Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau

Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of geophysical research. Atmospheres Ročník 120; číslo 16; s. 8276 - 8298
Hlavní autori: Cuo, Lan, Zhang, Yongxin, Bohn, Theodore J., Zhao, Lin, Li, Jialuo, Liu, Qiming, Zhou, Bingrong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington Blackwell Publishing Ltd 27.08.2015
Predmet:
ISSN:2169-897X, 2169-8996
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long‐term changes during 1962–2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May–September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation. Key Points Frozen soil is warming in the northern Tibetan Plateau Surface hydrology enhancement is dominated by precipitation change Frozen soil degradation plays secondary role in surface hydrology enhancement
AbstractList Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long‐term changes during 1962–2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May–September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation. Key Points Frozen soil is warming in the northern Tibetan Plateau Surface hydrology enhancement is dominated by precipitation change Frozen soil degradation plays secondary role in surface hydrology enhancement
Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962-2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long-term changes during 1962-2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May-September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation. Key Points * Frozen soil is warming in the northern Tibetan Plateau * Surface hydrology enhancement is dominated by precipitation change * Frozen soil degradation plays secondary role in surface hydrology enhancement
Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity (VIC) model for the period of 1962–2009. The VIC model resolved the seasonal cycle and temporal evolution of the observed soil temperatures and liquid soil moisture well. The simulated long‐term changes during 1962–2009 indicated mostly positive trends for both soil temperature and soil moisture, and negative trends for soil ice content at annual and monthly time scales, although differences existed among the stations, soil layers, and seasons. Increases in soil temperature were due mainly to increases in daily air temperature maxima and internal soil heat conduction, while decreases in soil ice content were related to the warming of frozen soil. For liquid soil moisture, increases in the cold months can be attributed to increases in soil temperature and enhanced soil ice melt while changes in the warm months were the results of competition between positive precipitation and negative soil temperature effects. Precipitation and liquid soil moisture were strongly correlated with evapotranspiration and runoff but had various degrees of correlations with base flow during May–September. Seasonally frozen stations displayed longer and more active hydrological processes than permafrost stations. Slight enhancement of the surface hydrological processes at the study stations was indicated, due to the combined effects of precipitation changes, which were dominant, and frozen soil degradation. Frozen soil is warming in the northern Tibetan Plateau Surface hydrology enhancement is dominated by precipitation change Frozen soil degradation plays secondary role in surface hydrology enhancement
Author Liu, Qiming
Zhou, Bingrong
Li, Jialuo
Cuo, Lan
Bohn, Theodore J.
Zhao, Lin
Zhang, Yongxin
Author_xml – sequence: 1
  givenname: Lan
  surname: Cuo
  fullname: Cuo, Lan
  email: lancuo@itpcas.ac.cn
  organization: Center for Excellence in Tibetan Plateau Earth Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Yongxin
  surname: Zhang
  fullname: Zhang, Yongxin
  organization: Research Applications Laboratory, National Center for Atmospheric Research, Colorado, Boulder, USA
– sequence: 3
  givenname: Theodore J.
  surname: Bohn
  fullname: Bohn, Theodore J.
  organization: School of Earth and Space Exploration, Arizona State University, Arizona, Tempe, USA
– sequence: 4
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  organization: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
– sequence: 5
  givenname: Jialuo
  surname: Li
  fullname: Li, Jialuo
  organization: Qinghai Meteorological Bureau, Xining, China
– sequence: 6
  givenname: Qiming
  surname: Liu
  fullname: Liu, Qiming
  organization: Haiyan Hydrological Station, Qinghai Hydrology and Water Resources Survey, Haiyan, China
– sequence: 7
  givenname: Bingrong
  surname: Zhou
  fullname: Zhou, Bingrong
  organization: Qinghai Meteorological Bureau, Xining, China
BookMark eNqNkV1rFTEQhhepYK298wcEvPHC1Xxsks2l9tijbVEpR-qFEOZsZtvUbVKTLHr89aYeKVJQzM0bhueZkJmHzU6IAZvmMaPPGaX8BadMHi0oF8yIe80uZ8q0vTFq5_auPz1o9nO-pPX0VHSy220-H6b4AwPJ0U_E4XkCB8XHQCA44ksmOI441KylPKcRBiQXG5fiFM83xAdSLpCEmGqkQFZ-jQUC-TBBQZgfNfdHmDLu_8695uPh69XBm_bk_fLtwcuTFiTtWCvBoZBUKecMON4NIBnqAbhkAno1rnXPlKQMGJVr4aQTwjFuRqfFiEZwsdc83fa9TvHrjLnYK58HnCYIGOdsmZZCdp3q9X-gnDOtdX_T9ckd9DLOKdSPVIoJI5XgfaWebakhxZwTjvY6-StIG8uovVmM_XMxFed38MGXXxMvCfz0N0lspW9-ws0_H7BHy9OF5MKwarVby-eC328tSF-s0kJLe_Zuac9Oj18t5fHCrsRPa5muUw
CitedBy_id crossref_primary_10_1007_s11629_019_5450_7
crossref_primary_10_1016_j_geoderma_2022_116195
crossref_primary_10_3390_rs15020455
crossref_primary_10_5194_hess_29_3703_2025
crossref_primary_10_1007_s00382_023_06919_z
crossref_primary_10_1007_s12665_025_12413_y
crossref_primary_10_1016_j_catena_2022_106836
crossref_primary_10_1016_j_catena_2024_108182
crossref_primary_10_1016_j_geoderma_2023_116634
crossref_primary_10_1016_j_jhydrol_2025_133437
crossref_primary_10_1016_j_jhydrol_2025_133678
crossref_primary_10_5194_bg_18_4211_2021
crossref_primary_10_3390_rs14133168
crossref_primary_10_1002_ldr_3575
crossref_primary_10_1016_j_rama_2019_06_001
crossref_primary_10_1002_ldr_4029
crossref_primary_10_1016_j_rse_2019_111269
crossref_primary_10_1016_j_jhydrol_2016_10_035
crossref_primary_10_1016_j_accre_2020_02_001
crossref_primary_10_1016_j_jhydrol_2022_128892
crossref_primary_10_1016_j_scitotenv_2022_155227
crossref_primary_10_1016_j_scitotenv_2017_06_188
crossref_primary_10_59717_j_xinn_geo_2024_100118
crossref_primary_10_3354_cr01601
crossref_primary_10_3390_rs15041168
crossref_primary_10_1007_s00704_020_03149_9
crossref_primary_10_1002_joc_6605
crossref_primary_10_1109_TGRS_2017_2705248
crossref_primary_10_1016_j_jhydrol_2018_07_078
crossref_primary_10_1007_s11769_020_1135_y
crossref_primary_10_1029_2017JD028260
crossref_primary_10_5194_hess_27_1477_2023
crossref_primary_10_1016_j_gloplacha_2025_104833
crossref_primary_10_1007_s00704_021_03664_3
crossref_primary_10_3390_w11071432
crossref_primary_10_5194_hess_22_351_2018
crossref_primary_10_3390_s23031215
crossref_primary_10_1016_j_gloplacha_2018_09_016
crossref_primary_10_1016_j_jhydrol_2022_127448
crossref_primary_10_3390_en15072649
crossref_primary_10_1016_j_rse_2024_114563
crossref_primary_10_1029_2022JD036551
crossref_primary_10_1029_2020JD032916
crossref_primary_10_1016_j_scitotenv_2018_08_369
crossref_primary_10_1016_j_ejrh_2025_102528
crossref_primary_10_3390_su15021183
crossref_primary_10_1016_j_scitotenv_2024_175465
crossref_primary_10_3390_atmos15040450
crossref_primary_10_1007_s00376_023_2203_x
crossref_primary_10_2136_vzj2017_05_0102
crossref_primary_10_1029_2022JG006987
crossref_primary_10_2136_vzj2016_01_0010
crossref_primary_10_1016_j_scitotenv_2022_159744
crossref_primary_10_1016_j_jhydrol_2020_125237
crossref_primary_10_1038_s41598_018_30320_0
crossref_primary_10_1016_j_catena_2024_108124
crossref_primary_10_1002_2017JD027691
crossref_primary_10_1002_ppp_2049
crossref_primary_10_1016_j_jhydrol_2020_125484
crossref_primary_10_1007_s00382_022_06197_1
crossref_primary_10_1016_j_jhydrol_2022_128796
crossref_primary_10_1002_ppp_2287
crossref_primary_10_1016_j_jhydrol_2018_01_050
