Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data
A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or dia...
Gespeichert in:
| Veröffentlicht in: | JAMA internal medicine Jg. 178; H. 11; S. 1544 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.11.2018
|
| Schlagworte: | |
| ISSN: | 2168-6114, 2168-6114 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines. |
|---|---|
| AbstractList | A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines. A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines.A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines. |
| Author | Yazdany, Jinoos Tamang, Suzanne Gianfrancesco, Milena A Schmajuk, Gabriela |
| Author_xml | – sequence: 1 givenname: Milena A surname: Gianfrancesco fullname: Gianfrancesco, Milena A organization: Division of Rheumatology, Department of Medicine, University of California, San Francisco – sequence: 2 givenname: Suzanne surname: Tamang fullname: Tamang, Suzanne organization: Center for Population Health Sciences, Stanford University, Palo Alto, California – sequence: 3 givenname: Jinoos surname: Yazdany fullname: Yazdany, Jinoos organization: Division of Rheumatology, Department of Medicine, University of California, San Francisco – sequence: 4 givenname: Gabriela surname: Schmajuk fullname: Schmajuk, Gabriela organization: Veterans Affairs Medical Center, San Francisco, California |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30128552$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEFPAjEUhBuDEUT-gvboZbGv7ZbuERHFBKNRPJN29y2U7Ha1LQf_vRgxcS4zmXyZw5yTnu88EnIFbAyMwc3OtMb5hMG3WI05Az0WEyVOyICD0pkCkL1_uU9GMe7YQZoxKcQZ6QsGXOc5H5C3ly6hT8409NaZiJE6T59MuXUe6RJN8M5v6LTZdMGlbRvpe_wp5g2WKXTelXSBpklb-oplFyp6Z5K5IKe1aSKOjj4kq_v5arbIls8Pj7PpMjM54ynLJyDAqkmt60pakUOBZcGYrWxdWyaVzm0BRqDUUClutQWUUNS2lEoCCj4k17-zH6H73GNM69bFEpvGeOz2cc1ZAVzkulAH9PKI7u3hs_VHcK0JX-u_H_g3rNllEg |
| CitedBy_id | crossref_primary_10_1097_ICO_0000000000003129 crossref_primary_10_1098_rsos_241873 crossref_primary_10_1016_j_ajo_2024_07_039 crossref_primary_10_1001_jamanetworkopen_2024_21290 crossref_primary_10_1016_j_jpedsurg_2019_09_009 crossref_primary_10_1007_s10916_025_02140_z crossref_primary_10_1093_jamia_ocad066 crossref_primary_10_1016_j_arth_2023_08_047 crossref_primary_10_1093_jamia_ocac097 crossref_primary_10_1111_1468_0009_12504 crossref_primary_10_1080_13669877_2021_1958047 crossref_primary_10_1111_bju_16024 crossref_primary_10_1016_S2352_3018_21_00247_2 crossref_primary_10_1097_CCM_0000000000004659 crossref_primary_10_1148_radiol_221926 crossref_primary_10_1186_s12911_022_02057_4 crossref_primary_10_1038_s42256_023_00651_3 crossref_primary_10_1097_CCM_0000000000005750 crossref_primary_10_1093_jamia_ocaf132 crossref_primary_10_1186_s12911_021_01446_5 crossref_primary_10_1371_journal_pdig_0000078 crossref_primary_10_1007_s40620_023_01573_4 crossref_primary_10_1038_s41591_024_02885_z crossref_primary_10_1177_20552076241308615 crossref_primary_10_1002_cam4_70728 crossref_primary_10_1093_jamia_ocad058 crossref_primary_10_1145_3418034 crossref_primary_10_1007_s00586_021_06961_7 crossref_primary_10_1016_j_jvsv_2024_102162 crossref_primary_10_1016_j_whi_2021_11_003 crossref_primary_10_1513_AnnalsATS_202002_141ED crossref_primary_10_1038_s41598_025_14477_z crossref_primary_10_1089_pop_2021_0170 crossref_primary_10_1287_msom_2021_0971 crossref_primary_10_1213_ANE_0000000000005880 crossref_primary_10_1016_j_jaci_2020_11_045 crossref_primary_10_3390_bdcc5020018 crossref_primary_10_1097_BOR_0000000000000612 crossref_primary_10_7759_cureus_89990 crossref_primary_10_1001_jama_2021_13304 crossref_primary_10_1186_s12910_025_01236_y crossref_primary_10_1371_journal_pone_0312193 crossref_primary_10_1177_18333583241256048 crossref_primary_10_3390_a18030156 crossref_primary_10_1016_j_indmarman_2023_08_013 crossref_primary_10_4103_ijo_IJO_1420_21 crossref_primary_10_3390_jcm10225284 crossref_primary_10_1055_s_0041_1731784 crossref_primary_10_1136_ard_2022_222626 crossref_primary_10_7759_cureus_89873 crossref_primary_10_1007_s43681_022_00141_z crossref_primary_10_1002_trc2_70070 crossref_primary_10_1038_s41386_023_01724_y crossref_primary_10_3390_biom15060834 crossref_primary_10_1038_s41386_023_01700_6 crossref_primary_10_1016_j_artmed_2023_102658 crossref_primary_10_3390_s24237673 crossref_primary_10_1093_jamia_ocae060 crossref_primary_10_1038_s44159_025_00491_5 crossref_primary_10_1002_jclp_23202 crossref_primary_10_1016_j_ahj_2020_07_009 crossref_primary_10_3390_brainsci14080831 crossref_primary_10_1111_jgh_15378 crossref_primary_10_3390_tomography11090096 crossref_primary_10_1001_jama_2018_18932 crossref_primary_10_1007_s11606_021_07018_7 crossref_primary_10_1055_s_0043_1770160 crossref_primary_10_1093_jamia_ocaf039 crossref_primary_10_3389_fpsyt_2021_574440 crossref_primary_10_1287_msom_2021_0999 crossref_primary_10_1186_s12889_024_21081_9 crossref_primary_10_3389_fnagi_2025_1638340 crossref_primary_10_1093_jamia_ocac065 crossref_primary_10_2196_57673 crossref_primary_10_1016_j_ijmedinf_2021_104510 crossref_primary_10_1186_s13073_019_0689_8 crossref_primary_10_1016_j_trre_2025_100934 crossref_primary_10_1093_ptj_pzab279 crossref_primary_10_1097_EDE_0000000000001564 crossref_primary_10_1097_01_CSS_0000772700_37126_33 crossref_primary_10_1001_jamanetworkopen_2022_27779 crossref_primary_10_1016_S0140_6736_22_00173_8 crossref_primary_10_1177_21925682211008424 crossref_primary_10_1177_03008916241231035 crossref_primary_10_1016_j_jcjq_2020_08_002 crossref_primary_10_1111_1475_6773_13860 crossref_primary_10_1007_s42843_025_00136_4 crossref_primary_10_1016_j_jaclp_2020_12_005 crossref_primary_10_2196_47645 crossref_primary_10_1093_jamiaopen_ooad107 crossref_primary_10_1016_j_tacc_2021_02_007 crossref_primary_10_1186_s12911_024_02650_9 crossref_primary_10_3390_jpm15080390 crossref_primary_10_1016_j_health_2022_100042 crossref_primary_10_21202_jdtl_2025_7 crossref_primary_10_25300_MISQ_2024_18251 crossref_primary_10_1016_j_sdentj_2024_03_008 crossref_primary_10_1016_S0140_6736_22_02079_7 crossref_primary_10_3389_fdgth_2024_1330160 crossref_primary_10_3390_su14052497 crossref_primary_10_1016_j_fhj_2024_100007 crossref_primary_10_1007_s00439_022_02439_8 crossref_primary_10_1186_s13037_024_00393_0 crossref_primary_10_1016_j_ccc_2023_03_003 crossref_primary_10_1186_s12910_024_01151_8 crossref_primary_10_1093_jamia_ocz230 crossref_primary_10_1016_S0140_6736_20_30318_4 crossref_primary_10_1080_08874417_2023_2240755 crossref_primary_10_1053_j_semvascsurg_2021_10_008 crossref_primary_10_1097_AIA_0000000000000344 crossref_primary_10_3389_frhs_2025_1545864 crossref_primary_10_1007_s10551_024_05862_1 crossref_primary_10_1136_medhum_2021_012318 crossref_primary_10_1111_1468_0009_12712 crossref_primary_10_1111_jocn_16699 crossref_primary_10_1080_08820538_2023_2168486 crossref_primary_10_7202_1081509ar crossref_primary_10_2471_BLT_19_237099 crossref_primary_10_1016_j_jemermed_2022_01_001 crossref_primary_10_1089_jpm_2024_0496 crossref_primary_10_1093_neuros_nyab337 crossref_primary_10_3390_children11080996 crossref_primary_10_1007_s00330_023_10465_x crossref_primary_10_1161_JAHA_123_033194 crossref_primary_10_1177_20552076231170499 crossref_primary_10_1017_cts_2024_532 crossref_primary_10_1038_s41591_020_1115_x crossref_primary_10_1213_ANE_0000000000004636 crossref_primary_10_1515_dx_2019_0016 crossref_primary_10_2196_28921 crossref_primary_10_1016_j_jamda_2024_105266 crossref_primary_10_1136_bmjhci_2023_100971 crossref_primary_10_1371_journal_pone_0226518 crossref_primary_10_2196_34366 crossref_primary_10_1016_j_gloepi_2025_100204 crossref_primary_10_2196_17707 crossref_primary_10_1136_bmjdhai_2025_000013 crossref_primary_10_1177_08404704211015428 crossref_primary_10_1161_JAHA_124_035425 crossref_primary_10_1016_j_jbi_2023_104294 crossref_primary_10_1136_bmjqs_2022_015173 crossref_primary_10_1146_annurev_publhealth_051920_110928 crossref_primary_10_1038_s41746_024_01245_y crossref_primary_10_1016_j_chest_2020_12_051 crossref_primary_10_1186_s12874_024_02304_4 crossref_primary_10_5312_wjo_v15_i2_105 crossref_primary_10_2196_47430 crossref_primary_10_1002_art_42296 crossref_primary_10_1016_j_jvs_2023_07_006 crossref_primary_10_1016_S2155_8256_20_30022_3 crossref_primary_10_1097_ANS_0000000000000282 crossref_primary_10_1016_j_ipm_2024_103682 crossref_primary_10_1016_j_cmi_2019_09_009 crossref_primary_10_3390_jcm12134209 crossref_primary_10_1016_j_drudis_2024_104068 crossref_primary_10_1016_j_ecoinf_2025_103434 crossref_primary_10_1111_eci_70017 crossref_primary_10_1038_s41746_025_01834_5 crossref_primary_10_1080_19466315_2022_2120533 crossref_primary_10_3928_00485713_20190416_03 crossref_primary_10_3389_fdgth_2022_932123 crossref_primary_10_3390_info15080491 crossref_primary_10_3389_fmed_2021_695185 crossref_primary_10_1038_s44159_023_00175_y crossref_primary_10_1002_wps_21237 crossref_primary_10_1016_j_jvs_2025_03_198 crossref_primary_10_1038_s41746_019_0189_7 crossref_primary_10_1109_ACCESS_2023_3335375 crossref_primary_10_1016_j_bpsc_2021_02_001 crossref_primary_10_1001_jamanetworkopen_2024_8895 crossref_primary_10_1001_jama_2019_18058 crossref_primary_10_1016_j_bas_2024_102858 crossref_primary_10_1007_s40615_024_02057_2 crossref_primary_10_1093_jamia_ocab287 crossref_primary_10_1016_j_jbi_2023_104356 crossref_primary_10_1093_jamia_ocaa075 crossref_primary_10_1136_bmjopen_2019_030279 crossref_primary_10_1007_s00146_022_01591_z crossref_primary_10_1038_s41379_022_01147_y crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108154 crossref_primary_10_1016_j_jbi_2024_104750 crossref_primary_10_1308_rcsbull_2025_25 crossref_primary_10_1136_bmj_n304 crossref_primary_10_1097_CCE_0000000000000368 crossref_primary_10_1007_s43681_022_00230_z crossref_primary_10_3390_encyclopedia1010021 crossref_primary_10_1016_S2215_0366_19_30041_0 crossref_primary_10_2139_ssrn_5426255 crossref_primary_10_1016_j_jtumed_2025_05_007 crossref_primary_10_2196_66699 crossref_primary_10_1111_bjh_16915 crossref_primary_10_1167_iovs_64_10_29 crossref_primary_10_1016_j_techfore_2023_122908 crossref_primary_10_3389_fphar_2021_720694 crossref_primary_10_1097_JS9_0000000000002203 crossref_primary_10_1007_s10278_020_00348_8 crossref_primary_10_1016_j_jbi_2024_104622 crossref_primary_10_1055_s_0041_1729752 crossref_primary_10_1177_15266028251333670 crossref_primary_10_1055_s_0041_1731706 crossref_primary_10_1016_j_cppeds_2021_101110 crossref_primary_10_1136_bmj_m3919 crossref_primary_10_1097_RLI_0000000000000805 crossref_primary_10_1007_s11904_020_00490_6 crossref_primary_10_2196_66200 crossref_primary_10_4097_kja_25075 crossref_primary_10_1016_j_artd_2025_101672 crossref_primary_10_1371_journal_pdig_0000224 crossref_primary_10_1038_s41591_024_02838_6 crossref_primary_10_1200_GO_24_00432 crossref_primary_10_1038_s41746_019_0157_2 crossref_primary_10_1148_ryai_220047 crossref_primary_10_1161_CIRCRESAHA_121_318224 crossref_primary_10_1007_s00405_024_08659_0 crossref_primary_10_1016_j_ijhcs_2023_103003 crossref_primary_10_1016_j_jbi_2022_104095 crossref_primary_10_3390_transplantology2020012 crossref_primary_10_1111_cts_12973 crossref_primary_10_1016_j_hfc_2023_03_001 crossref_primary_10_1080_17512433_2024_2317963 crossref_primary_10_1111_jgs_17718 crossref_primary_10_3390_electronics13193849 crossref_primary_10_1109_ACCESS_2020_3029154 crossref_primary_10_1371_journal_pdig_0000135 crossref_primary_10_1007_s43681_021_00049_0 crossref_primary_10_1007_s43681_023_00329_x crossref_primary_10_1080_08820538_2024_2308248 crossref_primary_10_1111_nin_12583 crossref_primary_10_1093_jamia_ocaa164 crossref_primary_10_1038_s41746_021_00552_y crossref_primary_10_1093_jamia_ocaa283 crossref_primary_10_1007_s11673_020_10036_5 crossref_primary_10_14309_ajg_0000000000001617 crossref_primary_10_1016_j_csbj_2025_05_015 crossref_primary_10_25300_MISQ_2024_18340 crossref_primary_10_1093_jalm_jfac085 crossref_primary_10_7759_cureus_76825 crossref_primary_10_3390_math12244041 crossref_primary_10_1016_j_aopr_2022_100078 crossref_primary_10_1111_imj_15200 crossref_primary_10_1016_j_cmi_2020_02_006 crossref_primary_10_2217_pgs_2019_0190 crossref_primary_10_4018_IJEGR_322550 crossref_primary_10_1016_j_modpat_2024_100686 crossref_primary_10_1093_jamiaopen_ooae156 crossref_primary_10_1016_j_ajpath_2021_06_011 crossref_primary_10_1111_jep_13528 crossref_primary_10_1080_19466315_2023_2169752 crossref_primary_10_1111_1468_0009_12545 crossref_primary_10_1136_gutjnl_2021_326271 crossref_primary_10_1016_j_jcrc_2024_154889 crossref_primary_10_1016_j_jbi_2024_104677 crossref_primary_10_1038_s41588_020_0606_5 crossref_primary_10_2196_72938 crossref_primary_10_1177_87564793231178490 crossref_primary_10_3389_frai_2023_1191320 crossref_primary_10_1007_s12525_023_00644_5 crossref_primary_10_1007_s40746_020_00205_4 crossref_primary_10_1111_ijpo_13143 crossref_primary_10_1016_j_suc_2022_11_005 crossref_primary_10_3390_ijms23094574 crossref_primary_10_7759_cureus_49887 crossref_primary_10_1016_j_soncn_2023_151432 crossref_primary_10_1371_journal_pdig_0000278 crossref_primary_10_1186_s12916_022_02522_x crossref_primary_10_1093_clinchem_hvab165 crossref_primary_10_1007_s10916_022_01803_5 crossref_primary_10_1016_j_compbiomed_2025_110497 crossref_primary_10_1016_j_jbi_2022_104269 crossref_primary_10_1111_eje_13042 crossref_primary_10_1177_15347346241312814 crossref_primary_10_1093_jamia_ocab197 crossref_primary_10_1148_ryai_220010 crossref_primary_10_1177_07487304241310923 crossref_primary_10_1016_j_health_2023_100155 crossref_primary_10_1093_infdis_jiae348 crossref_primary_10_1136_bmjqs_2021_014071 crossref_primary_10_1161_CIR_0000000000001201 crossref_primary_10_1177_1203475420923648 crossref_primary_10_1080_00140139_2023_2243404 crossref_primary_10_1038_s41390_023_02470_z crossref_primary_10_1016_j_artmed_2020_101901 crossref_primary_10_1093_jamiaopen_ooad043 crossref_primary_10_3390_app12136740 crossref_primary_10_1007_s00784_022_04724_2 crossref_primary_10_3389_fdsfr_2024_1363794 crossref_primary_10_7759_cureus_51963 crossref_primary_10_1007_s12369_019_00612_0 crossref_primary_10_1038_s42256_024_00797_8 crossref_primary_10_1038_s41746_022_00595_9 crossref_primary_10_3390_ijms23052802 crossref_primary_10_1038_s41568_020_00327_9 crossref_primary_10_1145_3591869 crossref_primary_10_1016_j_clindermatol_2023_12_013 crossref_primary_10_1093_jopart_muaa019 crossref_primary_10_1016_j_ijhcs_2023_103162 crossref_primary_10_3390_math11040819 crossref_primary_10_1038_s41598_020_78355_6 crossref_primary_10_1093_jamia_ocab065 crossref_primary_10_3390_diagnostics12102463 crossref_primary_10_1093_jamia_ocad120 crossref_primary_10_1038_s41746_022_00695_6 crossref_primary_10_1016_j_jacr_2023_06_015 crossref_primary_10_1016_j_artmed_2023_102737 crossref_primary_10_18043_001c_120565 crossref_primary_10_1007_s11920_024_01561_w crossref_primary_10_3389_fpubh_2024_1420297 crossref_primary_10_1007_s11747_023_00949_z crossref_primary_10_3389_fmed_2023_1291404 crossref_primary_10_1002_eat_24215 crossref_primary_10_1038_s41598_024_83218_5 crossref_primary_10_1111_adj_12812 crossref_primary_10_5435_JAAOS_D_24_01509 crossref_primary_10_1016_j_annepidem_2025_07_024 crossref_primary_10_1186_s12912_025_03348_7 crossref_primary_10_1007_s11904_021_00552_3 crossref_primary_10_1016_j_outlook_2022_09_003 crossref_primary_10_3389_fdgth_2022_964582 crossref_primary_10_1111_bioe_13438 crossref_primary_10_1007_s11547_025_02032_9 crossref_primary_10_1093_jamia_ocaa088 crossref_primary_10_1016_j_lfs_2025_123524 crossref_primary_10_1089_ten_teb_2024_0216 crossref_primary_10_1177_20539517251352815 crossref_primary_10_1177_20420188221090009 crossref_primary_10_3390_app13031858 crossref_primary_10_5498_wjp_v12_i2_306 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1080_15265161_2022_2075051 crossref_primary_10_1016_j_jtos_2021_11_004 crossref_primary_10_2106_JBJS_RVW_21_00142 crossref_primary_10_1016_j_joitmc_2025_100491 crossref_primary_10_3390_diagnostics11112150 crossref_primary_10_1038_s41598_024_52944_1 crossref_primary_10_1186_s12889_023_17255_6 crossref_primary_10_1016_j_jad_2023_11_055 crossref_primary_10_1080_15265161_2022_2055212 crossref_primary_10_3390_diagnostics14090962 crossref_primary_10_3390_biomedicines12051074 crossref_primary_10_1016_j_compbiomed_2025_110118 crossref_primary_10_2196_23776 crossref_primary_10_2147_PPA_S294402 crossref_primary_10_3389_fcvm_2023_1189293 crossref_primary_10_1111_ceo_14310 crossref_primary_10_1002_path_5966 crossref_primary_10_1056_NEJMra1814259 crossref_primary_10_1371_journal_pone_0279953 crossref_primary_10_5498_wjp_v12_i2_298 crossref_primary_10_1177_2150132720958832 crossref_primary_10_1097_SLA_0000000000004419 crossref_primary_10_1371_journal_pdig_0000751 crossref_primary_10_1007_s11042_023_16029_x crossref_primary_10_1001_jamanetworkopen_2023_1204 crossref_primary_10_1186_s12916_019_1302_0 crossref_primary_10_3389_frai_2024_1458508 crossref_primary_10_1007_s00125_021_05444_0 crossref_primary_10_1371_journal_pone_0253204 crossref_primary_10_18261_tfv_25_3_3 crossref_primary_10_2196_51234 crossref_primary_10_1016_j_jbi_2019_103258 crossref_primary_10_7759_cureus_78155 crossref_primary_10_1055_s_0042_1749119 crossref_primary_10_3390_antibiotics13040307 crossref_primary_10_1007_s10143_025_03745_1 crossref_primary_10_1007_s00586_023_07562_2 crossref_primary_10_1016_j_ifacol_2023_10_1211 crossref_primary_10_1080_15374416_2019_1666400 crossref_primary_10_1002_emp2_12218 crossref_primary_10_1097_SLA_0000000000005978 crossref_primary_10_3390_diagnostics12051237 crossref_primary_10_3233_IDT_230152 crossref_primary_10_1016_j_bbe_2024_07_005 crossref_primary_10_3389_frai_2020_507973 crossref_primary_10_1093_eurheartj_ehab678 crossref_primary_10_1038_s41746_020_00336_w crossref_primary_10_3390_antiox8060187 crossref_primary_10_1080_15265161_2020_1867934 crossref_primary_10_1016_j_medin_2020_04_003 crossref_primary_10_1177_00243639231162431 crossref_primary_10_1136_bmjhci_2021_100456 crossref_primary_10_2196_55820 crossref_primary_10_1007_s40670_022_01502_3 crossref_primary_10_1001_jamanetworkopen_2020_29068 crossref_primary_10_1016_S0140_6736_21_01824_9 crossref_primary_10_3390_children12030317 crossref_primary_10_1093_jamiaopen_ooaf076 crossref_primary_10_1371_journal_pdig_0000651 crossref_primary_10_1007_s10912_020_09636_4 crossref_primary_10_2196_43832 crossref_primary_10_1007_s10620_025_09362_8 crossref_primary_10_1080_08820538_2021_1889617 crossref_primary_10_1016_j_acpath_2023_100101 crossref_primary_10_1097_CIN_0000000000001151 crossref_primary_10_1080_15265161_2023_2180109 crossref_primary_10_3390_diagnostics13203281 crossref_primary_10_1016_j_engstruct_2024_119508 crossref_primary_10_1111_1467_9566_13818 crossref_primary_10_1016_j_tbench_2025_100215 crossref_primary_10_1093_jamiaopen_ooaf080 crossref_primary_10_1093_jbi_wbad007 crossref_primary_10_1093_ppmgov_gvz014 crossref_primary_10_1016_j_accpm_2022_101126 crossref_primary_10_1080_10543406_2022_2089158 crossref_primary_10_1371_journal_pdig_0000640 crossref_primary_10_1371_journal_pdig_0000642 crossref_primary_10_3389_fneur_2021_790682 crossref_primary_10_1080_22221751_2024_2361791 crossref_primary_10_1109_ACCESS_2023_3286346 crossref_primary_10_3390_jcm11216426 crossref_primary_10_1038_s41598_024_81625_2 crossref_primary_10_1093_cid_ciac775 crossref_primary_10_1146_annurev_biodatasci_103123_094601 crossref_primary_10_1177_0024363920922690 crossref_primary_10_1038_s41591_021_01595_0 crossref_primary_10_1016_j_watres_2025_123514 crossref_primary_10_1136_tobaccocontrol_2020_056438 crossref_primary_10_1016_j_jacadv_2025_102089 crossref_primary_10_1016_j_jvsv_2024_101943 crossref_primary_10_2215_CJN_0000000673 crossref_primary_10_3389_fdgth_2022_958284 crossref_primary_10_1016_j_csbj_2024_07_008 crossref_primary_10_2139_ssrn_4496874 crossref_primary_10_1186_s12909_025_07220_9 crossref_primary_10_4018_IJBDAH_2019010101 crossref_primary_10_1016_j_nutos_2023_07_001 crossref_primary_10_1016_j_prosdent_2024_05_030 crossref_primary_10_1093_milmed_usad296 crossref_primary_10_1136_bmjoq_2024_003017 crossref_primary_10_2196_42683 crossref_primary_10_3390_s22041408 crossref_primary_10_4103_iju_iju_39_24 crossref_primary_10_1055_a_2184_6481 crossref_primary_10_1371_journal_pdig_0000670 crossref_primary_10_1007_s10067_020_04969_w crossref_primary_10_3171_2022_1_FOCUS21561 crossref_primary_10_1146_annurev_biodatasci_103123_094729 crossref_primary_10_1002_adma_202107902 crossref_primary_10_1016_j_ebiom_2022_104250 crossref_primary_10_2196_65566 crossref_primary_10_1109_ACCESS_2025_3601031 crossref_primary_10_1016_S2155_8256_21_00112_5 crossref_primary_10_1016_j_eswa_2025_128266 crossref_primary_10_1007_s40615_025_02296_x crossref_primary_10_1017_cts_2020_513 crossref_primary_10_1016_j_compbiomed_2025_110410 crossref_primary_10_1002_pds_70175 crossref_primary_10_1093_aje_kwab010 crossref_primary_10_3390_s25030853 crossref_primary_10_1001_jamanetworkopen_2020_6772 crossref_primary_10_1007_s11747_019_00692_4 crossref_primary_10_1371_journal_pone_0276501 crossref_primary_10_1111_jgs_19578 crossref_primary_10_3348_kjr_2019_0025 crossref_primary_10_7759_cureus_91592 crossref_primary_10_1002_wsbm_1548 crossref_primary_10_1371_journal_pone_0285219 crossref_primary_10_1177_20552076211048654 crossref_primary_10_2196_15182 crossref_primary_10_1109_ACCESS_2021_3054613 crossref_primary_10_1177_17456916221134490 crossref_primary_10_1186_s12911_025_02862_7 crossref_primary_10_1002_crq_21477 crossref_primary_10_1038_s41746_023_00913_9 crossref_primary_10_1093_jamia_ocaa258 crossref_primary_10_1007_s00146_022_01619_4 crossref_primary_10_1038_s41598_025_98573_0 crossref_primary_10_1148_rycan_240290 crossref_primary_10_1161_CIRCOUTCOMES_119_006021 crossref_primary_10_1007_s41999_025_01231_x crossref_primary_10_3389_fdgth_2025_1492736 crossref_primary_10_1001_jama_2021_2104 crossref_primary_10_2196_18599 crossref_primary_10_1007_s11920_022_01378_5 crossref_primary_10_1007_s11936_023_01032_0 crossref_primary_10_1371_journal_pone_0277507 crossref_primary_10_1093_jamiaopen_ooaf035 crossref_primary_10_3390_cancers13092145 crossref_primary_10_1002_nop2_1429 crossref_primary_10_1007_s10916_024_02097_5 crossref_primary_10_1136_bmjonc_2024_000430 crossref_primary_10_1186_s12911_024_02448_9 crossref_primary_10_1093_gigascience_giab055 crossref_primary_10_1155_2022_4879361 crossref_primary_10_2196_63352 crossref_primary_10_1093_ejo_cjaf054 crossref_primary_10_3390_diagnostics14232675 crossref_primary_10_1053_j_semvascsurg_2023_07_003 crossref_primary_10_1055_a_2309_1599 crossref_primary_10_1007_s10729_020_09522_4 crossref_primary_10_1093_bfgp_elad031 crossref_primary_10_1038_s41746_022_00580_2 crossref_primary_10_1007_s00284_024_03798_3 crossref_primary_10_12968_opti_2020_11_8402 crossref_primary_10_1007_s00146_020_00945_9 crossref_primary_10_1016_j_tsep_2024_103024 crossref_primary_10_3389_fpsyt_2020_00714 crossref_primary_10_2196_50295 crossref_primary_10_2337_dc22_1833 crossref_primary_10_1001_jamanetworkopen_2019_6972 crossref_primary_10_1016_j_ijmedinf_2020_104094 crossref_primary_10_1093_jamia_ocab203 crossref_primary_10_1177_20539517211036799 crossref_primary_10_1007_s11897_020_00469_9 crossref_primary_10_1016_j_preteyeres_2020_100900 crossref_primary_10_1080_15374416_2022_2124516 crossref_primary_10_1051_e3sconf_202129701074 crossref_primary_10_1136_bmjresp_2021_001165 crossref_primary_10_1016_j_semss_2023_101048 crossref_primary_10_1038_s41746_025_01865_y crossref_primary_10_1002_acr2_11368 crossref_primary_10_3390_cancers15020336 crossref_primary_10_3390_nu14091705 crossref_primary_10_1111_1475_6773_14409 crossref_primary_10_7759_cureus_21434 crossref_primary_10_2196_24012 crossref_primary_10_1001_jamanetworkopen_2021_3909 crossref_primary_10_1513_AnnalsATS_202011_1372OC crossref_primary_10_1136_bmj_l6927 crossref_primary_10_1016_j_ajog_2024_12_029 crossref_primary_10_1136_medethics_2020_106786 crossref_primary_10_1001_jamanetworkopen_2025_6637 crossref_primary_10_1186_s13244_020_00955_7 crossref_primary_10_1038_s41598_023_39458_y crossref_primary_10_1136_bmjinnov_2019_000376 crossref_primary_10_1016_j_acepjo_2024_100021 crossref_primary_10_3389_fimmu_2021_694222 crossref_primary_10_1186_s42444_022_00075_x crossref_primary_10_3390_app11146271 crossref_primary_10_1016_j_lpm_2023_104181 crossref_primary_10_1038_s41598_025_99963_0 crossref_primary_10_1136_bmj_2025_085754 crossref_primary_10_3390_jpm11060587 crossref_primary_10_1016_j_semarthrit_2025_152728 crossref_primary_10_1016_j_tacc_2024_101512 crossref_primary_10_1093_cvr_cvaa021 crossref_primary_10_1016_j_ijmedinf_2024_105604 crossref_primary_10_2196_51514 crossref_primary_10_1016_j_cmpbup_2022_100053 crossref_primary_10_1016_j_ejrad_2024_111867 crossref_primary_10_1177_1179597219856564 crossref_primary_10_1007_s00784_023_04992_6 crossref_primary_10_1007_s41666_024_00164_7 crossref_primary_10_1007_s00146_021_01328_4 crossref_primary_10_3390_ijerph18168613 crossref_primary_10_1080_15265161_2022_2146785 crossref_primary_10_1155_2022_8167821 crossref_primary_10_3390_healthcare12161592 crossref_primary_10_1097_JS9_0000000000000817 crossref_primary_10_1177_0022034520915714 crossref_primary_10_1515_almed_2025_0080 crossref_primary_10_1002_erv_2850 crossref_primary_10_1007_s11936_023_01004_4 crossref_primary_10_3390_diagnostics14141538 crossref_primary_10_1016_j_cjca_2021_08_006 crossref_primary_10_1007_s44186_024_00276_z crossref_primary_10_1016_j_jvs_2023_08_121 crossref_primary_10_1016_j_gsd_2023_101049 crossref_primary_10_1177_17562848241227031 crossref_primary_10_1097_CRD_0000000000000975 crossref_primary_10_1016_j_annemergmed_2020_05_026 crossref_primary_10_1136_bmjinnov_2019_000359 crossref_primary_10_14309_ctg_0000000000000507 crossref_primary_10_1038_s41560_021_00868_9 crossref_primary_10_1001_jamanetworkopen_2022_34574 crossref_primary_10_1007_s41666_023_00148_z crossref_primary_10_1038_s41591_021_01620_2 crossref_primary_10_1080_17439884_2022_2156536 crossref_primary_10_2106_JBJS_21_01305 crossref_primary_10_2471_BLT_19_237636 crossref_primary_10_3390_healthcare12060625 crossref_primary_10_3928_00989134_20220308_01 crossref_primary_10_1186_s12911_021_01586_8 crossref_primary_10_1016_j_jretai_2023_10_002 crossref_primary_10_1097_ICU_0000000000000780 crossref_primary_10_1186_s12882_024_03793_7 crossref_primary_10_1016_j_cll_2023_04_009 crossref_primary_10_1038_s41398_022_02162_y crossref_primary_10_1016_j_ifacol_2024_08_577 crossref_primary_10_1016_j_ijmedinf_2023_105244 crossref_primary_10_1038_s41597_021_01110_7 crossref_primary_10_1055_a_2098_3108 crossref_primary_10_1007_s43681_025_00758_w crossref_primary_10_3138_cjgim_2024_1105 crossref_primary_10_1001_jamainternmed_2018_7117 crossref_primary_10_1097_ACI_0000000000000691 crossref_primary_10_1093_bib_bbab291 crossref_primary_10_1016_j_jvs_2023_09_037 crossref_primary_10_1016_j_jaapos_2021_01_011 crossref_primary_10_1093_sleep_zsaa176 crossref_primary_10_3389_fdgth_2022_862095 crossref_primary_10_3390_diagnostics12092031 crossref_primary_10_1007_s12032_022_01711_1 crossref_primary_10_1177_20552076241287364 crossref_primary_10_1007_s43032_024_01564_1 crossref_primary_10_3390_sym13010102 crossref_primary_10_1016_j_schres_2020_11_029 crossref_primary_10_1161_CIRCGEN_121_003178 crossref_primary_10_3389_fmed_2021_784455 crossref_primary_10_1038_s41746_023_00905_9 crossref_primary_10_3390_diagnostics12061406 crossref_primary_10_1080_11926422_2023_2268206 crossref_primary_10_1016_j_ccc_2024_03_007 crossref_primary_10_1016_j_kint_2020_08_026 crossref_primary_10_3390_healthcare12222225 crossref_primary_10_1111_1467_9566_13175 crossref_primary_10_1371_journal_pone_0263954 crossref_primary_10_1016_j_jacadv_2023_100578 crossref_primary_10_1016_j_jval_2022_03_022 crossref_primary_10_3390_jcm12062096 crossref_primary_10_1056_NEJMe2004551 crossref_primary_10_1007_s11886_020_01299_w crossref_primary_10_1002_lrh2_10330 crossref_primary_10_1016_j_medine_2020_04_015 crossref_primary_10_1097_MLR_0000000000002050 crossref_primary_10_1016_j_media_2023_102989 crossref_primary_10_1080_20430795_2021_1874212 crossref_primary_10_1136_bmjebm_2020_111379 crossref_primary_10_1016_j_jhep_2022_03_003 crossref_primary_10_1145_3503488 crossref_primary_10_1016_j_jdent_2025_105868 crossref_primary_10_1016_j_ijmedinf_2024_105762 crossref_primary_10_1001_jamanetworkopen_2025_13685 crossref_primary_10_3390_ijerph19031858 crossref_primary_10_7759_cureus_42460 crossref_primary_10_1093_jamia_ocaf062 crossref_primary_10_1186_s13049_020_00826_6 crossref_primary_10_3390_jimaging10080193 crossref_primary_10_3389_fendo_2024_1369270 crossref_primary_10_1111_padm_12879 crossref_primary_10_1186_s41512_023_00160_2 crossref_primary_10_3389_fimmu_2025_1567685 crossref_primary_10_1097_MLR_0000000000002021 crossref_primary_10_1007_s43032_024_01588_7 crossref_primary_10_1136_bmjhci_2020_100251 crossref_primary_10_1109_ACCESS_2024_3521279 crossref_primary_10_1097_MLR_0000000000001173 crossref_primary_10_1097_SLA_0000000000006181 crossref_primary_10_1186_s13148_025_01864_6 crossref_primary_10_1016_j_artd_2021_07_012 crossref_primary_10_1210_clinem_dgab896 crossref_primary_10_1007_s11926_023_01114_9 crossref_primary_10_1007_s41666_023_00133_6 crossref_primary_10_1038_s41591_019_0649_2 crossref_primary_10_1016_j_jacr_2021_08_018 crossref_primary_10_1177_20552076251320298 crossref_primary_10_1007_s12170_021_00678_4 crossref_primary_10_1089_aipo_2025_0007 crossref_primary_10_1097_CCM_0000000000004246 crossref_primary_10_1007_s11657_024_01418_y crossref_primary_10_1016_j_arth_2024_10_129 crossref_primary_10_3390_diagnostics15060653 crossref_primary_10_5334_gh_1371 crossref_primary_10_2196_42940 crossref_primary_10_1145_3490234 crossref_primary_10_1016_j_jacadv_2024_100998 crossref_primary_10_3390_clinpract13040089 crossref_primary_10_3389_fpsyt_2021_598434 crossref_primary_10_3390_children7090145 crossref_primary_10_1007_s10462_023_10562_9 crossref_primary_10_1161_JAHA_123_030508 crossref_primary_10_1016_j_acra_2021_08_002 crossref_primary_10_1016_j_wneu_2024_11_048 crossref_primary_10_1038_s43587_024_00657_5 crossref_primary_10_1136_bmjhci_2021_100423 crossref_primary_10_1016_j_jclinepi_2024_111606 crossref_primary_10_1161_JAHA_123_030500 crossref_primary_10_18203_2320_6012_ijrms20250708 crossref_primary_10_1007_s00415_022_11283_9 crossref_primary_10_1146_annurev_biodatasci_122120_113218 crossref_primary_10_1136_leader_2023_000904 crossref_primary_10_1136_bmj_n1190 crossref_primary_10_1177_20552076221089099 crossref_primary_10_1093_pm_pnad129 crossref_primary_10_1016_j_glmedi_2024_100132 crossref_primary_10_1016_j_echo_2023_05_014 crossref_primary_10_1136_jme_2024_110054 crossref_primary_10_3389_fgene_2023_1098439 crossref_primary_10_1016_j_jpeds_2021_02_010 crossref_primary_10_1053_j_gastro_2025_05_012 crossref_primary_10_1212_WNL_0000000000207853 crossref_primary_10_1001_jamanetworkopen_2025_8927 crossref_primary_10_1177_1074248420928651 crossref_primary_10_1016_j_jpeds_2022_04_024 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1001/jamainternmed.2018.3763 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-6114 |
| ExternalDocumentID | 30128552 |
| Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: F32 AR070585 – fundername: NIAMS NIH HHS grantid: P30 AR070155 – fundername: AHRQ HHS grantid: R01 HS024412 – fundername: NIAMS NIH HHS grantid: K23 AR063770 |
| GroupedDBID | 0R~ 4.4 53G AAGZG AAQQT AARDX AAWTL ABBLC ABJNI ABPMR ACDNT ACGFS ADBBV AENEX AFCHL AGFXO AHMBA ALMA_UNASSIGNED_HOLDINGS AMJDE ANMPU BRYMA C45 CGR CUY CVF EBD EBS ECM EIF EJD EMOBN EX3 H13 HF~ NPM OB2 OBH OCB OGEVE OHH OVD PQQKQ RAJ SV3 TEORI WH7 WOW YCJ YYP 7X8 |
| ID | FETCH-LOGICAL-a502t-57131b67f8fd4b3519ec900bdbffb04685b91a3e481d62b8b1e419fbc4641e32 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 797 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449215200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-6114 |
| IngestDate | Thu Oct 02 06:20:46 EDT 2025 Thu Jan 02 22:58:59 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a502t-57131b67f8fd4b3519ec900bdbffb04685b91a3e481d62b8b1e419fbc4641e32 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6347576 |
| PMID | 30128552 |
| PQID | 2091235896 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2091235896 pubmed_primary_30128552 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | JAMA internal medicine |
| PublicationTitleAlternate | JAMA Intern Med |
| PublicationYear | 2018 |
| SSID | ssj0000800433 |
| Score | 2.7150137 |
| SecondaryResourceType | review_article |
| Snippet | A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1544 |
| SubjectTerms | Algorithms Electronic Health Records Healthcare Disparities Humans Machine Learning Socioeconomic Factors |
| Title | Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30128552 https://www.proquest.com/docview/2091235896 |
| Volume | 178 |
| WOSCitedRecordID | wos000449215200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BRYiF96O8ZCTWoDhxHGdCBVox0KoSHbpVseNAJEgKCfx-zo5bJiQklkxJFNkX33d3390HcJUiZFCUxR5HE_YYVdIIuQcez3zu60jJILc7_RiPRmI6TcYu4VY7WuXiTLQHdVYpkyPHID2xbZ0Jv5m_e0Y1ylRXnYTGKnRChDLGquOpWOZYDBpiVk0-oFxglETZguLlBg8VNu2GfseQvMR1Ow70N6hpXc5g-78fuwNbDmySXmsdu7Ciyz3YGLpy-j48javGsIXwntsC3VlNipIMLb1SEzd59Zn0Xp_x3c3LW00swYD0l9I5pO1iIm0QS-7TJj2AyaA_uXvwnMqCl0Z-0HgRhqlU8jgXecak0evTKvF9mck8lxg9i0gmNA01Q2TLAykk1YwmuVSMM6rD4BDWyqrUx0CoDFOhwwwRos9iZWq2CHYMyOIIwpKsC5eL1ZqhEZvKRFrq6rOe_axXF47aJZ_N22kbs9C40CgKTv7w9Clsmn1sewXPoJPjL6zPYV19NUX9cWGtA6-j8fAb1XzCkQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Biases+in+Machine+Learning+Algorithms+Using+Electronic+Health+Record+Data&rft.jtitle=JAMA+internal+medicine&rft.au=Gianfrancesco%2C+Milena+A&rft.au=Tamang%2C+Suzanne&rft.au=Yazdany%2C+Jinoos&rft.au=Schmajuk%2C+Gabriela&rft.date=2018-11-01&rft.issn=2168-6114&rft.eissn=2168-6114&rft.volume=178&rft.issue=11&rft.spage=1544&rft_id=info:doi/10.1001%2Fjamainternmed.2018.3763&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6114&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6114&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6114&client=summon |