Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system
Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formati...
Saved in:
| Published in: | Antimicrobial agents and chemotherapy Vol. 54; no. 1; p. 397 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.01.2010
|
| Subjects: | |
| ISSN: | 1098-6596, 1098-6596 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria. |
|---|---|
| AbstractList | Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria. Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria. |
| Author | Mayer, Oren Curtin, John J Fu, Weiling Lehman, Susan M Forster, Terri Donlan, Rodney M |
| Author_xml | – sequence: 1 givenname: Weiling surname: Fu fullname: Fu, Weiling organization: Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Mail stop C-16, 1600 Clifton Rd., Atlanta, GA 30333, USA – sequence: 2 givenname: Terri surname: Forster fullname: Forster, Terri – sequence: 3 givenname: Oren surname: Mayer fullname: Mayer, Oren – sequence: 4 givenname: John J surname: Curtin fullname: Curtin, John J – sequence: 5 givenname: Susan M surname: Lehman fullname: Lehman, Susan M – sequence: 6 givenname: Rodney M surname: Donlan fullname: Donlan, Rodney M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19822702$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkLtPwzAQhy1URB-wMSNvTCl2HnYyloqXVAkGmKOLfWkNiV1ip1JH_nNSKBLL3el-nz7pbkpG1lkk5JKzOedxfrNYLOeMCVFErDghE86KPBJZIUb_5jGZev_OBiwr2BkZ8yKPY8niCfm6BRWwM267gTVS5dRHANPQ2nU0bJBuO9yhDcZZ6mpaGVebpj2kLfwsqz198dhr1zoLngJ2_dpY54EOoYJBMdg9NZaCPdSdCZ2jrdPYUL_3AdtzclpD4_Hi2Gfk7f7udfkYrZ4fnpaLVQQZS0KUKq54nghVKQ211Bp0leY5w-EUqbkQdV1XCmSWCZ4qzUQhZKWk0piBVKmIZ-T617vt3GePPpSt8QqbBiy63pcySUQSc5kO5NWR7KsWdbntTAvdvvz7WvwNOCtzjA |
| CitedBy_id | crossref_primary_10_1128_AAC_01774_15 crossref_primary_10_3390_ijms21031061 crossref_primary_10_2217_fmb_15_14 crossref_primary_10_1007_s00580_016_2394_y crossref_primary_10_1134_S0026261724610340 crossref_primary_10_1002_alr_21270 crossref_primary_10_1016_j_colsurfb_2014_12_018 crossref_primary_10_5604_01_3001_0010_3792 crossref_primary_10_4315_0362_028X_JFP_13_183 crossref_primary_10_1038_s41598_024_53317_4 crossref_primary_10_1111_j_2042_7158_2011_01324_x crossref_primary_10_1038_s41598_019_42681_1 crossref_primary_10_1016_j_addr_2024_115472 crossref_primary_10_5004_dwt_2017_21585 crossref_primary_10_1128_aac_00728_23 crossref_primary_10_1128_spectrum_03797_23 crossref_primary_10_1080_21597081_2015_1096995 crossref_primary_10_1146_annurev_virology_091919_074222 crossref_primary_10_3390_antibiotics13020125 crossref_primary_10_1002_advs_202103645 crossref_primary_10_2147_IDR_S348700 crossref_primary_10_1002_bit_24630 crossref_primary_10_1111_1751_7915_12316 crossref_primary_10_3928_01477447_20111122_11 crossref_primary_10_1038_s41598_022_17275_z crossref_primary_10_2217_fmb_13_58 crossref_primary_10_3390_pathogens11020218 crossref_primary_10_1080_08927014_2020_1869725 crossref_primary_10_1007_s10096_012_1691_x crossref_primary_10_1111_jam_14535 crossref_primary_10_1371_journal_pone_0077617 crossref_primary_10_3390_antibiotics10010078 crossref_primary_10_1586_eri_11_90 crossref_primary_10_3390_v9110315 