crossref_primary_10_1007_s10584_023_03522_3
crossref_primary_10_1016_j_accre_2017_07_002
crossref_primary_10_1007_s12665_022_10655_8
crossref_primary_10_1029_2022WR033075
crossref_primary_10_3390_w9090666
crossref_primary_10_1029_2020MS002189
crossref_primary_10_1002_hyp_13765
crossref_primary_10_1080_02626667_2020_1851374
crossref_primary_10_1002_esp_6063
crossref_primary_10_1029_2019WR024969
crossref_primary_10_3390_f12121726
crossref_primary_10_1029_2023JG007593
crossref_primary_10_3390_w12061812
crossref_primary_10_3390_rs15010055
crossref_primary_10_5194_hess_27_4409_2023
crossref_primary_10_5194_hess_27_2681_2023
crossref_primary_10_1016_j_aosl_2020_100007
crossref_primary_10_1002_hyp_14748
crossref_primary_10_1080_02626667_2022_2114834
crossref_primary_10_1029_2017JD028050
crossref_primary_10_5194_essd_13_4207_2021
crossref_primary_10_1016_j_accre_2022_03_004
crossref_primary_10_1016_j_scitotenv_2019_02_110
crossref_primary_10_1080_02626667_2019_1632459
crossref_primary_10_1002_2017JD027477
crossref_primary_10_3390_w14030372
crossref_primary_10_1016_j_jhydrol_2021_126668
crossref_primary_10_1038_s41598_017_04140_7
crossref_primary_10_1029_2024GL113679
crossref_primary_10_1016_j_jhydrol_2019_03_043
crossref_primary_10_1016_j_jhydrol_2023_129647
crossref_primary_10_1007_s00382_016_3469_9
crossref_primary_10_1016_j_catena_2020_104608
crossref_primary_10_1007_s00704_018_2529_y
crossref_primary_10_1016_j_geoderma_2021_115455
crossref_primary_10_1029_2020JD034064
crossref_primary_10_5194_bg_13_3533_2016
crossref_primary_10_1016_j_jhydrol_2025_133582
crossref_primary_10_3389_fpls_2022_974745
crossref_primary_10_3389_feart_2020_576838
crossref_primary_10_1016_j_scitotenv_2023_167136
crossref_primary_10_1016_j_geoderma_2024_116966
crossref_primary_10_1002_joc_5161
crossref_primary_10_1007_s10113_018_1407_6
crossref_primary_10_3390_rs13020180
crossref_primary_10_1016_j_palaeo_2020_109959
crossref_primary_10_3390_w15091692
crossref_primary_10_1016_j_coldregions_2022_103647
crossref_primary_10_1016_j_jhydrol_2023_130501
crossref_primary_10_1016_j_jhydrol_2018_06_024
crossref_primary_10_1007_s00704_020_03266_5
crossref_primary_10_1016_j_ecolind_2023_111462
crossref_primary_10_1016_j_jhydrol_2022_127894
crossref_primary_10_3390_rs13234829
crossref_primary_10_1016_j_quaint_2018_11_010
crossref_primary_10_1002_hyp_13311
crossref_primary_10_1029_2020MS002152
crossref_primary_10_1016_j_jhydrol_2025_132685
crossref_primary_10_1016_j_gloplacha_2018_01_009
crossref_primary_10_1016_j_scitotenv_2019_135632
crossref_primary_10_1016_j_jhydrol_2023_130581
crossref_primary_10_1175_JHM_D_16_0199_1
crossref_primary_10_1007_s00704_024_05334_6
crossref_primary_10_1016_j_jhydrol_2016_09_008
crossref_primary_10_3390_rs14235989
crossref_primary_10_1002_gj_4164
crossref_primary_10_1016_j_jhydrol_2018_11_068
crossref_primary_10_1016_j_scitotenv_2023_164914
crossref_primary_10_5194_tc_12_657_2018
crossref_primary_10_1016_j_ecolind_2019_105714
crossref_primary_10_1016_j_jhydrol_2024_132656
crossref_primary_10_1016_j_jhydrol_2020_124996
crossref_primary_10_1016_j_rama_2022_07_001
crossref_primary_10_1016_j_jhydrol_2024_132132
crossref_primary_10_5194_hess_25_2089_2021
crossref_primary_10_1111_sum_12910
crossref_primary_10_1016_j_rse_2022_113258
crossref_primary_10_3390_buildings15173155
crossref_primary_10_3390_rs13122356
Cites_doi 10.1175/JCLI-D-12-00321.1
10.1029/2011JF002143
10.1016/j.agrformet.2013.03.003
10.1016/j.earscirev.2014.06.006
10.1016/j.ejrh.2014.08.004
10.1002/ppp.3430050308
10.1175/JHM605.1
10.2136/sssaj1996.03615995006000010005x
10.1016/j.earscirev.2010.07.002
10.1029/2008JD011559
10.5194/tc-5-219-2011
10.5194/tc-6-607-2012
10.2151/jmsj.85B.1
10.1126/science.1077445
10.1029/2008GL035822
10.1016/j.earscirev.2011.06.007
10.1016/j.jhydrol.2009.06.046
10.2151/jmsj1965.70.1B_319
10.1175/2011JCLI3936.1
10.1002/ppp.613
10.1029/2003GL018268
10.1029/94JD00483
10.1007/s10584-005-9017-y
10.1029/2007JD008525
10.1007/s10040-012-0927-2
10.1016/j.chnaes.2009.12.006
10.1029/2003/JD003575
10.1029/WR009i005p01314
10.1016/S0022-1694(97)00061-9
10.1029/2002JD002542
10.1029/2005JD006387
10.1016/0921-8181(95)00046-1
10.1002/hyp.8025
10.1175/JCLI-D-11-00738.1
10.13031/2013.31041
10.2151/jmsj1965.78.3_199
10.2136/vzj2004.0693
10.1126/science.247.4939.192
10.1029/WR025i010p02205
10.1016/S1367-9120(02)00069-X
10.1007/s10584-005-5352-2
10.1029/97JD03630
10.1016/S0022-1694(03)00240-3
10.1016/j.coldregions.2004.01.002
10.1007/s11069-011-9923-4
10.13031/2013.31040
10.1002/ppp.683
10.1016/S0165-232X(01)00064-7
10.1175/2007JCLI1535.1
10.1017/CBO9780511805530
10.1007/s10040-012-0937-0
10.1175/JHM538.1
10.1016/j.jhydrol.2013.08.003
10.1029/1999JD900232
10.1002/9781118684931
10.1080/0143116021000020144
10.1016/j.coldregions.2012.12.004
10.1088/1748-9326/4/4/045206
10.1007/s12665-014-3117-9
10.1016/j.gloplacha.2004.02.003
10.1007/s13280-011-0162-4
10.1007/s11434-014-0347-x
10.1080/014311600210209
10.1029/1999JD900337
10.5194/tc-6-407-2012
10.1088/1748-9326/9/4/045005
10.1007/s10584-011-0099-4
10.1088/1748-9326/6/4/044024
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7QH
DOI 10.1002/2015JD023193
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Aqualine
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aqualine
DatabaseTitleList
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2169-8996
EndPage 8298
ExternalDocumentID 3812940081
10_1002_2015JD023193
JGRD52391
ark_67375_WNG_WRKBG5KD_T
Genre article
GeographicLocations Tibetan Plateau
China, People's Rep., Xizang, Tibetan Plateau
GeographicLocations_xml – name: Tibetan Plateau
– name: China, People's Rep., Xizang, Tibetan Plateau
GrantInformation_xml – fundername: Chinese Academy of Sciences
– fundername: National Center for Atmospheric Research (NCAR)'s Advanced Study Program (ASP)
– fundername: National Basic Research Program
  funderid: 2013CB956004
– fundername: National Natural Science Foundation of China
  funderid: 41190083
GroupedDBID 05W
0R~
1OC
33P
50Y
52M
5VS
702
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
BSCLL
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
~OA
1OB
AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7QH
ID FETCH-LOGICAL-a5041-5ade35066dd9ad24ca51e7ca2513a86fb7816501a105b3d5d33d129fd73fe9323
IEDL.DBID DRFUL
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363425200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-897X
IngestDate Thu Oct 02 07:09:55 EDT 2025
Tue Oct 07 09:40:48 EDT 2025
Wed Aug 13 09:45:48 EDT 2025
Sat Nov 29 02:33:27 EST 2025
Tue Nov 18 21:33:33 EST 2025
Sun Sep 21 06:18:35 EDT 2025
Tue Nov 11 03:31:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5041-5ade35066dd9ad24ca51e7ca2513a86fb7816501a105b3d5d33d129fd73fe9323
Notes Figures S1-S8 and Tables S1-S3
Chinese Academy of Sciences
ArticleID:JGRD52391
National Center for Atmospheric Research (NCAR)'s Advanced Study Program (ASP)
National Natural Science Foundation of China - No. 41190083
ark:/67375/WNG-WRKBG5KD-T
istex:FE639EB377F4733B4AD5B6163129B3CAF61C333E
National Basic Research Program - No. 2013CB956004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1713956328
PQPubID 54657
PageCount 23
ParticipantIDs proquest_miscellaneous_1753544687
proquest_miscellaneous_1722177782
proquest_journals_1713956328
crossref_primary_10_1002_2015JD023193
crossref_citationtrail_10_1002_2015JD023193
wiley_primary_10_1002_2015JD023193_JGRD52391
istex_primary_ark_67375_WNG_WRKBG5KD_T
PublicationCentury 2000
PublicationDate 27 August 2015
PublicationDateYYYYMMDD 2015-08-27
PublicationDate_xml – month: 08
  year: 2015
  text: 27 August 2015
  day: 27
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Atmospheres
PublicationTitleAlternate J. Geophys. Res. Atmos
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hansson, K., J. Simunek, M. Mizoguchi, L.-C. Laudin, and M. T. van Genuchten (2004), Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone, 3, 693-704.
Seyfried, M. S., and M. D. Murdock (1997), Use of air permeability to estimate infiltrability of frozen soil, J. Hydrol., 202, 95-107.
Bohn, T. J., B. Livneh, B. Nijssen, J. Oyler, S. W. Running, and D. P. Lettenmaier (2013), Global validation of MTCLIM and related algorithms for uncoupled ecological and hydrological model meteorological forcings, Agric. For. Meteorol., 176, 38-49, doi:10.1016/j.agrformet.2013.03.003.
Xiao, Y., L. Zhao, Y. Dai, R. Li, Q. Pang, and J. Yao (2013), Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau, Cold Reg. Sci. Technol., 87, 68-77.
Manabe, S., and A. J. Brocoli (1990), Mountains and arid climate of middle latitude, Science, 247, 192-195.
Cherkauer, K. A., and D. P. Lettenmaier (2003), Simulation of spatial variability in snow and frozen soil, J. Geophys. Res., 108(D22), 8858, doi:10.1029/2003/JD003575.
Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su (2013a), Climate change on the Northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms, J. Clim., 26, 85-109.
Flerchinger, G. N., and K. E. Saxton (1989b), Simultaneous heat and water model of a freezing snow-residues-soil system II, Field verification, Trans. ASAE, 32, 573-578.
Niu, G., and Z. Yang (2006), Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale, J. Hydrometeorol., 7, 937-952.
Woo, M., D. L. Kane, S. K. Carey, and D. Yang (2008), Progress in permafrost hydrology in the new millennium, Permafrost Periglacial Process., 19, 237-254.
Wu, Q., T. Zhang, and Y. Liu (2012), Thermal state of the active layer and permafrost along the Qinghai-Xiang (Tibet) Railway from 2006 to 2010, Cryosphere, 6, 607-612.
Brown, R. D., and D. A. Robinson (2011), Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty, Cryosphere, 5, 219-229.
Liang, X., D. P. Lettenmaier, and E. F. Wood (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 14,415-14,428, doi:10.1029/94JD00483.
Hinzman, L. D., et al. (2005), Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72, 251-298.
Harlan, R. L. (1973), Analysis of coupled heat and mass transfer in partial frozen soil, Water Resour. Res., 9(5), 1314-1323, doi:10.1029/WR009i005p01314.
Nan, S., P. Zhao, S. Yang, and J. Chen (2009), Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST, J. Geophys. Res., 114, D10104, doi:10.1029/2008JD011559.
Jin, H. J., R. X. He, G. D. Cheng, Q. B. Wu, S. L. Wang, L. Z. Lü, and X. L. Chang (2009), Change in frozen ground and co-environmental impacts in the Source Area of the Yellow River on northeastern Qinghai-Tibet Plateau, China, Environ. Res. Lett., 4(4), 045206.
Kane, D. L., K. Yoshikawa, and J. P. McNamara (2013), Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA), Hydrogeol. J., 21(1), 41-52.
Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, and S. Rahmstorf (2002), Increasing river discharge to the Arctic Ocean, Science, 298, 2171-2173.
Frauenfeld, O. W., and T. Zhang (2011), An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes, Environ. Res. Lett., 6, doi:10.1088/1748-9326/6/4/044024.
Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou (2011), Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Clim. Change, 109, 517-534, doi:10.1007/s10584-011-0099-4.
Cuo, L., Y. Zhang, Y. Gao, Z. Hao, and L. Cairang (2013b), The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China, J. Hydrol., 502, 37-52.
Zhang, Y., T. Ohata, and T. Kadota (2003), Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau, J. Hydrol., 283, 41-56.
Takata, K., and M. Kimoto (2000), A numerical study on the impact of soil freezing on the continental-scale cycle, J. Meteorol. Soc. Jpn., 78(3), 199-221.
St. Jacques, J.-M., and D. J. Sauchyn (2009), Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada, Geophys. Res. Lett., 36, L01401, doi:10.1029/2008GL035822.
Yanai, M., C. Li, and Z. Song (1992), Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon, J. Meteorol. Soc. Jpn., 70, 319-351.
Yang, M., F. E. Nelson, N. I. Shiklomanov, D. Guo, and G. Wan (2010), Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth Sci. Rev., 103, 31-44.
Guo, D., and H. Wang (2014), Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010, Chin. Sci. Bull., 59(20), 2439-2448.
Yang, M., T. Yao, X. Gou, T. Koike, and Y. He (2003), The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau, J. Asian Earth Sci., 21, 457-465.
Yang, M., S. Wang, T. Yao, X. Gou, A. Lu, and X. Guo (2004), Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau, Cold Reg. Sci. Technol., 39, 47-53.
Hansen, M., R. DeFries, J. R. G. Townshend, and R. Sohlberg (2000), Global land cover classification at 1 km resolution using a decision tree classifier, Int. J. Remote Sens., 21, 1331-1365.
Black, P. B., and A. R. Tice (1989), Comparison of soil freezing and soil water curve data for Windsor sandy loam, Water Resour. Res., 25, 2205-2210, doi:10.1029/WR025i010p02205.
Serreze, M. C., and J. A. Francis (2006), The Arctic amplification debate, Clim. Change, 76, 241-264.
Guo, D., M. Yang, and H. Wang (2011), Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau, Hydrol. Processes, 25, 2531-2541.
Romanovsky, V. E., et al. (2010), Thermal state of permafrost in Russia, Permafrost Periglacial Process., 21, 136-155.
Spaans, E. J. A., and J. M. Baker (1996), The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic, Soil Sci. Soc. Am. J., 60, 13-19.
Yang, Z., H. O. Yang, X. Xu, L. Zhao, M. Song, and C. Zhou (2010), Effects of permafrost degradation on ecosystems, Acta Ecol. Sin., 30, 33-39.
Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker (1999), A parameterization of snowpack and frozen ground intended for NCEP weather and climate models, J. Geophys. Res., 104(D16), 19,569-19,585, doi:10.1029/1999JD900232.
Gouttevin, I., G. Krinner, P. Ciais, J. Polcher, and C. Legout (2012), Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology, Cryosphere, 6, 407-430.
Yang, D., D. Kane, L. Hinzman, X. Zhang, T. Zhang, and H. Ye (2002), Siberian Lena River hydrologic regime and recent change, J. Geophys. Res., 107(D23), 4694, doi:10.1029/2002JD002542.
Adam, J. C., and D. P. Lettenmaier (2008), Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia, J. Clim., 21(8), 1807-1828.
Troy, T. J., J. Sheffield, and E. F. Wood (2011), Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources, J. Clim., 24(13), 3272-3293, doi:10.1175/2011JCLI3936.1.
Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo (2013), Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau, J. Clim., 26, 3187-3208.
French, H. M. (2007), The Periglacial Environment, 3rd ed., 480 pp., John Wiley, Sussex, England.
McCauley, C. A., D. M. White, M. R. Lilly, and D. M. Nyman (2002), A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol., 34, 117-125.
Slater, A. G., A. J. Pitman, and C. E. Desborough (1998), Simulation of freeze-thaw cycles in a general circulation model land surface scheme, J. Geophys. Res., 103(D10), 11,303-11,312.
Muller, S. W. (1943), Permafrost or Permanently Frozen Ground and Related Engineering Problems, Strategic Eng. Study, Spec. Rep., vol. 62, 136 pp., Off. Chief of Eng., Army, U. S., Washington, D. C. (Reprinted by J. W. Edwards, Ann Arbor, Mich., 231 pp., 1947).
Callaghan, T. V., C. E. Tweedie, and P. J. Webber (2011), Multi-decadal changes in tundra environments and ecosystems: The International Polar Year-Back to the Future Project (IPYBTF), Ambio, 40, 555-557.
Michel, F. A., and R. O. van Everdingen (1994), Changes in hydrogeologic regimes in permafrost regions due to climatic change, Permafrost Periglacial Process., 5, 191-195.
Dobinski, W. (2011), Permafrost, Earth Sci. Rev., 108(3-4), 158-169.
Su, F., J. C. Adam, K. E. Trenberth, and D. P. Lettenmaier (2006), Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis, J. Geophys. Res., 111, D05110, doi:10.1029/2005JD006387.
Li, R., et al. (2014), The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China, Environ. Earth Sci., 72, 2091-2099.
Bonan, G. (2008), Ecological Climatology, 549 pp., Cambridge Univ. Press, Cambridge, U. K.
Cuo, L., Y. Zhang, F. Zhu, and L. Liang (2014), Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol.: Reg. Stud., 2, 49-68.
Wang, G., H. Hu, and T. Li (2009), The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed, J. Hydrol., 375, 438-449.
Zhang, Z., and Q. Wu (2012), Thermal hazards zonation and permafrost chan
2012; 61
2014; 138
2013; 26
2013; 21
2006; 76
2010; 103
2004; 3
2009; 114
2010; 21
2014; 2
2004; 39
2003; 2
2007; 8
2003; 283
2014; 59
2007; 85B
1996; 60
2002; 107
2008; 21
2011; 24
2011; 25
2005; 72
2014; 9
2010; 30
2004; 43
1990; 247
2013; 87
2010
2000; 21
2002; 34
2008; 19
2011; 40
2002; 298
2006; 7
2008
2009; 375
2007
1996; 13
1999; 104
2011; 6
1989; 25
2011; 5
2003; 30
2006; 111
1989b; 32
1997; 202
2007; 112
2009; 36
1992; 70
2003; 108
1973; 9
2011; 109
2011; 108
2013a; 26
1943; 62
2000; 78
2003; 24
1994; 99
1989a; 32
1998; 103
2013; 176
2009; 4
2012; 6
2014; 72
2012; 117
1994; 5
2013b; 502
2003; 21
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Muller S. W. (e_1_2_7_42_1) 1943
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Zhang T. (e_1_2_7_69_1) 2003
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Frauenfeld, O. W., and T. Zhang (2011), An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes, Environ. Res. Lett., 6, doi:10.1088/1748-9326/6/4/044024.
– reference: Gouttevin, I., G. Krinner, P. Ciais, J. Polcher, and C. Legout (2012), Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology, Cryosphere, 6, 407-430.
– reference: Hinzman, L. D., et al. (2005), Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72, 251-298.
– reference: Wang, G., H. Hu, and T. Li (2009), The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed, J. Hydrol., 375, 438-449.
– reference: French, H. M. (2007), The Periglacial Environment, 3rd ed., 480 pp., John Wiley, Sussex, England.
– reference: Liu, Y., B. Hoskins, and M. Blackburn (2007), Impact of Tibetan orography and heating on the summer flow over Asia, J. Meteorol. Soc. Jpn., 85B, 1-19.
– reference: Hansen, M., R. DeFries, J. R. G. Townshend, and R. Sohlberg (2000), Global land cover classification at 1 km resolution using a decision tree classifier, Int. J. Remote Sens., 21, 1331-1365.
– reference: Liang, X., E. F. Wood, and D. P. Lettenmaier (1996), Surface soil moisture parameterization of the VIC-2 l model: Evaluation and modification, Global Planet. Change, 13, 195-206.
– reference: McCauley, C. A., D. M. White, M. R. Lilly, and D. M. Nyman (2002), A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Reg. Sci. Technol., 34, 117-125.
– reference: Stow, D., S. Daeschner, A. Hope, D. Douglas, A. Peterson, R. Myneni, L. Zhou, and W. C. Oechel (2003), Variability of seasonally integrated normalized difference vegetation index across the North Slope of Alaska in the 1990s, Int. J. Remote Sens., 24(5), 1111-1117.
– reference: Cuo, L., Y. Zhang, Y. Gao, Z. Hao, and L. Cairang (2013b), The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China, J. Hydrol., 502, 37-52.
– reference: Li, R., et al. (2014), The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China, Environ. Earth Sci., 72, 2091-2099.
– reference: Flerchinger, G. N., and K. E. Saxton (1989a), Simultaneous heat and water model of a freezing snow-residue-soil system I, Theory and development, Trans. ASAE, 32, 565-571.
– reference: Kurylyk, B. L., K. T. B. MacQuarrie, and J. M. McKenzie (2014), Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools, Earth Sci. Rev., 138, 313-334.
– reference: Yanai, M., C. Li, and Z. Song (1992), Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon, J. Meteorol. Soc. Jpn., 70, 319-351.
– reference: Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo (2013), Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau, J. Clim., 26, 3187-3208.
– reference: Adam, J. C., and D. P. Lettenmaier (2008), Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia, J. Clim., 21(8), 1807-1828.
– reference: Romanovsky, V. E., et al. (2010), Thermal state of permafrost in Russia, Permafrost Periglacial Process., 21, 136-155.
– reference: Michel, F. A., and R. O. van Everdingen (1994), Changes in hydrogeologic regimes in permafrost regions due to climatic change, Permafrost Periglacial Process., 5, 191-195.
– reference: Seyfried, M. S., and M. D. Murdock (1997), Use of air permeability to estimate infiltrability of frozen soil, J. Hydrol., 202, 95-107.
– reference: Xiao, Y., L. Zhao, Y. Dai, R. Li, Q. Pang, and J. Yao (2013), Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau, Cold Reg. Sci. Technol., 87, 68-77.
– reference: Yang, M., F. E. Nelson, N. I. Shiklomanov, D. Guo, and G. Wan (2010), Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth Sci. Rev., 103, 31-44.
– reference: Hansson, K., J. Simunek, M. Mizoguchi, L.-C. Laudin, and M. T. van Genuchten (2004), Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone, 3, 693-704.
– reference: Harlan, R. L. (1973), Analysis of coupled heat and mass transfer in partial frozen soil, Water Resour. Res., 9(5), 1314-1323, doi:10.1029/WR009i005p01314.
– reference: St. Jacques, J.-M., and D. J. Sauchyn (2009), Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada, Geophys. Res. Lett., 36, L01401, doi:10.1029/2008GL035822.
– reference: Brown, R. D., and D. A. Robinson (2011), Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty, Cryosphere, 5, 219-229.
– reference: Cherkauer, K. A., and D. P. Lettenmaier (1999), Hydrological effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res., 104(D16), 19,599-19,610, doi:10.1029/1999JD900337.
– reference: Bonan, G. (2008), Ecological Climatology, 549 pp., Cambridge Univ. Press, Cambridge, U. K.
– reference: Callaghan, T. V., C. E. Tweedie, and P. J. Webber (2011), Multi-decadal changes in tundra environments and ecosystems: The International Polar Year-Back to the Future Project (IPYBTF), Ambio, 40, 555-557.
– reference: Zhang, X., S. Sun, and Y. Xue (2007), Development and testing of a frozen soil parameterization for cold region studies, J. Hydrometeorol., 8, 690-701.
– reference: Bense, V. F., H. Kooi, G. Ferguson, and T. Read (2012), Permafrost degradation as a control on hydrogeological regime shifts in a warming climate, J. Geophys. Res., 117, F03036, doi:10.1029/2011JF002143.
– reference: Guo, D., M. Yang, and H. Wang (2011), Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau, Hydrol. Processes, 25, 2531-2541.
– reference: Cherkauer, K. A., and D. P. Lettenmaier (2003), Simulation of spatial variability in snow and frozen soil, J. Geophys. Res., 108(D22), 8858, doi:10.1029/2003/JD003575.
– reference: Wu, Q., T. Zhang, and Y. Liu (2012), Thermal state of the active layer and permafrost along the Qinghai-Xiang (Tibet) Railway from 2006 to 2010, Cryosphere, 6, 607-612.
– reference: Spaans, E. J. A., and J. M. Baker (1996), The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic, Soil Sci. Soc. Am. J., 60, 13-19.
– reference: Dobinski, W. (2011), Permafrost, Earth Sci. Rev., 108(3-4), 158-169.
– reference: Zhao, L., C. L. Ping, D. Q. Yang, G. D. Cheng, Y. J. Ding, and S. Y. Liu (2004), Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China, Global Planet. Change, 43, 19-31.
– reference: Hayes, D. J., D. W. Kicklighter, A. D. McGuire, M. Chen, Q. Zhuang, F. Yuan, J. M. Melillo, and S. D. Wullschleger (2014), The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange, Environ. Res. Lett., 9, 045005, doi:10.1088/1748-9326/9/4/045005.
– reference: Troy, T. J., J. Sheffield, and E. F. Wood (2011), Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources, J. Clim., 24(13), 3272-3293, doi:10.1175/2011JCLI3936.1.
– reference: Adam, J. C., I. Haddeland, F. Su, and D. P. Lettenmaier (2007), Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers, J. Geophys. Res., 112, D24114, doi:10.1029/2007JD008525.
– reference: Yang, M., S. Wang, T. Yao, X. Gou, A. Lu, and X. Guo (2004), Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau, Cold Reg. Sci. Technol., 39, 47-53.
– reference: Yang, Z., H. O. Yang, X. Xu, L. Zhao, M. Song, and C. Zhou (2010), Effects of permafrost degradation on ecosystems, Acta Ecol. Sin., 30, 33-39.
– reference: Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou (2011), Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Clim. Change, 109, 517-534, doi:10.1007/s10584-011-0099-4.
– reference: Takata, K., and M. Kimoto (2000), A numerical study on the impact of soil freezing on the continental-scale cycle, J. Meteorol. Soc. Jpn., 78(3), 199-221.
– reference: Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, and S. Rahmstorf (2002), Increasing river discharge to the Arctic Ocean, Science, 298, 2171-2173.
– reference: Serreze, M. C., and J. A. Francis (2006), The Arctic amplification debate, Clim. Change, 76, 241-264.
– reference: Kane, D. L., K. Yoshikawa, and J. P. McNamara (2013), Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA), Hydrogeol. J., 21(1), 41-52.
– reference: Muller, S. W. (1943), Permafrost or Permanently Frozen Ground and Related Engineering Problems, Strategic Eng. Study, Spec. Rep., vol. 62, 136 pp., Off. Chief of Eng., Army, U. S., Washington, D. C. (Reprinted by J. W. Edwards, Ann Arbor, Mich., 231 pp., 1947).
– reference: Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su (2013a), Climate change on the Northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms, J. Clim., 26, 85-109.
– reference: Liang, X., D. P. Lettenmaier, and E. F. Wood (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 14,415-14,428, doi:10.1029/94JD00483.
– reference: Niu, G., and Z. Yang (2006), Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale, J. Hydrometeorol., 7, 937-952.
– reference: Zhang, Z., and Q. Wu (2012), Thermal hazards zonation and permafrost change over the Qinghai-Tibet Plateau, Nat. Hazards, 61, 403-423.
– reference: Guo, D., and H. Wang (2014), Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010, Chin. Sci. Bull., 59(20), 2439-2448.
– reference: Su, F., J. C. Adam, K. E. Trenberth, and D. P. Lettenmaier (2006), Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis, J. Geophys. Res., 111, D05110, doi:10.1029/2005JD006387.
– reference: Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker (1999), A parameterization of snowpack and frozen ground intended for NCEP weather and climate models, J. Geophys. Res., 104(D16), 19,569-19,585, doi:10.1029/1999JD900232.
– reference: Manabe, S., and A. J. Brocoli (1990), Mountains and arid climate of middle latitude, Science, 247, 192-195.
– reference: Yang, M., T. Yao, X. Gou, T. Koike, and Y. He (2003), The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau, J. Asian Earth Sci., 21, 457-465.
– reference: Flerchinger, G. N., and K. E. Saxton (1989b), Simultaneous heat and water model of a freezing snow-residues-soil system II, Field verification, Trans. ASAE, 32, 573-578.
– reference: Black, P. B., and A. R. Tice (1989), Comparison of soil freezing and soil water curve data for Windsor sandy loam, Water Resour. Res., 25, 2205-2210, doi:10.1029/WR025i010p02205.
– reference: Cheng, G., and H. Jin (2013), Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China, Hydrogeol. J., 21, 5-23.
– reference: Slater, A. G., A. J. Pitman, and C. E. Desborough (1998), Simulation of freeze-thaw cycles in a general circulation model land surface scheme, J. Geophys. Res., 103(D10), 11,303-11,312.
– reference: Zhang, Y., T. Ohata, and T. Kadota (2003), Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau, J. Hydrol., 283, 41-56.
– reference: Jia, G. J., H. E. Epstein, and D. A. Walker (2003), Greening of Arctic Alaska, 1981-2001, Geophys. Res. Lett., 30(20), 2067, doi:10.1029/2003GL018268.
– reference: Yang, D., D. Kane, L. Hinzman, X. Zhang, T. Zhang, and H. Ye (2002), Siberian Lena River hydrologic regime and recent change, J. Geophys. Res., 107(D23), 4694, doi:10.1029/2002JD002542.
– reference: Bohn, T. J., B. Livneh, B. Nijssen, J. Oyler, S. W. Running, and D. P. Lettenmaier (2013), Global validation of MTCLIM and related algorithms for uncoupled ecological and hydrological model meteorological forcings, Agric. For. Meteorol., 176, 38-49, doi:10.1016/j.agrformet.2013.03.003.
– reference: Cuo, L., Y. Zhang, F. Zhu, and L. Liang (2014), Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol.: Reg. Stud., 2, 49-68.
– reference: Jin, H. J., R. X. He, G. D. Cheng, Q. B. Wu, S. L. Wang, L. Z. Lü, and X. L. Chang (2009), Change in frozen ground and co-environmental impacts in the Source Area of the Yellow River on northeastern Qinghai-Tibet Plateau, China, Environ. Res. Lett., 4(4), 045206.
– reference: Nan, S., P. Zhao, S. Yang, and J. Chen (2009), Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST, J. Geophys. Res., 114, D10104, doi:10.1029/2008JD011559.
– reference: Woo, M., D. L. Kane, S. K. Carey, and D. Yang (2008), Progress in permafrost hydrology in the new millennium, Permafrost Periglacial Process., 19, 237-254.
– volume: 40
  start-page: 555
  year: 2011
  end-page: 557
  article-title: Multi‐decadal changes in tundra environments and ecosystems: The International Polar Year‐Back to the Future Project (IPYBTF)
  publication-title: Ambio
– volume: 34
  start-page: 117
  year: 2002
  end-page: 125
  article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 62
  start-page: 136
  year: 1943
– volume: 6
  start-page: 407
  year: 2012
  end-page: 430
  article-title: Multi‐scale validation of a new soil freezing scheme for a land‐surface model with physically‐based hydrology
  publication-title: Cryosphere
– volume: 24
  start-page: 1111
  issue: 5
  year: 2003
  end-page: 1117
  article-title: Variability of seasonally integrated normalized difference vegetation index across the North Slope of Alaska in the 1990s
  publication-title: Int. J. Remote Sens.
– volume: 114
  year: 2009
  article-title: Springtime tropospheric temperature over the Tibetan Plateau and evolution of the tropical Pacific SST
  publication-title: J. Geophys. Res.
– start-page: 549
  year: 2008
– volume: 112
  year: 2007
  article-title: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers
  publication-title: J. Geophys. Res.
– volume: 32
  start-page: 565
  year: 1989a
  end-page: 571
  article-title: Simultaneous heat and water model of a freezing snow‐residue‐soil system I, Theory and development
  publication-title: Trans. ASAE
– volume: 4
  issue: 4
  year: 2009
  article-title: Change in frozen ground and co‐environmental impacts in the Source Area of the Yellow River on northeastern Qinghai‐Tibet Plateau, China
  publication-title: Environ. Res. Lett.
– volume: 375
  start-page: 438
  year: 2009
  end-page: 449
  article-title: The influence of freeze‐thaw cycles of active soil layer on surface runoff in a permafrost watershed
  publication-title: J. Hydrol.
– volume: 21
  start-page: 41
  issue: 1
  year: 2013
  end-page: 52
  article-title: Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA)
  publication-title: Hydrogeol. J.
– volume: 5
  start-page: 191
  year: 1994
  end-page: 195
  article-title: Changes in hydrogeologic regimes in permafrost regions due to climatic change
  publication-title: Permafrost Periglacial Process.
– volume: 25
  start-page: 2531
  year: 2011
  end-page: 2541
  article-title: Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau
  publication-title: Hydrol. Processes
– volume: 21
  start-page: 136
  year: 2010
  end-page: 155
  article-title: Thermal state of permafrost in Russia
  publication-title: Permafrost Periglacial Process.
– volume: 109
  start-page: 517
  year: 2011
  end-page: 534
  article-title: Response of hydrological cycle to recent climate changes in the Tibetan Plateau
  publication-title: Clim. Change
– volume: 117
  year: 2012
  article-title: Permafrost degradation as a control on hydrogeological regime shifts in a warming climate
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 2439
  issue: 20
  year: 2014
  end-page: 2448
  article-title: Simulated change in the near‐surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010
  publication-title: Chin. Sci. Bull.
– volume: 25
  start-page: 2205
  year: 1989
  end-page: 2210
  article-title: Comparison of soil freezing and soil water curve data for Windsor sandy loam
  publication-title: Water Resour. Res.
– volume: 138
  start-page: 313
  year: 2014
  end-page: 334
  article-title: Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools
  publication-title: Earth Sci. Rev.
– volume: 283
  start-page: 41
  year: 2003
  end-page: 56
  article-title: Land‐surface hydrological processes in the permafrost region of the eastern Tibetan Plateau
  publication-title: J. Hydrol.
– volume: 61
  start-page: 403
  year: 2012
  end-page: 423
  article-title: Thermal hazards zonation and permafrost change over the Qinghai‐Tibet Plateau
  publication-title: Nat. Hazards
– volume: 9
  year: 2014
  article-title: The impacts of recent permafrost thaw on land‐atmosphere greenhouse gas exchange
  publication-title: Environ. Res. Lett.
– volume: 298
  start-page: 2171
  year: 2002
  end-page: 2173
  article-title: Increasing river discharge to the Arctic Ocean
  publication-title: Science
– year: 2008
– volume: 202
  start-page: 95
  year: 1997
  end-page: 107
  article-title: Use of air permeability to estimate infiltrability of frozen soil
  publication-title: J. Hydrol.
– volume: 76
  start-page: 241
  year: 2006
  end-page: 264
  article-title: The Arctic amplification debate
  publication-title: Clim. Change
– volume: 103
  start-page: 31
  year: 2010
  end-page: 44
  article-title: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research
  publication-title: Earth Sci. Rev.
– start-page: 480
  year: 2007
– volume: 30
  start-page: 33
  year: 2010
  end-page: 39
  article-title: Effects of permafrost degradation on ecosystems
  publication-title: Acta Ecol. Sin.
– volume: 85B
  start-page: 1
  year: 2007
  end-page: 19
  article-title: Impact of Tibetan orography and heating on the summer flow over Asia
  publication-title: J. Meteorol. Soc. Jpn.
– volume: 6
  start-page: 607
  year: 2012
  end-page: 612
  article-title: Thermal state of the active layer and permafrost along the Qinghai‐Xiang (Tibet) Railway from 2006 to 2010
  publication-title: Cryosphere
– volume: 43
  start-page: 19
  year: 2004
  end-page: 31
  article-title: Changes of climate and seasonally frozen ground over the past 30 years in Qinghai‐Xizang (Tibetan) Plateau, China
  publication-title: Global Planet. Change
– volume: 2
  start-page: 49
  year: 2014
  end-page: 68
  article-title: Characteristics and changes of streamflow on the Tibetan Plateau: A review
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 19
  start-page: 237
  year: 2008
  end-page: 254
  article-title: Progress in permafrost hydrology in the new millennium
  publication-title: Permafrost Periglacial Process.
– volume: 247
  start-page: 192
  year: 1990
  end-page: 195
  article-title: Mountains and arid climate of middle latitude
  publication-title: Science
– volume: 26
  start-page: 85
  year: 2013a
  end-page: 109
  article-title: Climate change on the Northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms
  publication-title: J. Clim.
– volume: 39
  start-page: 47
  year: 2004
  end-page: 53
  article-title: Desertification and its relationship with permafrost degradation in Qinghai‐Xizang (Tibet) plateau
  publication-title: Cold Reg. Sci. Technol.
– volume: 30
  start-page: 2067
  issue: 20
  year: 2003
  article-title: Greening of Arctic Alaska, 1981–2001
  publication-title: Geophys. Res. Lett.
– volume: 78
  start-page: 199
  issue: 3
  year: 2000
  end-page: 221
  article-title: A numerical study on the impact of soil freezing on the continental‐scale cycle
  publication-title: J. Meteorol. Soc. Jpn.
– volume: 24
  start-page: 3272
  issue: 13
  year: 2011
  end-page: 3293
  article-title: Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources
  publication-title: J. Clim.
– volume: 108
  start-page: 158
  issue: 3–4
  year: 2011
  end-page: 169
  article-title: Permafrost
  publication-title: Earth Sci. Rev.
– volume: 6
  year: 2011
  article-title: An observational 71‐year history of seasonally frozen ground changes in the Eurasian high latitudes
  publication-title: Environ. Res. Lett.
– volume: 176
  start-page: 38
  year: 2013
  end-page: 49
  article-title: Global validation of MTCLIM and related algorithms for uncoupled ecological and hydrological model meteorological forcings
  publication-title: Agric. For. Meteorol.
– volume: 70
  start-page: 319
  year: 1992
  end-page: 351
  article-title: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the summer monsoon
  publication-title: J. Meteorol. Soc. Jpn.
– volume: 3
  start-page: 693
  year: 2004
  end-page: 704
  article-title: Water flow and heat transport in frozen soil: Numerical solution and freeze‐thaw applications
  publication-title: Vadose Zone
– volume: 108
  issue: D22
  year: 2003
  article-title: Simulation of spatial variability in snow and frozen soil
  publication-title: J. Geophys. Res.
– volume: 32
  start-page: 573
  year: 1989b
  end-page: 578
  article-title: Simultaneous heat and water model of a freezing snow‐residues‐soil system II, Field verification
  publication-title: Trans. ASAE
– volume: 21
  start-page: 1331
  year: 2000
  end-page: 1365
  article-title: Global land cover classification at 1 km resolution using a decision tree classifier
  publication-title: Int. J. Remote Sens.
– volume: 21
  start-page: 457
  year: 2003
  end-page: 465
  article-title: The soil moisture distribution, thawing‐freezing processes and their effects on the seasonal transition on the Qinghai‐Xizang (Tibetan) Plateau
  publication-title: J. Asian Earth Sci.
– volume: 103
  start-page: 11,303
  issue: D10
  year: 1998
  end-page: 11,312
  article-title: Simulation of freeze-thaw cycles in a general circulation model land surface scheme
  publication-title: J. Geophys. Res.
– volume: 5
  start-page: 219
  year: 2011
  end-page: 229
  article-title: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty
  publication-title: Cryosphere
– volume: 60
  start-page: 13
  year: 1996
  end-page: 19
  article-title: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic
  publication-title: Soil Sci. Soc. Am. J.
– year: 2010
– volume: 13
  start-page: 195
  year: 1996
  end-page: 206
  article-title: Surface soil moisture parameterization of the VIC‐2 l model: Evaluation and modification
  publication-title: Global Planet. Change
– volume: 2
  start-page: 1289
  year: 2003
  end-page: 1294
– volume: 21
  start-page: 5
  year: 2013
  end-page: 23
  article-title: Permafrost and groundwater on the Qinghai‐Tibet Plateau and in northeast China
  publication-title: Hydrogeol. J.
– volume: 502
  start-page: 37
  year: 2013b
  end-page: 52
  article-title: The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China
  publication-title: J. Hydrol.
– volume: 87
  start-page: 68
  year: 2013
  end-page: 77
  article-title: Representing permafrost properties in CoLM for the Qinghai‐Xizang (Tibetan) Plateau
  publication-title: Cold Reg. Sci. Technol.
– volume: 36
  year: 2009
  article-title: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada
  publication-title: Geophys. Res. Lett.
– volume: 107
  issue: D23
  year: 2002
  article-title: Siberian Lena River hydrologic regime and recent change
  publication-title: J. Geophys. Res.
– volume: 7
  start-page: 937
  year: 2006
  end-page: 952
  article-title: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale
  publication-title: J. Hydrometeorol.
– volume: 72
  start-page: 251
  year: 2005
  end-page: 298
  article-title: Evidence and implications of recent climate change in northern Alaska and other Arctic regions
  publication-title: Clim. Change
– volume: 111
  year: 2006
  article-title: Evaluation of surface water fluxes of the pan‐Arctic land region with a land surface model and ERA‐40 reanalysis
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 19,569
  issue: D16
  year: 1999
  end-page: 19,585
  article-title: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 690
  year: 2007
  end-page: 701
  article-title: Development and testing of a frozen soil parameterization for cold region studies
  publication-title: J. Hydrometeorol.
– volume: 9
  start-page: 1314
  issue: 5
  year: 1973
  end-page: 1323
  article-title: Analysis of coupled heat and mass transfer in partial frozen soil
  publication-title: Water Resour. Res.
– volume: 99
  start-page: 14,415
  issue: D7
  year: 1994
  end-page: 14,428
  article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models
  publication-title: J. Geophys. Res.
– volume: 72
  start-page: 2091
  year: 2014
  end-page: 2099
  article-title: The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai‐Xizang Plateau, China
  publication-title: Environ. Earth Sci.
– volume: 21
  start-page: 1807
  issue: 8
  year: 2008
  end-page: 1828
  article-title: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia
  publication-title: J. Clim.
– volume: 104
  start-page: 19,599
  issue: D16
  year: 1999
  end-page: 19,610
  article-title: Hydrological effects of frozen soils in the upper Mississippi River basin
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 3187
  year: 2013
  end-page: 3208
  article-title: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau
  publication-title: J. Clim.
– ident: e_1_2_7_54_1
  doi: 10.1175/JCLI-D-12-00321.1
– start-page: 1289
  volume-title: Permafrost: Proceedings of the 8th International Conference on Permafrost
  year: 2003
  ident: e_1_2_7_69_1
– ident: e_1_2_7_4_1
  doi: 10.1029/2011JF002143
– ident: e_1_2_7_6_1
  doi: 10.1016/j.agrformet.2013.03.003
– ident: e_1_2_7_34_1
  doi: 10.1016/j.earscirev.2014.06.006
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ejrh.2014.08.004
– ident: e_1_2_7_41_1
  doi: 10.1002/ppp.3430050308
– ident: e_1_2_7_70_1
  doi: 10.1175/JHM605.1
– ident: e_1_2_7_50_1
  doi: 10.2136/sssaj1996.03615995006000010005x
– ident: e_1_2_7_56_1
– ident: e_1_2_7_67_1
  doi: 10.1016/j.earscirev.2010.07.002
– ident: e_1_2_7_43_1
  doi: 10.1029/2008JD011559
– ident: e_1_2_7_8_1
  doi: 10.5194/tc-5-219-2011
– ident: e_1_2_7_60_1
  doi: 10.5194/tc-6-607-2012
– ident: e_1_2_7_38_1
  doi: 10.2151/jmsj.85B.1
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1077445
– ident: e_1_2_7_51_1
  doi: 10.1029/2008GL035822
– ident: e_1_2_7_17_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.earscirev.2011.06.007
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jhydrol.2009.06.046
– ident: e_1_2_7_62_1
  doi: 10.2151/jmsj1965.70.1B_319
– ident: e_1_2_7_57_1
  doi: 10.1175/2011JCLI3936.1
– ident: e_1_2_7_59_1
  doi: 10.1002/ppp.613
– ident: e_1_2_7_30_1
  doi: 10.1029/2003GL018268
– ident: e_1_2_7_36_1
  doi: 10.1029/94JD00483
– ident: e_1_2_7_47_1
  doi: 10.1007/s10584-005-9017-y
– ident: e_1_2_7_3_1
  doi: 10.1029/2007JD008525
– ident: e_1_2_7_10_1
  doi: 10.1007/s10040-012-0927-2
– ident: e_1_2_7_68_1
  doi: 10.1016/j.chnaes.2009.12.006
– ident: e_1_2_7_12_1
  doi: 10.1029/2003/JD003575
– ident: e_1_2_7_27_1
  doi: 10.1029/WR009i005p01314
– ident: e_1_2_7_48_1
  doi: 10.1016/S0022-1694(97)00061-9
– ident: e_1_2_7_63_1
  doi: 10.1029/2002JD002542
– ident: e_1_2_7_53_1
  doi: 10.1029/2005JD006387
– ident: e_1_2_7_37_1
  doi: 10.1016/0921-8181(95)00046-1
– ident: e_1_2_7_24_1
  doi: 10.1002/hyp.8025
– ident: e_1_2_7_13_1
  doi: 10.1175/JCLI-D-11-00738.1
– ident: e_1_2_7_19_1
  doi: 10.13031/2013.31041
– ident: e_1_2_7_55_1
  doi: 10.2151/jmsj1965.78.3_199
– ident: e_1_2_7_26_1
  doi: 10.2136/vzj2004.0693
– ident: e_1_2_7_39_1
  doi: 10.1126/science.247.4939.192
– ident: e_1_2_7_5_1
  doi: 10.1029/WR025i010p02205
– ident: e_1_2_7_65_1
  doi: 10.1016/S1367-9120(02)00069-X
– ident: e_1_2_7_29_1
  doi: 10.1007/s10584-005-5352-2
– ident: e_1_2_7_49_1
  doi: 10.1029/97JD03630
– ident: e_1_2_7_71_1
  doi: 10.1016/S0022-1694(03)00240-3
– ident: e_1_2_7_66_1
  doi: 10.1016/j.coldregions.2004.01.002
– ident: e_1_2_7_72_1
  doi: 10.1007/s11069-011-9923-4
– ident: e_1_2_7_18_1
  doi: 10.13031/2013.31040
– ident: e_1_2_7_46_1
  doi: 10.1002/ppp.683
– ident: e_1_2_7_40_1
  doi: 10.1016/S0165-232X(01)00064-7
– ident: e_1_2_7_2_1
  doi: 10.1175/2007JCLI1535.1
– ident: e_1_2_7_7_1
  doi: 10.1017/CBO9780511805530
– ident: e_1_2_7_32_1
  doi: 10.1007/s10040-012-0937-0
– ident: e_1_2_7_44_1
  doi: 10.1175/JHM538.1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jhydrol.2013.08.003
– ident: e_1_2_7_33_1
  doi: 10.1029/1999JD900232
– ident: e_1_2_7_21_1
  doi: 10.1002/9781118684931
– ident: e_1_2_7_52_1
  doi: 10.1080/0143116021000020144
– ident: e_1_2_7_61_1
  doi: 10.1016/j.coldregions.2012.12.004
– ident: e_1_2_7_31_1
  doi: 10.1088/1748-9326/4/4/045206
– ident: e_1_2_7_35_1
  doi: 10.1007/s12665-014-3117-9
– ident: e_1_2_7_73_1
  doi: 10.1016/j.gloplacha.2004.02.003
– ident: e_1_2_7_9_1
  doi: 10.1007/s13280-011-0162-4
– ident: e_1_2_7_23_1
  doi: 10.1007/s11434-014-0347-x
– ident: e_1_2_7_25_1
  doi: 10.1080/014311600210209
– ident: e_1_2_7_11_1
  doi: 10.1029/1999JD900337
– ident: e_1_2_7_22_1
  doi: 10.5194/tc-6-407-2012
– ident: e_1_2_7_28_1
  doi: 10.1088/1748-9326/9/4/045005
– start-page: 136
  volume-title: Permafrost or Permanently Frozen Ground and Related Engineering Problems
  year: 1943
  ident: e_1_2_7_42_1
– ident: e_1_2_7_64_1
  doi: 10.1007/s10584-011-0099-4
– ident: e_1_2_7_20_1
  doi: 10.1088/1748-9326/6/4/044024
SSID ssj0000803454
Score 2.5481615
Snippet Frozen soil was simulated at six seasonally frozen and seven permafrost stations over the northern Tibetan Plateau using the Variable Infiltration Capacity...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8276
SubjectTerms Air temperature
Base flow
climate change
Conduction heating
Conductive heat transfer
Daily temperatures
Degradation
Environmental degradation
Evapotranspiration
Frozen ground
frozen soil degradation
Frozen soils
Geophysics
Heat conduction
Hydrologic processes
hydrological modeling
Hydrology
Ice
Ice melting
Infiltration capacity
Liquids
Long-term changes
Moisture content
Permafrost
Plateaus
Precipitation
Precipitation effects
Seasonal variation
Soil
Soil (material)
Soil degradation
Soil layers
Soil moisture
Soil temperature
Soil temperature effects
Stations
surface hydrology
Temperature effects
the Tibetan Plateau
Trends
Title Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau
URI https://api.istex.fr/ark:/67375/WNG-WRKBG5KD-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015JD023193
https://www.proquest.com/docview/1713956328
https://www.proquest.com/docview/1722177782
https://www.proquest.com/docview/1753544687
Volume 120
WOSCitedRecordID wos000363425200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBPbOWBF8anyL5kJNgLRJtjO3Ye2UoLG1RT1al9QIqc2BERVTIlLQL-es5JFroHJiEeE58sx_bFvzvbdwCvQotQz5TxpclcCjNURZ0l0uc8otxyaoTMmmQTcjJRi0V02Tnc3F2YNj5E73BzmtH8r52C66Q-_hM0FFcucT504csitgUDd68Kja_BcDq6-tR7WZCHGG9SoQU0jHwVyUV3-h0rOd6s4ta6NHBd_OMWdG6ia7P2jHb-t9WP4GFHneRdO00ewz1bPAHvMwJzWTV-dXJEzpY50mvz9BS-jKryly1IXeZLYlxAiTb3EtGFIfmqJt05EIKv6nWV6dSSrz9NV1leEORKUrg9IVsVZJYnFiGUXC6RbPX6GVyN3s_OPvhdIgZfixNOfaGNZQLhxJhIm4CnWlArU41sxLQKcWwVRdKjGmEtYUYYxgxyRGYkyywCInsO20VZ2BdAuLLcisyEUZZwdxArSI3OQoWgIlJhqQdvboYhTrso5S5ZxjJu4ysH8WYPevC6l75uo3P8Re6oGdFeSFff3Ik2KeL5ZBzPpxenY3ExjGce7N8Medwpcx1TNOTRjGSB8uBlX4xq6PZWdGHLtZMJ0LiT-Bl3yQgm0PxW0oO3zSS5s9Hx-Xg6FAGL6O6_ie_BA1fgPN-B3IftVbW2B3A__b7K6-qwU5FD2Jp_nPwGpoYPnA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBP0CLBC9-IwAAjwV4gGo7t2HmElXasXTVVndYHJMuNHRFRJShtEfDXc06y0D0wCfGY5GQ5Pl_88_lyB_Aqdgj1TNlQ2syXMENTNNlShpwnlDtOrZBZXWxCTqdqsUhO2zqn_l-YJj9E53DzllF_r72Be4f0wZ-sobh0ieOBz1-WsOvQ5zGTqgf9wWx4NuncLAhEjNe10CIaJ6FK5KINf8dGDnabuLQw9f0Y_7hEnbvsWi8-wzv_3e27cLvlTvK-mSj34Jor7kNwgshcVrVnneyTw1WO_FpfPYDPw6r85QqyLvMVsT6lRFN9iZjCknyzJm0kCMFb622VmdSRLz9t21heECRLUvhTIVcVZJ4vHWIoOV0h25rtQzgbfpwfHoVtKYbQiHechsJYxwTiibWJsRFPjaBOpgbpiBkVo3YVRdajBnFtyaywjFkkicxKljlERPYIekVZuMdAuHLciczGSbbkPhQrSq3JYoWoIlLhaABvLvSg0zZPuS-XsdJNhuVI745gAK876W9Nfo6_yO3XKu2ETPXVx7RJoc-nI30-G38YifFAzwPYu9C5bs15rSlu5XEjySIVwMvuMRqiP10xhSu3XibC7Z3E17hKRjCBG3AlA3hbz5IrO62PR7OBiFhCn_yb-Au4eTQ_mejJp-n4KdzyQt4PHsk96G2qrXsGN9Lvm3xdPW_t5TeHchJ9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBPsCG0F74RgQFGgr1ANBzbcfIIKy1boaqmovYByXJjW4uokilpEfDXc06y0D0wCfGY5GQ5Pl_88_lyB_Aytgj1LDGhNM6XMENT1G4pQ85Tyi2nRkjXFJuQk0myWKTTrs6p_xemzQ_RO9y8ZTTfa2_g9ty4wz9ZQ3HpEicDn78sZddhlyOK-5iu-fGkd7IgDjHeVEKLaJyGSSoXXfA7NnG43cClZWnXj_CPS8y5Ta7N0jO8_d-dvgO3Ouok79ppcheu2eIeBJ8RmMuq8auTA3K0ypFem6v78HVYlb9sQeoyXxHjE0q0tZeILgzJ1zXp4kAI3qo3ldOZJWc_TddYXhDkSlL4MyFbFWSWLy1CKJmukGz15gF8GX6YHX0Mu0IMoRZvOQ2FNpYJhBNjUm0inmlBrcw0shHTSYy6TSiSHtUIa0tmhGHMIEc4I5mzCIjsIewUZWEfAeGJ5VY4E6duyX0gVpQZ7eIEQUVkwtIAXl_oQWVdlnJfLGOl2vzKkdoewQBe9dLnbXaOv8gdNCrthXT1zUe0SaHmk5Gan47fj8R4oGYB7F_oXHXGXCuKG3ncRrIoCeBF_xjN0J-t6MKWGy8T4eZO4mtcJSOYwO13IgN408ySKzutTkanAxGxlD7-N_HncHM6GKpPx5PxE9jzMt4JHsl92FlXG_sUbmTf13ldPWuM5Te1iBDT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frozen+soil+degradation+and+its+effects+on+surface+hydrology+in+the+northern+Tibetan+Plateau&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Cuo%2C+Lan&rft.au=Zhang%2C+Yongxin&rft.au=Bohn%2C+Theodore+J.&rft.au=Zhao%2C+Lin&rft.date=2015-08-27&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=120&rft.issue=16&rft.spage=8276&rft.epage=8298&rft_id=info:doi/10.1002%2F2015JD023193&rft.externalDBID=10.1002%252F2015JD023193&rft.externalDocID=JGRD52391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon