Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system

Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Antimicrobial agents and chemotherapy Ročník 54; číslo 1; s. 397
Hlavní autoři: Fu, Weiling, Forster, Terri, Mayer, Oren, Curtin, John J, Lehman, Susan M, Donlan, Rodney M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2010
Témata:
ISSN:1098-6596, 1098-6596
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.
AbstractList Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.
Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.
Author Mayer, Oren
Curtin, John J
Fu, Weiling
Lehman, Susan M
Forster, Terri
Donlan, Rodney M
Author_xml – sequence: 1
  givenname: Weiling
  surname: Fu
  fullname: Fu, Weiling
  organization: Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Mail stop C-16, 1600 Clifton Rd., Atlanta, GA 30333, USA
– sequence: 2
  givenname: Terri
  surname: Forster
  fullname: Forster, Terri
– sequence: 3
  givenname: Oren
  surname: Mayer
  fullname: Mayer, Oren
– sequence: 4
  givenname: John J
  surname: Curtin
  fullname: Curtin, John J
– sequence: 5
  givenname: Susan M
  surname: Lehman
  fullname: Lehman, Susan M
– sequence: 6
  givenname: Rodney M
  surname: Donlan
  fullname: Donlan, Rodney M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19822702$$D View this record in MEDLINE/PubMed
BookMark eNpNkLtPwzAQhy1URB-wMSNvTCl2HnYyloqXVAkGmKOLfWkNiV1ip1JH_nNSKBLL3el-nz7pbkpG1lkk5JKzOedxfrNYLOeMCVFErDghE86KPBJZIUb_5jGZev_OBiwr2BkZ8yKPY8niCfm6BRWwM267gTVS5dRHANPQ2nU0bJBuO9yhDcZZ6mpaGVebpj2kLfwsqz198dhr1zoLngJ2_dpY54EOoYJBMdg9NZaCPdSdCZ2jrdPYUL_3AdtzclpD4_Hi2Gfk7f7udfkYrZ4fnpaLVQQZS0KUKq54nghVKQ211Bp0leY5w-EUqbkQdV1XCmSWCZ4qzUQhZKWk0piBVKmIZ-T617vt3GePPpSt8QqbBiy63pcySUQSc5kO5NWR7KsWdbntTAvdvvz7WvwNOCtzjA
CitedBy_id crossref_primary_10_1128_AAC_01774_15
crossref_primary_10_3390_ijms21031061
crossref_primary_10_2217_fmb_15_14
crossref_primary_10_1007_s00580_016_2394_y
crossref_primary_10_1134_S0026261724610340
crossref_primary_10_1002_alr_21270
crossref_primary_10_1016_j_colsurfb_2014_12_018
crossref_primary_10_5604_01_3001_0010_3792
crossref_primary_10_4315_0362_028X_JFP_13_183
crossref_primary_10_1038_s41598_024_53317_4
crossref_primary_10_1111_j_2042_7158_2011_01324_x
crossref_primary_10_1038_s41598_019_42681_1
crossref_primary_10_1016_j_addr_2024_115472
crossref_primary_10_5004_dwt_2017_21585
crossref_primary_10_1128_aac_00728_23
crossref_primary_10_1128_spectrum_03797_23
crossref_primary_10_1080_21597081_2015_1096995
crossref_primary_10_1146_annurev_virology_091919_074222
crossref_primary_10_3390_antibiotics13020125
crossref_primary_10_1002_advs_202103645
crossref_primary_10_2147_IDR_S348700
crossref_primary_10_1002_bit_24630
crossref_primary_10_1111_1751_7915_12316
crossref_primary_10_3928_01477447_20111122_11
crossref_primary_10_1038_s41598_022_17275_z
crossref_primary_10_2217_fmb_13_58
crossref_primary_10_3390_pathogens11020218
crossref_primary_10_1080_08927014_2020_1869725
crossref_primary_10_1007_s10096_012_1691_x
crossref_primary_10_1111_jam_14535
crossref_primary_10_1371_journal_pone_0077617
crossref_primary_10_3390_antibiotics10010078
crossref_primary_10_1586_eri_11_90
crossref_primary_10_3390_v9110315
crossref_primary_10_1007_s00772_011_0950_y
crossref_primary_10_1128_MMBR_00013_14
crossref_primary_10_1016_j_idc_2018_06_009
crossref_primary_10_1177_0954411918776691
crossref_primary_10_1128_microbiolspec_BAD_0006_2016
crossref_primary_10_1186_s12866_025_03854_3
crossref_primary_10_2217_fmb_2020_0301
crossref_primary_10_3390_ijms23031274
crossref_primary_10_3390_microorganisms13040913
crossref_primary_10_1111_bph_13706
crossref_primary_10_1016_j_micpath_2016_10_017
crossref_primary_10_1016_j_trsl_2018_12_002
crossref_primary_10_1371_journal_pone_0163966
crossref_primary_10_2217_fmb_13_47
crossref_primary_10_1586_14787210_2013_826990
crossref_primary_10_1016_j_matpr_2021_05_245
crossref_primary_10_1016_j_micpath_2021_104744
crossref_primary_10_3389_fmicb_2019_02537
crossref_primary_10_1007_s00018_018_2827_7
crossref_primary_10_1016_j_mib_2017_09_004
crossref_primary_10_1080_1040841X_2023_2167593
crossref_primary_10_1016_j_resmic_2016_10_009
crossref_primary_10_1038_srep43854
crossref_primary_10_1116_1_5089246
crossref_primary_10_3390_medicina58040519
crossref_primary_10_1111_j_1365_2672_2012_05432_x
crossref_primary_10_1371_journal_pone_0124280
crossref_primary_10_1007_s11262_014_1130_4
crossref_primary_10_3389_fmicb_2016_01383
crossref_primary_10_3389_fmicb_2018_00875
crossref_primary_10_1093_cid_cir077
crossref_primary_10_2500_ajra_2014_28_4001
crossref_primary_10_3390_antibiotics14050511
crossref_primary_10_1016_j_microb_2025_100254
crossref_primary_10_1016_j_resmic_2023_104085
crossref_primary_10_1111_lam_13144
crossref_primary_10_1007_s11274_014_1693_1
crossref_primary_10_1111_j_1472_765X_2012_03205_x
crossref_primary_10_1155_2014_543974
crossref_primary_10_1177_1479972317694621
crossref_primary_10_1002_alr_22046
crossref_primary_10_3390_ph8030559
crossref_primary_10_3389_fmicb_2024_1502593
crossref_primary_10_1111_j_1751_7915_2011_00294_x
crossref_primary_10_3390_v11080749
crossref_primary_10_2217_fmb_2016_0081
crossref_primary_10_1016_j_watres_2024_121721
crossref_primary_10_1016_j_scitotenv_2023_168461
crossref_primary_10_3390_antibiotics10010003
crossref_primary_10_1128_AEM_00518_15
crossref_primary_10_1111_jam_14026
crossref_primary_10_3390_antibiotics14050526
crossref_primary_10_3390_v12040407
crossref_primary_10_1016_j_resmic_2011_06_010
crossref_primary_10_1016_j_emcon_2024_100440
crossref_primary_10_1016_j_colsurfb_2014_05_036
crossref_primary_10_1007_s10973_013_3494_4
crossref_primary_10_1093_jacamr_dlae017
crossref_primary_10_1186_s12985_025_02848_x
crossref_primary_10_1016_j_trac_2020_116134
crossref_primary_10_1128_AAC_01426_15
crossref_primary_10_1038_s41585_019_0192_4
crossref_primary_10_1002_cbf_3966
crossref_primary_10_1111_eva_12364
crossref_primary_10_1128_spectrum_02149_24
crossref_primary_10_1111_1462_2920_15991
crossref_primary_10_1007_s11262_017_1445_z
crossref_primary_10_3390_plants11223124
crossref_primary_10_1016_j_actbio_2023_01_001
crossref_primary_10_4315_0362_028X_JFP_11_197
crossref_primary_10_1116_1_4962266
crossref_primary_10_1371_journal_pone_0031698
crossref_primary_10_1080_17434440_2021_1939010
crossref_primary_10_1016_j_jvir_2014_06_009
crossref_primary_10_1139_W10_075
crossref_primary_10_1016_j_actbio_2016_11_070
crossref_primary_10_1016_j_tim_2019_04_006
crossref_primary_10_1038_nrd4000
crossref_primary_10_4167_jbv_2013_43_3_186
crossref_primary_10_1586_eri_11_168
crossref_primary_10_1208_s12248_019_0315_0
crossref_primary_10_1016_j_aquaculture_2017_11_007
crossref_primary_10_3389_fmicb_2022_796132
crossref_primary_10_1111_j_1574_695X_2010_00665_x
crossref_primary_10_1002_jbm_a_35162
crossref_primary_10_1038_s41598_021_98457_z
crossref_primary_10_1016_j_drup_2011_02_001
crossref_primary_10_1007_s00113_017_0374_6
crossref_primary_10_1007_s10439_014_1205_3
crossref_primary_10_1002_cjce_24497
crossref_primary_10_1016_j_jddst_2025_106851
crossref_primary_10_1111_1574_6968_12560
crossref_primary_10_1007_s40475_017_0125_3
crossref_primary_10_1007_s11274_016_2009_4
crossref_primary_10_3390_v13010051
crossref_primary_10_1128_JVI_00385_15
crossref_primary_10_1007_s00705_019_04309_7
crossref_primary_10_1111_j_1365_2672_2010_04928_x
crossref_primary_10_1016_j_psj_2023_103125
crossref_primary_10_1038_s41598_023_42505_3
crossref_primary_10_3390_gels11030179
crossref_primary_10_1080_08927014_2011_593261
crossref_primary_10_1089_ees_2016_0288
crossref_primary_10_1016_j_jss_2012_11_048
crossref_primary_10_1007_s12223_019_00750_y
crossref_primary_10_1186_s12941_021_00433_y
crossref_primary_10_3382_ps_pew463
crossref_primary_10_1007_s12223_014_0333_3
crossref_primary_10_3389_fbioe_2022_869206
crossref_primary_10_3389_fmicb_2016_01114
crossref_primary_10_1080_17460441_2020_1803274
crossref_primary_10_1186_s12894_024_01590_w
crossref_primary_10_1016_j_isci_2022_104372
crossref_primary_10_1128_MMBR_00069_15
crossref_primary_10_1038_s41578_021_00362_4
crossref_primary_10_1128_AEM_01434_14
crossref_primary_10_1016_j_mib_2013_04_007
crossref_primary_10_3390_microorganisms6040125
crossref_primary_10_22207_JPAM_11_3_05
crossref_primary_10_1128_AAC_02685_15
crossref_primary_10_1186_s12941_020_00389_5
crossref_primary_10_1016_j_jhin_2018_01_018
crossref_primary_10_3390_v6103778
crossref_primary_10_1128_AAC_03786_14
crossref_primary_10_14202_vetworld_2016_12_18
crossref_primary_10_1016_j_ijbiomac_2022_12_246
crossref_primary_10_1016_j_addr_2016_07_011
crossref_primary_10_1128_aac_00578_23
crossref_primary_10_3390_antibiotics10020130
crossref_primary_10_2217_fmb_2017_0261
crossref_primary_10_3389_fcimb_2021_758392
crossref_primary_10_1002_hsr2_70956
crossref_primary_10_1039_D3BM01383A
crossref_primary_10_1134_S0003683816030042
crossref_primary_10_5812_archcid_107919
crossref_primary_10_3389_fmicb_2014_00184
crossref_primary_10_1111_jam_15462
crossref_primary_10_3390_antibiotics9080466
crossref_primary_10_3402_jom_v8_32157
crossref_primary_10_1007_s12275_011_1512_4
crossref_primary_10_1002_marc_202100255
crossref_primary_10_1093_cid_cit771
crossref_primary_10_1016_j_biotechadv_2020_107518
crossref_primary_10_3892_mmr_2014_2309
crossref_primary_10_1016_S0001_4079_19_31313_5
crossref_primary_10_1128_spectrum_02092_22
crossref_primary_10_3390_ph11020034
crossref_primary_10_1080_08927014_2018_1538412
crossref_primary_10_1080_17434440_2019_1661774
crossref_primary_10_1016_j_ijmm_2015_11_004
crossref_primary_10_1186_s12866_020_01891_8
crossref_primary_10_1371_journal_pone_0016963
crossref_primary_10_3389_fmicb_2019_01783
crossref_primary_10_1089_phage_2024_0005
crossref_primary_10_3390_microorganisms12091795
crossref_primary_10_1007_s10123_023_00420_7
crossref_primary_10_3389_fmicb_2017_01229
crossref_primary_10_3390_ijms221910436
crossref_primary_10_1089_jamp_2015_1233
crossref_primary_10_1002_jbm_a_36790
crossref_primary_10_1016_j_jcis_2018_03_105
crossref_primary_10_1016_j_micres_2024_127662
crossref_primary_10_1016_j_virusres_2017_07_015
crossref_primary_10_1016_j_bcab_2021_102011
crossref_primary_10_1111_jam_12809
crossref_primary_10_1128_CMR_00013_11
crossref_primary_10_1016_j_idc_2011_09_012
crossref_primary_10_1039_D0BM00659A
crossref_primary_10_1039_D1BM01035B
crossref_primary_10_3389_fcimb_2017_00049
crossref_primary_10_3389_fcimb_2018_00196
crossref_primary_10_1007_s44174_022_00035_y
crossref_primary_10_1111_j_1574_695X_2010_00696_x
crossref_primary_10_1097_PRS_0b013e31827e47cd
crossref_primary_10_1002_gch2_201700068
crossref_primary_10_1007_s12602_011_9084_5
crossref_primary_10_3390_ijms25179472
crossref_primary_10_1007_s12250_019_00192_3
crossref_primary_10_1016_j_mtbio_2025_102225
crossref_primary_10_1007_s10311_025_01881_0
crossref_primary_10_1016_j_watres_2013_05_014
crossref_primary_10_1016_j_jbiosc_2020_02_001
crossref_primary_10_3390_microbiolres13010002
crossref_primary_10_1016_j_biotechadv_2018_11_013
crossref_primary_10_1038_nrurol_2012_68
crossref_primary_10_1371_journal_pone_0155003
crossref_primary_10_3389_fmicb_2024_1374466
crossref_primary_10_1073_pnas_1801013115
crossref_primary_10_1093_femsre_fuaa017
crossref_primary_10_3390_nano11051075
crossref_primary_10_1038_s41598_018_23418_y
crossref_primary_10_3389_fcimb_2019_00037
crossref_primary_10_1063_5_0195165
crossref_primary_10_1007_s10096_011_1363_2
crossref_primary_10_1016_j_jcis_2018_07_107
crossref_primary_10_1111_jam_15420
crossref_primary_10_3390_coatings10010023
crossref_primary_10_1055_a_2436_7394
crossref_primary_10_1111_j_1476_5381_2011_01643_x
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/AAC.00669-09
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-6596
ExternalDocumentID 19822702
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
NPM
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
7X8
ID FETCH-LOGICAL-a503t-4c1c1836cbcdaf7ddadb4880e9827d166fffbca755614cd06967bc7cde5a7c462
IEDL.DBID 7X8
ISICitedReferencesCount 297
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272931200052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-6596
IngestDate Thu Sep 04 18:25:03 EDT 2025
Mon Jul 21 05:37:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a503t-4c1c1836cbcdaf7ddadb4880e9827d166fffbca755614cd06967bc7cde5a7c462
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1128/AAC.00669-09
PMID 19822702
PQID 733632174
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733632174
pubmed_primary_19822702
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2010
References 10530458 - Clin Infect Dis. 1999 Sep;29(3):621-5
8987490 - J Ind Microbiol. 1996 Jun;16(6):331-41
10856378 - Curr Microbiol. 2000 Aug;41(2):120-5
3905855 - J Clin Microbiol. 1985 Dec;22(6):996-1006
3145758 - Ann Inst Pasteur Virol. 1988 Oct-Dec;139(4):389-404
8585715 - Antimicrob Agents Chemother. 1995 Nov;39(11):2397-400
17718845 - Lett Appl Microbiol. 2007 Sep;45(3):313-7
19162482 - Trends Microbiol. 2009 Feb;17(2):66-72
11547890 - Can J Microbiol. 2001 Jul;47(7):680-4
9846739 - Microbiology. 1998 Nov;144 ( Pt 11):3039-47
11197610 - Arch Immunol Ther Exp (Warsz). 2000;48(6):547-51
15547279 - J Bacteriol. 2004 Dec;186(23):8066-73
11961556 - Nature. 2002 Apr 18;416(6882):740-3
11932229 - Clin Microbiol Rev. 2002 Apr;15(2):167-93
9632250 - Mol Microbiol. 1998 May;28(3):449-61
17526836 - Microbiology. 2007 Jun;153(Pt 6):1790-8
9605979 - Clin Diagn Lab Immunol. 1998 May;5(3):294-8
12121566 - Int J Dermatol. 2002 Jul;41(7):453-8
9878645 - N Engl J Med. 1999 Jan 7;340(1):48-50
11157931 - J Bacteriol. 2001 Feb;183(4):1195-204
8188579 - J Bacteriol. 1994 May;176(10):2773-80
17386003 - Annu Rev Phytopathol. 2007;45:245-62
17379808 - Science. 2007 Mar 23;315(5819):1709-12
9025292 - Microbiology. 1997 Jan;143 ( Pt 1):179-85
11375190 - Appl Environ Microbiol. 2001 Jun;67(6):2746-53
17592147 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202
19005496 - ISME J. 2009 Mar;3(3):271-82
7728652 - Can J Microbiol. 1995 Jan;41(1):12-8
12867469 - J Bacteriol. 2003 Aug;185(15):4585-92
12233868 - MMWR Recomm Rep. 2002 Aug 9;51(RR-10):1-29
2455640 - Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):238-47
16569839 - Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75
15545062 - Biofouling. 2004 Jun;20(3):133-8
15812009 - Appl Environ Microbiol. 2005 Apr;71(4):1836-42
References_xml – reference: 9605979 - Clin Diagn Lab Immunol. 1998 May;5(3):294-8
– reference: 12121566 - Int J Dermatol. 2002 Jul;41(7):453-8
– reference: 3905855 - J Clin Microbiol. 1985 Dec;22(6):996-1006
– reference: 17592147 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202
– reference: 9025292 - Microbiology. 1997 Jan;143 ( Pt 1):179-85
– reference: 15812009 - Appl Environ Microbiol. 2005 Apr;71(4):1836-42
– reference: 10530458 - Clin Infect Dis. 1999 Sep;29(3):621-5
– reference: 19005496 - ISME J. 2009 Mar;3(3):271-82
– reference: 12867469 - J Bacteriol. 2003 Aug;185(15):4585-92
– reference: 11932229 - Clin Microbiol Rev. 2002 Apr;15(2):167-93
– reference: 12233868 - MMWR Recomm Rep. 2002 Aug 9;51(RR-10):1-29
– reference: 11547890 - Can J Microbiol. 2001 Jul;47(7):680-4
– reference: 15545062 - Biofouling. 2004 Jun;20(3):133-8
– reference: 17718845 - Lett Appl Microbiol. 2007 Sep;45(3):313-7
– reference: 17386003 - Annu Rev Phytopathol. 2007;45:245-62
– reference: 11157931 - J Bacteriol. 2001 Feb;183(4):1195-204
– reference: 8188579 - J Bacteriol. 1994 May;176(10):2773-80
– reference: 8987490 - J Ind Microbiol. 1996 Jun;16(6):331-41
– reference: 16569839 - Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75
– reference: 9632250 - Mol Microbiol. 1998 May;28(3):449-61
– reference: 9846739 - Microbiology. 1998 Nov;144 ( Pt 11):3039-47
– reference: 3145758 - Ann Inst Pasteur Virol. 1988 Oct-Dec;139(4):389-404
– reference: 11197610 - Arch Immunol Ther Exp (Warsz). 2000;48(6):547-51
– reference: 9878645 - N Engl J Med. 1999 Jan 7;340(1):48-50
– reference: 17379808 - Science. 2007 Mar 23;315(5819):1709-12
– reference: 11961556 - Nature. 2002 Apr 18;416(6882):740-3
– reference: 7728652 - Can J Microbiol. 1995 Jan;41(1):12-8
– reference: 19162482 - Trends Microbiol. 2009 Feb;17(2):66-72
– reference: 15547279 - J Bacteriol. 2004 Dec;186(23):8066-73
– reference: 10856378 - Curr Microbiol. 2000 Aug;41(2):120-5
– reference: 2455640 - Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):238-47
– reference: 8585715 - Antimicrob Agents Chemother. 1995 Nov;39(11):2397-400
– reference: 17526836 - Microbiology. 2007 Jun;153(Pt 6):1790-8
– reference: 11375190 - Appl Environ Microbiol. 2001 Jun;67(6):2746-53
SSID ssj0006590
Score 2.4828484
Snippet Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 397
SubjectTerms Bacteriophages - genetics
Biofilms - growth & development
Catheterization
Colony Count, Microbial
Culture Media
Microscopy, Electron, Scanning
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - virology
Title Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system
URI https://www.ncbi.nlm.nih.gov/pubmed/19822702
https://www.proquest.com/docview/733632174
Volume 54
WOSCitedRecordID wos000272931200052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwFHwCWhAXCstXoaB3QD3Vapxk7eSEloqKA13l0FZ7W_krbQ7Ey2a30h755_jF2e6p4sDFihRFsvRexiN7PAPwJaxyhQ48mIXerVkuuGGlSA0TmVbGaFfkfVrD9U85nRazWVkN2pxukFVuMbEHausN7ZGfkm1fRvz56-I3o9AoOlwdEjQew14WmAw1tZztzMLFuIxmBGXBwrPY6t7T4nQyOSNFlyC50MPcsl9jzg_-c3Yv4cVALnESu-EVPHLtCJ7GuMnNCJ5dDAfpIziuomX15gQvdzewuhM8xmpnZr15DX--RTtnv7gNyIMEn6Q5xcB1MXBHXAwWUL5FX6NuKAH8F95fiUS9wapza-vDFFWHyi3XN03rO4XhZe8ZS_ae2LSoWhrvmtXSY5_Pg9Fl-g1cnX-_PPvBhtgGpsZJtmK54SYAhTDaWFVLa5XVBBOuLFJpuRB1XWujJAVz5sYmohRSG2msGytpcpG-hSetb917QCtMqpXUhc2SvLZc54nNcse51JyHXjoE3JZjHn4LOutQrfPrbn5fkEN4F0s6X0T7jjkny0KZpB_-_fFHeB7VArTlcgR7dYAE9wn2zd2q6Zaf-3YL47S6-Avpe-Mh
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacteriophage+cocktail+for+the+prevention+of+biofilm+formation+by+Pseudomonas+aeruginosa+on+catheters+in+an+in+vitro+model+system&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Fu%2C+Weiling&rft.au=ster%2C+Terri&rft.au=Mayer%2C+Oren&rft.au=Curtin%2C+John+J&rft.date=2010-01-01&rft.issn=1098-6596&rft.eissn=1098-6596&rft.volume=54&rft.issue=1&rft.spage=397&rft_id=info:doi/10.1128%2FAAC.00669-09&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-6596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-6596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-6596&client=summon