crossref_primary_10_1007_s00772_011_0950_y crossref_primary_10_1128_MMBR_00013_14 crossref_primary_10_1016_j_idc_2018_06_009 crossref_primary_10_1177_0954411918776691 crossref_primary_10_1128_microbiolspec_BAD_0006_2016 crossref_primary_10_1186_s12866_025_03854_3 crossref_primary_10_2217_fmb_2020_0301 crossref_primary_10_3390_ijms23031274 crossref_primary_10_3390_microorganisms13040913 crossref_primary_10_1111_bph_13706 crossref_primary_10_1016_j_micpath_2016_10_017 crossref_primary_10_1016_j_trsl_2018_12_002 crossref_primary_10_1371_journal_pone_0163966 crossref_primary_10_2217_fmb_13_47 crossref_primary_10_1586_14787210_2013_826990 crossref_primary_10_1016_j_matpr_2021_05_245 crossref_primary_10_1016_j_micpath_2021_104744 crossref_primary_10_3389_fmicb_2019_02537 crossref_primary_10_1007_s00018_018_2827_7 crossref_primary_10_1016_j_mib_2017_09_004 crossref_primary_10_1080_1040841X_2023_2167593 crossref_primary_10_1016_j_resmic_2016_10_009 crossref_primary_10_1038_srep43854 crossref_primary_10_1116_1_5089246 crossref_primary_10_3390_medicina58040519 crossref_primary_10_1111_j_1365_2672_2012_05432_x crossref_primary_10_1371_journal_pone_0124280 crossref_primary_10_1007_s11262_014_1130_4 crossref_primary_10_3389_fmicb_2016_01383 crossref_primary_10_3389_fmicb_2018_00875 crossref_primary_10_1093_cid_cir077 crossref_primary_10_2500_ajra_2014_28_4001 crossref_primary_10_3390_antibiotics14050511 crossref_primary_10_1016_j_microb_2025_100254 crossref_primary_10_1016_j_resmic_2023_104085 crossref_primary_10_1111_lam_13144 crossref_primary_10_1007_s11274_014_1693_1 crossref_primary_10_1111_j_1472_765X_2012_03205_x crossref_primary_10_1155_2014_543974 crossref_primary_10_1177_1479972317694621 crossref_primary_10_1002_alr_22046 crossref_primary_10_3390_ph8030559 crossref_primary_10_3389_fmicb_2024_1502593 crossref_primary_10_1111_j_1751_7915_2011_00294_x crossref_primary_10_3390_v11080749 crossref_primary_10_2217_fmb_2016_0081 crossref_primary_10_1016_j_watres_2024_121721 crossref_primary_10_1016_j_scitotenv_2023_168461 crossref_primary_10_3390_antibiotics10010003 crossref_primary_10_1128_AEM_00518_15 crossref_primary_10_1111_jam_14026 crossref_primary_10_3390_antibiotics14050526 crossref_primary_10_3390_v12040407 crossref_primary_10_1016_j_resmic_2011_06_010 crossref_primary_10_1016_j_emcon_2024_100440 crossref_primary_10_1016_j_colsurfb_2014_05_036 crossref_primary_10_1007_s10973_013_3494_4 crossref_primary_10_1093_jacamr_dlae017 crossref_primary_10_1186_s12985_025_02848_x crossref_primary_10_1016_j_trac_2020_116134 crossref_primary_10_1128_AAC_01426_15 crossref_primary_10_1038_s41585_019_0192_4 crossref_primary_10_1002_cbf_3966 crossref_primary_10_1111_eva_12364 crossref_primary_10_1128_spectrum_02149_24 crossref_primary_10_1111_1462_2920_15991 crossref_primary_10_1007_s11262_017_1445_z crossref_primary_10_3390_plants11223124 crossref_primary_10_1016_j_actbio_2023_01_001 crossref_primary_10_4315_0362_028X_JFP_11_197 crossref_primary_10_1116_1_4962266 crossref_primary_10_1371_journal_pone_0031698 crossref_primary_10_1080_17434440_2021_1939010 crossref_primary_10_1016_j_jvir_2014_06_009 crossref_primary_10_1139_W10_075 crossref_primary_10_1016_j_actbio_2016_11_070 crossref_primary_10_1016_j_tim_2019_04_006 crossref_primary_10_1038_nrd4000 crossref_primary_10_4167_jbv_2013_43_3_186 crossref_primary_10_1586_eri_11_168 crossref_primary_10_1208_s12248_019_0315_0 crossref_primary_10_1016_j_aquaculture_2017_11_007 crossref_primary_10_3389_fmicb_2022_796132 crossref_primary_10_1111_j_1574_695X_2010_00665_x crossref_primary_10_1002_jbm_a_35162 crossref_primary_10_1038_s41598_021_98457_z crossref_primary_10_1016_j_drup_2011_02_001 crossref_primary_10_1007_s00113_017_0374_6 crossref_primary_10_1007_s10439_014_1205_3 crossref_primary_10_1002_cjce_24497 crossref_primary_10_1016_j_jddst_2025_106851 crossref_primary_10_1111_1574_6968_12560 crossref_primary_10_1007_s40475_017_0125_3 crossref_primary_10_1007_s11274_016_2009_4 crossref_primary_10_3390_v13010051 crossref_primary_10_1128_JVI_00385_15 crossref_primary_10_1007_s00705_019_04309_7 crossref_primary_10_1111_j_1365_2672_2010_04928_x crossref_primary_10_1016_j_psj_2023_103125 crossref_primary_10_1038_s41598_023_42505_3 crossref_primary_10_3390_gels11030179 crossref_primary_10_1080_08927014_2011_593261 crossref_primary_10_1089_ees_2016_0288 crossref_primary_10_1016_j_jss_2012_11_048 crossref_primary_10_1007_s12223_019_00750_y crossref_primary_10_1186_s12941_021_00433_y crossref_primary_10_3382_ps_pew463 crossref_primary_10_1007_s12223_014_0333_3 crossref_primary_10_3389_fbioe_2022_869206 crossref_primary_10_3389_fmicb_2016_01114 crossref_primary_10_1080_17460441_2020_1803274 crossref_primary_10_1186_s12894_024_01590_w crossref_primary_10_1016_j_isci_2022_104372 crossref_primary_10_1128_MMBR_00069_15 crossref_primary_10_1038_s41578_021_00362_4 crossref_primary_10_1128_AEM_01434_14 crossref_primary_10_1016_j_mib_2013_04_007 crossref_primary_10_3390_microorganisms6040125 crossref_primary_10_22207_JPAM_11_3_05 crossref_primary_10_1128_AAC_02685_15 crossref_primary_10_1186_s12941_020_00389_5 crossref_primary_10_1016_j_jhin_2018_01_018 crossref_primary_10_3390_v6103778 crossref_primary_10_1128_AAC_03786_14 crossref_primary_10_14202_vetworld_2016_12_18 crossref_primary_10_1016_j_ijbiomac_2022_12_246 crossref_primary_10_1016_j_addr_2016_07_011 crossref_primary_10_1128_aac_00578_23 crossref_primary_10_3390_antibiotics10020130 crossref_primary_10_2217_fmb_2017_0261 crossref_primary_10_3389_fcimb_2021_758392 crossref_primary_10_1002_hsr2_70956 crossref_primary_10_1039_D3BM01383A crossref_primary_10_1134_S0003683816030042 crossref_primary_10_5812_archcid_107919 crossref_primary_10_3389_fmicb_2014_00184 crossref_primary_10_1111_jam_15462 crossref_primary_10_3390_antibiotics9080466 crossref_primary_10_3402_jom_v8_32157 crossref_primary_10_1007_s12275_011_1512_4 crossref_primary_10_1002_marc_202100255 crossref_primary_10_1093_cid_cit771 crossref_primary_10_1016_j_biotechadv_2020_107518 crossref_primary_10_3892_mmr_2014_2309 crossref_primary_10_1016_S0001_4079_19_31313_5 crossref_primary_10_1128_spectrum_02092_22 crossref_primary_10_3390_ph11020034 crossref_primary_10_1080_08927014_2018_1538412 crossref_primary_10_1080_17434440_2019_1661774 crossref_primary_10_1016_j_ijmm_2015_11_004 crossref_primary_10_1186_s12866_020_01891_8 crossref_primary_10_1371_journal_pone_0016963 crossref_primary_10_3389_fmicb_2019_01783 crossref_primary_10_1089_phage_2024_0005 crossref_primary_10_3390_microorganisms12091795 crossref_primary_10_1007_s10123_023_00420_7 crossref_primary_10_3389_fmicb_2017_01229 crossref_primary_10_3390_ijms221910436 crossref_primary_10_1089_jamp_2015_1233 crossref_primary_10_1002_jbm_a_36790 crossref_primary_10_1016_j_jcis_2018_03_105 crossref_primary_10_1016_j_micres_2024_127662 crossref_primary_10_1016_j_virusres_2017_07_015 crossref_primary_10_1016_j_bcab_2021_102011 crossref_primary_10_1111_jam_12809 crossref_primary_10_1128_CMR_00013_11 crossref_primary_10_1016_j_idc_2011_09_012 crossref_primary_10_1039_D0BM00659A crossref_primary_10_1039_D1BM01035B crossref_primary_10_3389_fcimb_2017_00049 crossref_primary_10_3389_fcimb_2018_00196 crossref_primary_10_1007_s44174_022_00035_y crossref_primary_10_1111_j_1574_695X_2010_00696_x crossref_primary_10_1097_PRS_0b013e31827e47cd crossref_primary_10_1002_gch2_201700068 crossref_primary_10_1007_s12602_011_9084_5 crossref_primary_10_3390_ijms25179472 crossref_primary_10_1007_s12250_019_00192_3 crossref_primary_10_1016_j_mtbio_2025_102225 crossref_primary_10_1007_s10311_025_01881_0 crossref_primary_10_1016_j_watres_2013_05_014 crossref_primary_10_1016_j_jbiosc_2020_02_001 crossref_primary_10_3390_microbiolres13010002 crossref_primary_10_1016_j_biotechadv_2018_11_013 crossref_primary_10_1038_nrurol_2012_68 crossref_primary_10_1371_journal_pone_0155003 crossref_primary_10_3389_fmicb_2024_1374466 crossref_primary_10_1073_pnas_1801013115 crossref_primary_10_1093_femsre_fuaa017 crossref_primary_10_3390_nano11051075 crossref_primary_10_1038_s41598_018_23418_y crossref_primary_10_3389_fcimb_2019_00037 crossref_primary_10_1063_5_0195165 crossref_primary_10_1007_s10096_011_1363_2 crossref_primary_10_1016_j_jcis_2018_07_107 crossref_primary_10_1111_jam_15420 crossref_primary_10_3390_coatings10010023 crossref_primary_10_1055_a_2436_7394 crossref_primary_10_1111_j_1476_5381_2011_01643_x |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/AAC.00669-09 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1098-6596 |
| ExternalDocumentID | 19822702 |
| Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
| GroupedDBID | --- .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 AAGFI ACGFO ADBBV AENEX AGNAY AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 J5H K-O KQ8 L7B LSO MVM NEJ NPM O9- OK1 P2P RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZGI ZXP ~A~ 7X8 |
| ID | FETCH-LOGICAL-a503t-4c1c1836cbcdaf7ddadb4880e9827d166fffbca755614cd06967bc7cde5a7c462 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 297 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272931200052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-6596 |
| IngestDate | Thu Sep 04 18:25:03 EDT 2025 Mon Jul 21 05:37:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a503t-4c1c1836cbcdaf7ddadb4880e9827d166fffbca755614cd06967bc7cde5a7c462 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1128/AAC.00669-09 |
| PMID | 19822702 |
| PQID | 733632174 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_733632174 pubmed_primary_19822702 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-01-01 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Antimicrobial agents and chemotherapy |
| PublicationTitleAlternate | Antimicrob Agents Chemother |
| PublicationYear | 2010 |
| References | 10530458 - Clin Infect Dis. 1999 Sep;29(3):621-5 8987490 - J Ind Microbiol. 1996 Jun;16(6):331-41 10856378 - Curr Microbiol. 2000 Aug;41(2):120-5 3905855 - J Clin Microbiol. 1985 Dec;22(6):996-1006 3145758 - Ann Inst Pasteur Virol. 1988 Oct-Dec;139(4):389-404 8585715 - Antimicrob Agents Chemother. 1995 Nov;39(11):2397-400 17718845 - Lett Appl Microbiol. 2007 Sep;45(3):313-7 19162482 - Trends Microbiol. 2009 Feb;17(2):66-72 11547890 - Can J Microbiol. 2001 Jul;47(7):680-4 9846739 - Microbiology. 1998 Nov;144 ( Pt 11):3039-47 11197610 - Arch Immunol Ther Exp (Warsz). 2000;48(6):547-51 15547279 - J Bacteriol. 2004 Dec;186(23):8066-73 11961556 - Nature. 2002 Apr 18;416(6882):740-3 11932229 - Clin Microbiol Rev. 2002 Apr;15(2):167-93 9632250 - Mol Microbiol. 1998 May;28(3):449-61 17526836 - Microbiology. 2007 Jun;153(Pt 6):1790-8 9605979 - Clin Diagn Lab Immunol. 1998 May;5(3):294-8 12121566 - Int J Dermatol. 2002 Jul;41(7):453-8 9878645 - N Engl J Med. 1999 Jan 7;340(1):48-50 11157931 - J Bacteriol. 2001 Feb;183(4):1195-204 8188579 - J Bacteriol. 1994 May;176(10):2773-80 17386003 - Annu Rev Phytopathol. 2007;45:245-62 17379808 - Science. 2007 Mar 23;315(5819):1709-12 9025292 - Microbiology. 1997 Jan;143 ( Pt 1):179-85 11375190 - Appl Environ Microbiol. 2001 Jun;67(6):2746-53 17592147 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 19005496 - ISME J. 2009 Mar;3(3):271-82 7728652 - Can J Microbiol. 1995 Jan;41(1):12-8 12867469 - J Bacteriol. 2003 Aug;185(15):4585-92 12233868 - MMWR Recomm Rep. 2002 Aug 9;51(RR-10):1-29 2455640 - Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):238-47 16569839 - Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75 15545062 - Biofouling. 2004 Jun;20(3):133-8 15812009 - Appl Environ Microbiol. 2005 Apr;71(4):1836-42 |
| References_xml | – reference: 9605979 - Clin Diagn Lab Immunol. 1998 May;5(3):294-8 – reference: 12121566 - Int J Dermatol. 2002 Jul;41(7):453-8 – reference: 3905855 - J Clin Microbiol. 1985 Dec;22(6):996-1006 – reference: 17592147 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 – reference: 9025292 - Microbiology. 1997 Jan;143 ( Pt 1):179-85 – reference: 15812009 - Appl Environ Microbiol. 2005 Apr;71(4):1836-42 – reference: 10530458 - Clin Infect Dis. 1999 Sep;29(3):621-5 – reference: 19005496 - ISME J. 2009 Mar;3(3):271-82 – reference: 12867469 - J Bacteriol. 2003 Aug;185(15):4585-92 – reference: 11932229 - Clin Microbiol Rev. 2002 Apr;15(2):167-93 – reference: 12233868 - MMWR Recomm Rep. 2002 Aug 9;51(RR-10):1-29 – reference: 11547890 - Can J Microbiol. 2001 Jul;47(7):680-4 – reference: 15545062 - Biofouling. 2004 Jun;20(3):133-8 – reference: 17718845 - Lett Appl Microbiol. 2007 Sep;45(3):313-7 – reference: 17386003 - Annu Rev Phytopathol. 2007;45:245-62 – reference: 11157931 - J Bacteriol. 2001 Feb;183(4):1195-204 – reference: 8188579 - J Bacteriol. 1994 May;176(10):2773-80 – reference: 8987490 - J Ind Microbiol. 1996 Jun;16(6):331-41 – reference: 16569839 - Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75 – reference: 9632250 - Mol Microbiol. 1998 May;28(3):449-61 – reference: 9846739 - Microbiology. 1998 Nov;144 ( Pt 11):3039-47 – reference: 3145758 - Ann Inst Pasteur Virol. 1988 Oct-Dec;139(4):389-404 – reference: 11197610 - Arch Immunol Ther Exp (Warsz). 2000;48(6):547-51 – reference: 9878645 - N Engl J Med. 1999 Jan 7;340(1):48-50 – reference: 17379808 - Science. 2007 Mar 23;315(5819):1709-12 – reference: 11961556 - Nature. 2002 Apr 18;416(6882):740-3 – reference: 7728652 - Can J Microbiol. 1995 Jan;41(1):12-8 – reference: 19162482 - Trends Microbiol. 2009 Feb;17(2):66-72 – reference: 15547279 - J Bacteriol. 2004 Dec;186(23):8066-73 – reference: 10856378 - Curr Microbiol. 2000 Aug;41(2):120-5 – reference: 2455640 - Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):238-47 – reference: 8585715 - Antimicrob Agents Chemother. 1995 Nov;39(11):2397-400 – reference: 17526836 - Microbiology. 2007 Jun;153(Pt 6):1790-8 – reference: 11375190 - Appl Environ Microbiol. 2001 Jun;67(6):2746-53 |
| SSID | ssj0006590 |
| Score | 2.482775 |
| Snippet | Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 397 |
| SubjectTerms | Bacteriophages - genetics Biofilms - growth & development Catheterization Colony Count, Microbial Culture Media Microscopy, Electron, Scanning Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - virology |
| Title | Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19822702 https://www.proquest.com/docview/733632174 |
| Volume | 54 |
| WOSCitedRecordID | wos000272931200052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAFHwCWhAXCuGrUNA7oJ66qu3Yu_YJhYqKA418aKvcov1sfcAb4qRSjvxz9nmd5lRx4LKyZFla6T2Px7uzMwBfnEgqJV3Bcp4Ilo81Z0qnhvFc5aUqnVW98fz1TzGdlrNZVQ_anG6QVW4xsQdq4zWtkZ-Sbd-Y-PPXxW9GoVG0uTokaDyGvXFgMtTUYrYzC-dFFc0IqpKFa77VvWfl6WRyRoouTnKhh7ll_405P_jP2b2EFwO5xEnshlfwyLYjeBrjJjcjeHYxbKSP4LiOltWbE7zcncDqTvAY652Z9eY1_PkW7Zz94jYgDxJ8kuYUA9fFwB1xMVhA-Ra9Q9VQAvgvvD8SiWqDdWfXxocpyg6lXa5vmtZ3EsPN3jOW7D2xaVG2NN41q6XHPp8Ho8v0G7g6_3559oMNsQ1MFsl4xXKd6gAUXCttpBPGSKMIJmxVZsKknDvnlJaCgjlzbRJecaG00MYWUuicZ2_hSetb-x4w_EwlOpO2cmWWqywJTWUro0Wp09Q6VRwCbssxD68F7XXI1vp1N78vyCG8iyWdL6J9xzwly0KRZB_-_fBHeB7VArTkcgR7LkCC_QT7-m7VdMvPfbuFcVpf_AVkVuOb |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacteriophage+cocktail+for+the+prevention+of+biofilm+formation+by+Pseudomonas+aeruginosa+on+catheters+in+an+in+vitro+model+system&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Fu%2C+Weiling&rft.au=Forster%2C+Terri&rft.au=Mayer%2C+Oren&rft.au=Curtin%2C+John+J&rft.date=2010-01-01&rft.eissn=1098-6596&rft.volume=54&rft.issue=1&rft.spage=397&rft_id=info:doi/10.1128%2FAAC.00669-09&rft_id=info%3Apmid%2F19822702&rft_id=info%3Apmid%2F19822702&rft.externalDocID=19822702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-6596&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-6596&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-6596&client=summon |