937-952. Woo, M., D. L. Kane, S. K. Carey, and D. Yang (2008), Progress in permafrost hydrology in the new millennium, Permafrost Periglacial Process., 19, 237-254. Wu, Q., T. Zhang, and Y. Liu (2012), Thermal state of the active layer and permafrost along the Qinghai-Xiang (Tibet) Railway from 2006 to 2010, Cryosphere, 6, 607-612. Brown, R. D., and D. A. Robinson (2011), Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty, Cryosphere, 5, 219-229. Liang, X., D. P. Lettenmaier, and E. F. Wood (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 14,415-14,428, doi:10.1029/94JD00483. Hinzman, L. D., et al. (2005), Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72, 251-298. Harlan, R. L. (1973), Analysis of coupled heat and mass transfer in partial frozen soil, Water Resour. Res., 9(5), 1314-1323, doi:10.1029/WR009i005p01314. Nan, S., P. Zhao, S. Yang, and J. Chen (2009), Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST, J. Geophys. Res., 114, D10104, doi:10.1029/2008JD011559. Jin, H. J., R. X. He, G. D. Cheng, Q. B. Wu, S. L. Wang, L. Z. Lü, and X. L. Chang (2009), Change in frozen ground and co-environmental impacts in the Source Area of the Yellow River on northeastern Qinghai-Tibet Plateau, China, Environ. Res. Lett., 4(4), 045206. Kane, D. L., K. Yoshikawa, and J. P. McNamara (2013), Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA), Hydrogeol. J., 21(1), 41-52. Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, and S. Rahmstorf (2002), Increasing river discharge to the Arctic Ocean, Science, 298, 2171-2173. Frauenfeld, O. W., and T. Zhang (2011), An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes, Environ. Res. Lett., 6, doi:10.1088/1748-9326/6/4/044024. Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou (2011), Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Clim. Change, 109, 517-534, doi:10.1007/s10584-011-0099-4. Cuo, L., Y. Zhang, Y. Gao, Z. Hao, and L. Cairang (2013b), The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China, J. Hydrol., 502, 37-52. Zhang, Y., T. Ohata, and T. Kadota (2003), Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau, J. Hydrol., 283, 41-56. Takata, K., and M. Kimoto (2000), A numerical study on the impact of soil freezing on the continental-scale cycle, J. Meteorol. Soc. Jpn., 78(3), 199-221. St. Jacques, J.-M., and D. J. Sauchyn (2009), Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada, Geophys. Res. Lett., 36, L01401, doi:10.1029/2008GL035822. Yanai, M., C. Li, and Z. Song (1992), Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon, J. Meteorol. Soc. Jpn., 70, 319-351. Yang, M., F. E. Nelson, N. I. Shiklomanov, D. Guo, and G. Wan (2010), Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth Sci. Rev., 103, 31-44. Guo, D., and H. Wang (2014), Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010, Chin. Sci. Bull., 59(20), 2439-2448. Yang, M., T. Yao, X. Gou, T. Koike, and Y. He (2003), The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau, J. Asian Earth Sci., 21, 457-465. Yang, M., S. Wang, T. Yao, X. Gou, A. Lu, and X. Guo (2004), Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau, Cold Reg. Sci. Technol., 39, 47-53. Hansen, M., R. DeFries, J. R. G. Townshend, and R. Sohlberg (2000), Global land cover classification at 1 km resolution using a decision tree classifier, Int. J. Remote Sens., 21, 1331-1365. Black, P. B., and A. R. Tice (1989), Comparison of soil freezing and soil water curve data for Windsor sandy loam, Water Resour. Res., 25, 2205-2210, doi:10.1029/WR025i010p02205. Serreze, M. C., and J. A. Francis (2006), The Arctic amplification debate, Clim. Change, 76, 241-264. Guo, D., M. Yang, and H. Wang (2011), Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau, Hydrol. Processes, 25, 2531-2541. Romanovsky, V. E., et al. (2010), Thermal state of permafrost in Russia, Permafrost Periglacial Process., 21, 136-155. Spaans, E. J. A., and J. M. Baker (1996), The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic, Soil Sci. Soc. Am. J., 60, 13-19. Yang, Z., H. O. Yang, X. Xu, L. Zhao, M. Song, and C. Zhou (2010), Effects of permafrost degradation on ecosystems, Acta Ecol. Sin., 30, 33-39. Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker (1999), A parameterization of snowpack and frozen ground intended for NCEP weather and climate models, J. Geophys. Res., 104(D16), 19,569-19,585, doi:10.1029/1999JD900232. Gouttevin, I., G. Krinner, P. Ciais, J. Polcher, and C. Legout (2012), Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology, Cryosphere, 6, 407-430. Yang, D., D. Kane, L. Hinzman, X. Zhang, T. Zhang, and H. Ye (2002), Siberian Lena River hydrologic regime and recent change, J. Geophys. Res., 107(D23), 4694, doi:10.1029/2002JD002542. Adam, J. C., and D. P. Lettenmaier (2008), Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia, J. Clim., 21(8), 1807-1828. Troy, T. J., J. Sheffield, and E. F. Wood (2011), Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources, J. Clim., 24(13), 3272-3293, doi:10.1175/2011JCLI3936.1. Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo (2013), Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau, J. Clim., 26, 3187-3208. French, H. M. (2007), The Periglacial Environment, 3rd ed., 480 pp., John Wiley, Sussex, England. McCauley, C. A., D. M. White, M. R. Lilly, and D. M. Nyman (2002), A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol., 34, 117-125. Slater, A. G., A. J. Pitman, and C. E. Desborough (1998), Simulation of freeze-thaw cycles in a general circulation model land surface scheme, J. Geophys. Res., 103(D10), 11,303-11,312. Muller, S. W. (1943), Permafrost or Permanently Frozen Ground and Related Engineering Problems, Strategic Eng. Study, Spec. Rep., vol. 62, 136 pp., Off. Chief of Eng., Army, U. S., Washington, D. C. (Reprinted by J. W. Edwards, Ann Arbor, Mich., 231 pp., 1947). Callaghan, T. V., C. E. Tweedie, and P. J. Webber (2011), Multi-decadal changes in tundra environments and ecosystems: The International Polar Year-Back to the Future Project (IPYBTF), Ambio, 40, 555-557. Michel, F. A., and R. O. van Everdingen (1994), Changes in hydrogeologic regimes in permafrost regions due to climatic change, Permafrost Periglacial Process., 5, 191-195. Dobinski, W. (2011), Permafrost, Earth Sci. Rev., 108(3-4), 158-169. Su, F., J. C. Adam, K. E. Trenberth, and D. P. Lettenmaier (2006), Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis, J. Geophys. Res., 111, D05110, doi:10.1029/2005JD006387. Li, R., et al. (2014), The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China, Environ. Earth Sci., 72, 2091-2099. Bonan, G. (2008), Ecological Climatology, 549 pp., Cambridge Univ. Press, Cambridge, U. K. Cuo, L., Y. Zhang, F. Zhu, and L. Liang (2014), Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol.: Reg. Stud., 2, 49-68. Wang, G., H. Hu, and T. Li (2009), The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed, J. Hydrol., 375, 438-449. Zhang, Z., and Q. Wu (2012), Thermal hazards zonation and permafrost chan 2012; 61 2014; 138 2013; 26 2013; 21 2006; 76 2010; 103 2004; 3 2009; 114 2010; 21 2014; 2 2004; 39 2003; 2 2007; 8 2003; 283 2014; 59 2007; 85B 1996; 60 2002; 107 2008; 21 2011; 24 2011; 25 2005; 72 2014; 9 2010; 30 2004; 43 1990; 247 2013; 87 2010 2000; 21 2002; 34 2008; 19 2011; 40 2002; 298 2006; 7 2008 2009; 375 2007 1996; 13 1999; 104 2011; 6 1989; 25 2011; 5 2003; 30 2006; 111 1989b; 32 1997; 202 2007; 112 2009; 36 1992; 70 2003; 108 1973; 9 2011; 109 2011; 108 2013a; 26 1943; 62 2000; 78 2003; 24 1994; 99 1989a; 32 1998; 103 2013; 176 2009; 4 2012; 6 2014; 72 2012; 117 1994; 5 2013b; 502 2003; 21 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Muller S. W. (e_1_2_7_42_1) 1943 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Zhang T. (e_1_2_7_69_1) 2003 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Frauenfeld, O. W., and T. Zhang (2011), An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes, Environ. Res. Lett., 6, doi:10.1088/1748-9326/6/4/044024. – reference: Gouttevin, I., G. Krinner, P. Ciais, J. Polcher, and C. Legout (2012), Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology, Cryosphere, 6, 407-430. – reference: Hinzman, L. D., et al. (2005), Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72, 251-298. – reference: Wang, G., H. Hu, and T. Li (2009), The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed, J. Hydrol., 375, 438-449. – reference: French, H. M. (2007), The Periglacial Environment, 3rd ed., 480 pp., John Wiley, Sussex, England. – reference: Liu, Y., B. Hoskins, and M. Blackburn (2007), Impact of Tibetan orography and heating on the summer flow over Asia, J. Meteorol. Soc. Jpn., 85B, 1-19. – reference: Hansen, M., R. DeFries, J. R. G. Townshend, and R. Sohlberg (2000), Global land cover classification at 1 km resolution using a decision tree classifier, Int. J. Remote Sens., 21, 1331-1365. – reference: Liang, X., E. F. Wood, and D. P. Lettenmaier (1996), Surface soil moisture parameterization of the VIC-2 l model: Evaluation and modification, Global Planet. Change, 13, 195-206. – reference: McCauley, C. A., D. M. White, M. R. Lilly, and D. M. Nyman (2002), A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol., 34, 117-125. – reference: Stow, D., S. Daeschner, A. Hope, D. Douglas, A. Peterson, R. Myneni, L. Zhou, and W. C. Oechel (2003), Variability of seasonally integrated normalized difference vegetation index across the North Slope of Alaska in the 1990s, Int. J. Remote Sens., 24(5), 1111-1117. – reference: Cuo, L., Y. Zhang, Y. Gao, Z. Hao, and L. Cairang (2013b), The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China, J. Hydrol., 502, 37-52. – reference: Li, R., et al. (2014), The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China, Environ. Earth Sci., 72, 2091-2099. – reference: Flerchinger, G. N., and K. E. Saxton (1989a), Simultaneous heat and water model of a freezing snow-residue-soil system I, Theory and development, Trans. ASAE, 32, 565-571. – reference: Kurylyk, B. L., K. T. B. MacQuarrie, and J. M. McKenzie (2014), Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools, Earth Sci. Rev., 138, 313-334. – reference: Yanai, M., C. Li, and Z. Song (1992), Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon, J. Meteorol. Soc. Jpn., 70, 319-351. – reference: Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo (2013), Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau, J. Clim., 26, 3187-3208. – reference: Adam, J. C., and D. P. Lettenmaier (2008), Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia, J. Clim., 21(8), 1807-1828. – reference: Romanovsky, V. E., et al. (2010), Thermal state of permafrost in Russia, Permafrost Periglacial Process., 21, 136-155. – reference: Michel, F. A., and R. O. van Everdingen (1994), Changes in hydrogeologic regimes in permafrost regions due to climatic change, Permafrost Periglacial Process., 5, 191-195. – reference: Seyfried, M. S., and M. D. Murdock (1997), Use of air permeability to estimate infiltrability of frozen soil, J. Hydrol., 202, 95-107. – reference: Xiao, Y., L. Zhao, Y. Dai, R. Li, Q. Pang, and J. Yao (2013), Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau, Cold Reg. Sci. Technol., 87, 68-77. – reference: Yang, M., F. E. Nelson, N. I. Shiklomanov, D. Guo, and G. Wan (2010), Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth Sci. Rev., 103, 31-44. – reference: Hansson, K., J. Simunek, M. Mizoguchi, L.-C. Laudin, and M. T. van Genuchten (2004), Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone, 3, 693-704. – reference: Harlan, R. L. (1973), Analysis of coupled heat and mass transfer in partial frozen soil, Water Resour. Res., 9(5), 1314-1323, doi:10.1029/WR009i005p01314. – reference: St. Jacques, J.-M., and D. J. Sauchyn (2009), Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada, Geophys. Res. Lett., 36, L01401, doi:10.1029/2008GL035822. – reference: Brown, R. D., and D. A. Robinson (2011), Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty, Cryosphere, 5, 219-229. – reference: Cherkauer, K. A., and D. P. Lettenmaier (1999), Hydrological effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res., 104(D16), 19,599-19,610, doi:10.1029/1999JD900337. – reference: Bonan, G. (2008), Ecological Climatology, 549 pp., Cambridge Univ. Press, Cambridge, U. K. – reference: Callaghan, T. V., C. E. Tweedie, and P. J. Webber (2011), Multi-decadal changes in tundra environments and ecosystems: The International Polar Year-Back to the Future Project (IPYBTF), Ambio, 40, 555-557. – reference: Zhang, X., S. Sun, and Y. Xue (2007), Development and testing of a frozen soil parameterization for cold region studies, J. Hydrometeorol., 8, 690-701. – reference: Bense, V. F., H. Kooi, G. Ferguson, and T. Read (2012), Permafrost degradation as a control on hydrogeological regime shifts in a warming climate, J. Geophys. Res., 117, F03036, doi:10.1029/2011JF002143. – reference: Guo, D., M. Yang, and H. Wang (2011), Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau, Hydrol. Processes, 25, 2531-2541. – reference: Cherkauer, K. A., and D. P. Lettenmaier (2003), Simulation of spatial variability in snow and frozen soil, J. Geophys. Res., 108(D22), 8858, doi:10.1029/2003/JD003575. – reference: Wu, Q., T. Zhang, and Y. Liu (2012), Thermal state of the active layer and permafrost along the Qinghai-Xiang (Tibet) Railway from 2006 to 2010, Cryosphere, 6, 607-612. – reference: Spaans, E. J. A., and J. M. Baker (1996), The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic, Soil Sci. Soc. Am. J., 60, 13-19. – reference: Dobinski, W. (2011), Permafrost, Earth Sci. Rev., 108(3-4), 158-169. – reference: Zhao, L., C. L. Ping, D. Q. Yang, G. D. Cheng, Y. J. Ding, and S. Y. Liu (2004), Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China, Global Planet. Change, 43, 19-31. – reference: Hayes, D. J., D. W. Kicklighter, A. D. McGuire, M. Chen, Q. Zhuang, F. Yuan, J. M. Melillo, and S. D. Wullschleger (2014), The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange, Environ. Res. Lett., 9, 045005, doi:10.1088/1748-9326/9/4/045005. – reference: Troy, T. J., J. Sheffield, and E. F. Wood (2011), Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources, J. Clim., 24(13), 3272-3293, doi:10.1175/2011JCLI3936.1. – reference: Adam, J. C., I. Haddeland, F. Su, and D. P. Lettenmaier (2007), Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers, J. Geophys. Res., 112, D24114, doi:10.1029/2007JD008525. – reference: Yang, M., S. Wang, T. Yao, X. Gou, A. Lu, and X. Guo (2004), Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau, Cold Reg. Sci. Technol., 39, 47-53. – reference: Yang, Z., H. O. Yang, X. Xu, L. Zhao, M. Song, and C. Zhou (2010), Effects of permafrost degradation on ecosystems, Acta Ecol. Sin., 30, 33-39. – reference: Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou (2011), Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Clim. Change, 109, 517-534, doi:10.1007/s10584-011-0099-4. – reference: Takata, K., and M. Kimoto (2000), A numerical study on the impact of soil freezing on the continental-scale cycle, J. Meteorol. Soc. Jpn., 78(3), 199-221. – reference: Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, and S. Rahmstorf (2002), Increasing river discharge to the Arctic Ocean, Science, 298, 2171-2173. – reference: Serreze, M. C., and J. A. Francis (2006), The Arctic amplification debate, Clim. Change, 76, 241-264. – reference: Kane, D. L., K. Yoshikawa, and J. P. McNamara (2013), Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA), Hydrogeol. J., 21(1), 41-52. – reference: Muller, S. W. (1943), Permafrost or Permanently Frozen Ground and Related Engineering Problems, Strategic Eng. Study, Spec. Rep., vol. 62, 136 pp., Off. Chief of Eng., Army, U. S., Washington, D. C. (Reprinted by J. W. Edwards, Ann Arbor, Mich., 231 pp., 1947). – reference: Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su (2013a), Climate change on the Northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms, J. Clim., 26, 85-109. – reference: Liang, X., D. P. Lettenmaier, and E. F. Wood (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 14,415-14,428, doi:10.1029/94JD00483. – reference: Niu, G., and Z. Yang (2006), Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale, J. Hydrometeorol., 7, 937-952. – reference: Zhang, Z., and Q. Wu (2012), Thermal hazards zonation and permafrost change over the Qinghai-Tibet Plateau, Nat. Hazards, 61, 403-423. – reference: Guo, D., and H. Wang (2014), Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010, Chin. Sci. Bull., 59(20), 2439-2448. – reference: Su, F., J. C. Adam, K. E. Trenberth, and D. P. Lettenmaier (2006), Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis, J. Geophys. Res., 111, D05110, doi:10.1029/2005JD006387. – reference: Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker (1999), A parameterization of snowpack and frozen ground intended for NCEP weather and climate models, J. Geophys. Res., 104(D16), 19,569-19,585, doi:10.1029/1999JD900232. – reference: Manabe, S., and A. J. Brocoli (1990), Mountains and arid climate of middle latitude, Science, 247, 192-195. – reference: Yang, M., T. Yao, X. Gou, T. Koike, and Y. He (2003), The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau, J. Asian Earth Sci., 21, 457-465. – reference: Flerchinger, G. N., and K. E. Saxton (1989b), Simultaneous heat and water model of a freezing snow-residues-soil system II, Field verification, Trans. ASAE, 32, 573-578. – reference: Black, P. B., and A. R. Tice (1989), Comparison of soil freezing and soil water curve data for Windsor sandy loam, Water Resour. Res., 25, 2205-2210, doi:10.1029/WR025i010p02205. – reference: Cheng, G., and H. Jin (2013), Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China, Hydrogeol. J., 21, 5-23. – reference: Slater, A. G., A. J. Pitman, and C. E. Desborough (1998), Simulation of freeze-thaw cycles in a general circulation model land surface scheme, J. Geophys. Res., 103(D10), 11,303-11,312. – reference: Zhang, Y., T. Ohata, and T. Kadota (2003), Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau, J. Hydrol., 283, 41-56. – reference: Jia, G. J., H. E. Epstein, and D. A. Walker (2003), Greening of Arctic Alaska, 1981-2001, Geophys. Res. Lett., 30(20), 2067, doi:10.1029/2003GL018268. – reference: Yang, D., D. Kane, L. Hinzman, X. Zhang, T. Zhang, and H. Ye (2002), Siberian Lena River hydrologic regime and recent change, J. Geophys. Res., 107(D23), 4694, doi:10.1029/2002JD002542. – reference: Bohn, T. J., B. Livneh, B. Nijssen, J. Oyler, S. W. Running, and D. P. Lettenmaier (2013), Global validation of MTCLIM and related algorithms for uncoupled ecological and hydrological model meteorological forcings, Agric. For. Meteorol., 176, 38-49, doi:10.1016/j.agrformet.2013.03.003. – reference: Cuo, L., Y. Zhang, F. Zhu, and L. Liang (2014), Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol.: Reg. Stud., 2, 49-68. – reference: Jin, H. J., R. X. He, G. D. Cheng, Q. B. Wu, S. L. Wang, L. Z. Lü, and X. L. Chang (2009), Change in frozen ground and co-environmental impacts in the Source Area of the Yellow River on northeastern Qinghai-Tibet Plateau, China, Environ. Res. Lett., 4(4), 045206. – reference: Nan, S., P. Zhao, S. Yang, and J. Chen (2009), Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST, J. Geophys. Res., 114, D10104, doi:10.1029/2008JD011559. – reference: Woo, M., D. L. Kane, S. K. Carey, and D. Yang (2008), Progress in permafrost hydrology in the new millennium, Permafrost Periglacial Process., 19, 237-254. – volume: 40 start-page: 555 year: 2011 end-page: 557 article-title: Multi‐decadal changes in tundra environments and ecosystems: The International Polar Year‐Back to the Future Project (IPYBTF) publication-title: Ambio – volume: 34 start-page: 117 year: 2002 end-page: 125 article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils publication-title: Cold Reg. Sci. Technol. – volume: 62 start-page: 136 year: 1943 – volume: 6 start-page: 407 year: 2012 end-page: 430 article-title: Multi‐scale validation of a new soil freezing scheme for a land‐surface model with physically‐based hydrology publication-title: Cryosphere – volume: 24 start-page: 1111 issue: 5 year: 2003 end-page: 1117 article-title: Variability of seasonally integrated normalized difference vegetation index across the North Slope of Alaska in the 1990s publication-title: Int. J. Remote Sens. – volume: 114 year: 2009 article-title: Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST publication-title: J. Geophys. Res. – start-page: 549 year: 2008 – volume: 112 year: 2007 article-title: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers publication-title: J. Geophys. Res. – volume: 32 start-page: 565 year: 1989a end-page: 571 article-title: Simultaneous heat and water model of a freezing snow‐residue‐soil system I, Theory and development publication-title: Trans. ASAE – volume: 4 issue: 4 year: 2009 article-title: Change in frozen ground and co‐environmental impacts in the Source Area of the Yellow River on northeastern Qinghai‐Tibet Plateau, China publication-title: Environ. Res. Lett. – volume: 375 start-page: 438 year: 2009 end-page: 449 article-title: The influence of freeze‐thaw cycles of active soil layer on surface runoff in a permafrost watershed publication-title: J. Hydrol. – volume: 21 start-page: 41 issue: 1 year: 2013 end-page: 52 article-title: Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA) publication-title: Hydrogeol. J. – volume: 5 start-page: 191 year: 1994 end-page: 195 article-title: Changes in hydrogeologic regimes in permafrost regions due to climatic change publication-title: Permafrost Periglacial Process. – volume: 25 start-page: 2531 year: 2011 end-page: 2541 article-title: Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau publication-title: Hydrol. Processes – volume: 21 start-page: 136 year: 2010 end-page: 155 article-title: Thermal state of permafrost in Russia publication-title: Permafrost Periglacial Process. – volume: 109 start-page: 517 year: 2011 end-page: 534 article-title: Response of hydrological cycle to recent climate changes in the Tibetan Plateau publication-title: Clim. Change – volume: 117 year: 2012 article-title: Permafrost degradation as a control on hydrogeological regime shifts in a warming climate publication-title: J. Geophys. Res. – volume: 59 start-page: 2439 issue: 20 year: 2014 end-page: 2448 article-title: Simulated change in the near‐surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010 publication-title: Chin. Sci. Bull. – volume: 25 start-page: 2205 year: 1989 end-page: 2210 article-title: Comparison of soil freezing and soil water curve data for Windsor sandy loam publication-title: Water Resour. Res. – volume: 138 start-page: 313 year: 2014 end-page: 334 article-title: Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools publication-title: Earth Sci. Rev. – volume: 283 start-page: 41 year: 2003 end-page: 56 article-title: Land‐surface hydrological processes in the permafrost region of the eastern Tibetan Plateau publication-title: J. Hydrol. – volume: 61 start-page: 403 year: 2012 end-page: 423 article-title: Thermal hazards zonation and permafrost change over the Qinghai‐Tibet Plateau publication-title: Nat. Hazards – volume: 9 year: 2014 article-title: The impacts of recent permafrost thaw on land‐atmosphere greenhouse gas exchange publication-title: Environ. Res. Lett. – volume: 298 start-page: 2171 year: 2002 end-page: 2173 article-title: Increasing river discharge to the Arctic Ocean publication-title: Science – year: 2008 – volume: 202 start-page: 95 year: 1997 end-page: 107 article-title: Use of air permeability to estimate infiltrability of frozen soil publication-title: J. Hydrol. – volume: 76 start-page: 241 year: 2006 end-page: 264 article-title: The Arctic amplification debate publication-title: Clim. Change – volume: 103 start-page: 31 year: 2010 end-page: 44 article-title: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research publication-title: Earth Sci. Rev. – start-page: 480 year: 2007 – volume: 30 start-page: 33 year: 2010 end-page: 39 article-title: Effects of permafrost degradation on ecosystems publication-title: Acta Ecol. Sin. – volume: 85B start-page: 1 year: 2007 end-page: 19 article-title: Impact of Tibetan orography and heating on the summer flow over Asia publication-title: J. Meteorol. Soc. Jpn. – volume: 6 start-page: 607 year: 2012 end-page: 612 article-title: Thermal state of the active layer and permafrost along the Qinghai‐Xiang (Tibet) Railway from 2006 to 2010 publication-title: Cryosphere – volume: 43 start-page: 19 year: 2004 end-page: 31 article-title: Changes of climate and seasonally frozen ground over the past 30 years in Qinghai‐Xizang (Tibetan) Plateau, China publication-title: Global Planet. Change – volume: 2 start-page: 49 year: 2014 end-page: 68 article-title: Characteristics and changes of streamflow on the Tibetan Plateau: A review publication-title: J. Hydrol.: Reg. Stud. – volume: 19 start-page: 237 year: 2008 end-page: 254 article-title: Progress in permafrost hydrology in the new millennium publication-title: Permafrost Periglacial Process. – volume: 247 start-page: 192 year: 1990 end-page: 195 article-title: Mountains and arid climate of middle latitude publication-title: Science – volume: 26 start-page: 85 year: 2013a end-page: 109 article-title: Climate change on the Northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms publication-title: J. Clim. – volume: 39 start-page: 47 year: 2004 end-page: 53 article-title: Desertification and its relationship with permafrost degradation in Qinghai‐Xizang (Tibet) plateau publication-title: Cold Reg. Sci. Technol. – volume: 30 start-page: 2067 issue: 20 year: 2003 article-title: Greening of Arctic Alaska, 1981–2001 publication-title: Geophys. Res. Lett. – volume: 78 start-page: 199 issue: 3 year: 2000 end-page: 221 article-title: A numerical study on the impact of soil freezing on the continental‐scale cycle publication-title: J. Meteorol. Soc. Jpn. – volume: 24 start-page: 3272 issue: 13 year: 2011 end-page: 3293 article-title: Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources publication-title: J. Clim. – volume: 108 start-page: 158 issue: 3–4 year: 2011 end-page: 169 article-title: Permafrost publication-title: Earth Sci. Rev. – volume: 6 year: 2011 article-title: An observational 71‐year history of seasonally frozen ground changes in the Eurasian high latitudes publication-title: Environ. Res. Lett. – volume: 176 start-page: 38 year: 2013 end-page: 49 article-title: Global validation of MTCLIM and related algorithms for uncoupled ecological and hydrological model meteorological forcings publication-title: Agric. For. Meteorol. – volume: 70 start-page: 319 year: 1992 end-page: 351 article-title: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon publication-title: J. Meteorol. Soc. Jpn. – volume: 3 start-page: 693 year: 2004 end-page: 704 article-title: Water flow and heat transport in frozen soil: Numerical solution and freeze‐thaw applications publication-title: Vadose Zone – volume: 108 issue: D22 year: 2003 article-title: Simulation of spatial variability in snow and frozen soil publication-title: J. Geophys. Res. – volume: 32 start-page: 573 year: 1989b end-page: 578 article-title: Simultaneous heat and water model of a freezing snow‐residues‐soil system II, Field verification publication-title: Trans. ASAE – volume: 21 start-page: 1331 year: 2000 end-page: 1365 article-title: Global land cover classification at 1 km resolution using a decision tree classifier publication-title: Int. J. Remote Sens. – volume: 21 start-page: 457 year: 2003 end-page: 465 article-title: The soil moisture distribution, thawing‐freezing processes and their effects on the seasonal transition on the Qinghai‐Xizang (Tibetan) Plateau publication-title: J. Asian Earth Sci. – volume: 103 start-page: 11,303 issue: D10 year: 1998 end-page: 11,312 article-title: Simulation of freeze-thaw cycles in a general circulation model land surface scheme publication-title: J. Geophys. Res. – volume: 5 start-page: 219 year: 2011 end-page: 229 article-title: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty publication-title: Cryosphere – volume: 60 start-page: 13 year: 1996 end-page: 19 article-title: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic publication-title: Soil Sci. Soc. Am. J. – year: 2010 – volume: 13 start-page: 195 year: 1996 end-page: 206 article-title: Surface soil moisture parameterization of the VIC‐2 l model: Evaluation and modification publication-title: Global Planet. Change – volume: 2 start-page: 1289 year: 2003 end-page: 1294 – volume: 21 start-page: 5 year: 2013 end-page: 23 article-title: Permafrost and groundwater on the Qinghai‐Tibet Plateau and in northeast China publication-title: Hydrogeol. J. – volume: 502 start-page: 37 year: 2013b end-page: 52 article-title: The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China publication-title: J. Hydrol. – volume: 87 start-page: 68 year: 2013 end-page: 77 article-title: Representing permafrost properties in CoLM for the Qinghai‐Xizang (Tibetan) Plateau publication-title: Cold Reg. Sci. Technol. – volume: 36 year: 2009 article-title: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada publication-title: Geophys. Res. Lett. – volume: 107 issue: D23 year: 2002 article-title: Siberian Lena River hydrologic regime and recent change publication-title: J. Geophys. Res. – volume: 7 start-page: 937 year: 2006 end-page: 952 article-title: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale publication-title: J. Hydrometeorol. – volume: 72 start-page: 251 year: 2005 end-page: 298 article-title: Evidence and implications of recent climate change in northern Alaska and other Arctic regions publication-title: Clim. Change – volume: 111 year: 2006 article-title: Evaluation of surface water fluxes of the pan‐Arctic land region with a land surface model and ERA‐40 reanalysis publication-title: J. Geophys. Res. – volume: 104 start-page: 19,569 issue: D16 year: 1999 end-page: 19,585 article-title: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models publication-title: J. Geophys. Res. – volume: 8 start-page: 690 year: 2007 end-page: 701 article-title: Development and testing of a frozen soil parameterization for cold region studies publication-title: J. Hydrometeorol. – volume: 9 start-page: 1314 issue: 5 year: 1973 end-page: 1323 article-title: Analysis of coupled heat and mass transfer in partial frozen soil publication-title: Water Resour. Res. – volume: 99 start-page: 14,415 issue: D7 year: 1994 end-page: 14,428 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res. – volume: 72 start-page: 2091 year: 2014 end-page: 2099 article-title: The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai‐Xizang Plateau, China publication-title: Environ. Earth Sci. – volume: 21 start-page: 1807 issue: 8 year: 2008 end-page: 1828 article-title: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia publication-title: J. Clim. – volume: 104 start-page: 19,599 issue: D16 year: 1999 end-page: 19,610 article-title: Hydrological effects of frozen soils in the upper Mississippi River basin publication-title: J. Geophys. Res. – volume: 26 start-page: 3187 year: 2013 end-page: 3208 article-title: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau publication-title: J. Clim. – ident: e_1_2_7_54_1 doi: 10.1175/JCLI-D-12-00321.1 – start-page: 1289 volume-title: Permafrost: Proceedings of the 8th International Conference on Permafrost year: 2003 ident: e_1_2_7_69_1 – ident: e_1_2_7_4_1 doi: 10.1029/2011JF002143 – ident: e_1_2_7_6_1 doi: 10.1016/j.agrformet.2013.03.003 – ident: e_1_2_7_34_1 doi: 10.1016/j.earscirev.2014.06.006 – ident: e_1_2_7_15_1 doi: 10.1016/j.ejrh.2014.08.004 – ident: e_1_2_7_41_1 doi: 10.1002/ppp.3430050308 – ident: e_1_2_7_70_1 doi: 10.1175/JHM605.1 – ident: e_1_2_7_50_1 doi: 10.2136/sssaj1996.03615995006000010005x – ident: e_1_2_7_56_1 – ident: e_1_2_7_67_1 doi: 10.1016/j.earscirev.2010.07.002 – ident: e_1_2_7_43_1 doi: 10.1029/2008JD011559 – ident: e_1_2_7_8_1 doi: 10.5194/tc-5-219-2011 – ident: e_1_2_7_60_1 doi: 10.5194/tc-6-607-2012 – ident: e_1_2_7_38_1 doi: 10.2151/jmsj.85B.1 – ident: e_1_2_7_45_1 doi: 10.1126/science.1077445 – ident: e_1_2_7_51_1 doi: 10.1029/2008GL035822 – ident: e_1_2_7_17_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.earscirev.2011.06.007 – ident: e_1_2_7_58_1 doi: 10.1016/j.jhydrol.2009.06.046 – ident: e_1_2_7_62_1 doi: 10.2151/jmsj1965.70.1B_319 – ident: e_1_2_7_57_1 doi: 10.1175/2011JCLI3936.1 – ident: e_1_2_7_59_1 doi: 10.1002/ppp.613 – ident: e_1_2_7_30_1 doi: 10.1029/2003GL018268 – ident: e_1_2_7_36_1 doi: 10.1029/94JD00483 – ident: e_1_2_7_47_1 doi: 10.1007/s10584-005-9017-y – ident: e_1_2_7_3_1 doi: 10.1029/2007JD008525 – ident: e_1_2_7_10_1 doi: 10.1007/s10040-012-0927-2 – ident: e_1_2_7_68_1 doi: 10.1016/j.chnaes.2009.12.006 – ident: e_1_2_7_12_1 doi: 10.1029/2003/JD003575 – ident: e_1_2_7_27_1 doi: 10.1029/WR009i005p01314 – ident: e_1_2_7_48_1 doi: 10.1016/S0022-1694(97)00061-9 – ident: e_1_2_7_63_1 doi: 10.1029/2002JD002542 – ident: e_1_2_7_53_1 doi: 10.1029/2005JD006387 – ident: e_1_2_7_37_1 doi: 10.1016/0921-8181(95)00046-1 – ident: e_1_2_7_24_1 doi: 10.1002/hyp.8025 – ident: e_1_2_7_13_1 doi: 10.1175/JCLI-D-11-00738.1 – ident: e_1_2_7_19_1 doi: 10.13031/2013.31041 – ident: e_1_2_7_55_1 doi: 10.2151/jmsj1965.78.3_199 – ident: e_1_2_7_26_1 doi: 10.2136/vzj2004.0693 – ident: e_1_2_7_39_1 doi: 10.1126/science.247.4939.192 – ident: e_1_2_7_5_1 doi: 10.1029/WR025i010p02205 – ident: e_1_2_7_65_1 doi: 10.1016/S1367-9120(02)00069-X – ident: e_1_2_7_29_1 doi: 10.1007/s10584-005-5352-2 – ident: e_1_2_7_49_1 doi: 10.1029/97JD03630 – ident: e_1_2_7_71_1 doi: 10.1016/S0022-1694(03)00240-3 – ident: e_1_2_7_66_1 doi: 10.1016/j.coldregions.2004.01.002 – ident: e_1_2_7_72_1 doi: 10.1007/s11069-011-9923-4 – ident: e_1_2_7_18_1 doi: 10.13031/2013.31040 – ident: e_1_2_7_46_1 doi: 10.1002/ppp.683 – ident: e_1_2_7_40_1 doi: 10.1016/S0165-232X(01)00064-7 – ident: e_1_2_7_2_1 doi: 10.1175/2007JCLI1535.1 – ident: e_1_2_7_7_1 doi: 10.1017/CBO9780511805530 – ident: e_1_2_7_32_1 doi: 10.1007/s10040-012-0937-0 – ident: e_1_2_7_44_1 doi: 10.1175/JHM538.1 – ident: e_1_2_7_14_1 doi: 10.1016/j.jhydrol.2013.08.003 – ident: e_1_2_7_33_1 doi: 10.1029/1999JD900232 – ident: e_1_2_7_21_1 doi: 10.1002/9781118684931 – ident: e_1_2_7_52_1 doi: 10.1080/0143116021000020144 – ident: e_1_2_7_61_1 doi: 10.1016/j.coldregions.2012.12.004 – ident: e_1_2_7_31_1 doi: 10.1088/1748-9326/4/4/045206 – ident: e_1_2_7_35_1 doi: 10.1007/s12665-014-3117-9 – ident: e_1_2_7_73_1 doi: 10.1016/j.gloplacha.2004.02.003 – ident: e_1_2_7_9_1 doi: 10.1007/s13280-011-0162-4 – ident: e_1_2_7_23_1 doi: 10.1007/s11434-014-0347-x – ident: e_1_2_7_25_1 doi: 10.1080/014311600210209 – ident: e_1_2_7_11_1 doi: 10.1029/1999JD900337 – ident: e_1_2_7_22_1 doi: 10.5194/tc-6-407-2012 – ident: e_1_2_7_28_1 doi: 10.1088/1748-9326/9/4/045005 – start-page: 136 volume-title: Permafrost or Permanently Frozen Ground and Related Engineering Problems year: 1943 ident: e_1_2_7_42_1 – ident: e_1_2_7_64_1 doi: 10.1007/s10584-011-0099-4 – ident: e_1_2_7_20_1 doi: 10.1088/1748-9326/6/4/044024 |
| SSID | ssj0000803454 |
| Score | 2.5481615 |
| Snippet | Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8276 |
| SubjectTerms | Air temperature Base flow climate change Conduction heating Conductive heat transfer Daily temperatures Degradation Environmental degradation Evapotranspiration Frozen ground frozen soil degradation Frozen soils Geophysics Heat conduction Hydrologic processes hydrological modeling Hydrology Ice Ice melting Infiltration capacity Liquids Long-term changes Moisture content Permafrost Plateaus Precipitation Precipitation effects Seasonal variation Soil Soil (material) Soil degradation Soil layers Soil moisture Soil temperature Soil temperature effects Stations surface hydrology Temperature effects the Tibetan Plateau Trends |
| Title | Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau |
| URI | https://api.istex.fr/ark:/67375/WNG-WRKBG5KD-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015JD023193 https://www.proquest.com/docview/1713956328 https://www.proquest.com/docview/1722177782 https://www.proquest.com/docview/1753544687 |
| Volume | 120 |
| WOSCitedRecordID | wos000363425200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2169-8996 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000803454 issn: 2169-897X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2169-8996 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000803454 issn: 2169-897X databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBPbOWBF8anyL5kJNgLRJtjO3Ye2UoLG1RT1al9QIqc2BERVTIlLQL-es5JFroHJiEeE58sx_bFvzvbdwCvQotQz5TxpclcCjNURZ0l0uc8otxyaoTMmmQTcjJRi0V02Tnc3F2YNj5E73BzmtH8r52C66Q-_hM0FFcucT504csitgUDd68Kja_BcDq6-tR7WZCHGG9SoQU0jHwVyUV3-h0rOd6s4ta6NHBd_OMWdG6ia7P2jHb-t9WP4GFHneRdO00ewz1bPAHvMwJzWTV-dXJEzpY50mvz9BS-jKryly1IXeZLYlxAiTb3EtGFIfmqJt05EIKv6nWV6dSSrz9NV1leEORKUrg9IVsVZJYnFiGUXC6RbPX6GVyN3s_OPvhdIgZfixNOfaGNZQLhxJhIm4CnWlArU41sxLQKcWwVRdKjGmEtYUYYxgxyRGYkyywCInsO20VZ2BdAuLLcisyEUZZwdxArSI3OQoWgIlJhqQdvboYhTrso5S5ZxjJu4ysH8WYPevC6l75uo3P8Re6oGdFeSFff3Ik2KeL5ZBzPpxenY3ExjGce7N8Medwpcx1TNOTRjGSB8uBlX4xq6PZWdGHLtZMJ0LiT-Bl3yQgm0PxW0oO3zSS5s9Hx-Xg6FAGL6O6_ie_BA1fgPN-B3IftVbW2B3A__b7K6-qwU5FD2Jp_nPwGpoYPnA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBP0CLBC9-IwAAjwV4gGo7t2HmElXasXTVVndYHJMuNHRFRJShtEfDXc06y0D0wCfGY5GQ5Pl_88_lyB_Aqdgj1TNlQ2syXMENTNNlShpwnlDtOrZBZXWxCTqdqsUhO2zqn_l-YJj9E53DzllF_r72Be4f0wZ-sobh0ieOBz1-WsOvQ5zGTqgf9wWx4NuncLAhEjNe10CIaJ6FK5KINf8dGDnabuLQw9f0Y_7hEnbvsWi8-wzv_3e27cLvlTvK-mSj34Jor7kNwgshcVrVnneyTw1WO_FpfPYDPw6r85QqyLvMVsT6lRFN9iZjCknyzJm0kCMFb622VmdSRLz9t21heECRLUvhTIVcVZJ4vHWIoOV0h25rtQzgbfpwfHoVtKYbQiHechsJYxwTiibWJsRFPjaBOpgbpiBkVo3YVRdajBnFtyaywjFkkicxKljlERPYIekVZuMdAuHLciczGSbbkPhQrSq3JYoWoIlLhaABvLvSg0zZPuS-XsdJNhuVI745gAK876W9Nfo6_yO3XKu2ETPXVx7RJoc-nI30-G38YifFAzwPYu9C5bs15rSlu5XEjySIVwMvuMRqiP10xhSu3XibC7Z3E17hKRjCBG3AlA3hbz5IrO62PR7OBiFhCn_yb-Au4eTQ_mejJp-n4KdzyQt4PHsk96G2qrXsGN9Lvm3xdPW_t5TeHchJ9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBPsCG0F74RgQFGgr1ANBzbcfIIKy1boaqmovYByXJjW4uokilpEfDXc06y0D0wCfGY5GQ5Pl_88_lyB_Aytgj1LDGhNM6XMENT1G4pQ85Tyi2nRkjXFJuQk0myWKTTrs6p_xemzQ_RO9y8ZTTfa2_g9ty4wz9ZQ3HpEicDn78sZddhlyOK-5iu-fGkd7IgDjHeVEKLaJyGSSoXXfA7NnG43cClZWnXj_CPS8y5Ta7N0jO8_d-dvgO3Ouok79ppcheu2eIeBJ8RmMuq8auTA3K0ypFem6v78HVYlb9sQeoyXxHjE0q0tZeILgzJ1zXp4kAI3qo3ldOZJWc_TddYXhDkSlL4MyFbFWSWLy1CKJmukGz15gF8GX6YHX0Mu0IMoRZvOQ2FNpYJhBNjUm0inmlBrcw0shHTSYy6TSiSHtUIa0tmhGHMIEc4I5mzCIjsIewUZWEfAeGJ5VY4E6duyX0gVpQZ7eIEQUVkwtIAXl_oQWVdlnJfLGOl2vzKkdoewQBe9dLnbXaOv8gdNCrthXT1zUe0SaHmk5Gan47fj8R4oGYB7F_oXHXGXCuKG3ncRrIoCeBF_xjN0J-t6MKWGy8T4eZO4mtcJSOYwO13IgN408ySKzutTkanAxGxlD7-N_HncHM6GKpPx5PxE9jzMt4JHsl92FlXG_sUbmTf13ldPWuM5Te1iBDT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frozen+soil+degradation+and+its+effects+on+surface+hydrology+in+the+northern+Tibetan+Plateau&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Cuo%2C+Lan&rft.au=Zhang%2C+Yongxin&rft.au=Bohn%2C+Theodore+J.&rft.au=Zhao%2C+Lin&rft.date=2015-08-27&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=120&rft.issue=16&rft.spage=8276&rft.epage=8298&rft_id=info:doi/10.1002%2F2015JD023193&rft.externalDBID=10.1002%252F2015JD023193&rft.externalDocID=JGRD52391 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon |