Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data

A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JAMA internal medicine Jg. 178; H. 11; S. 1544
Hauptverfasser: Gianfrancesco, Milena A, Tamang, Suzanne, Yazdany, Jinoos, Schmajuk, Gabriela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.11.2018
Schlagworte:
ISSN:2168-6114, 2168-6114
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines.
AbstractList A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines.
A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines.A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and interpret the data in the medical record. Integration of machine learning with clinical decision support tools, such as computerized alerts or diagnostic support, may offer physicians and others who provide health care targeted and timely information that can improve clinical decisions. Machine learning algorithms, however, may also be subject to biases. The biases include those related to missing data and patients not identified by algorithms, sample size and underestimation, and misclassification and measurement error. There is concern that biases and deficiencies in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care. This Special Communication outlines the potential biases that may be introduced into machine learning-based clinical decision support tools that use electronic health record data and proposes potential solutions to the problems of overreliance on automation, algorithms based on biased data, and algorithms that do not provide information that is clinically meaningful. Existing health care disparities should not be amplified by thoughtless or excessive reliance on machines.
Author Yazdany, Jinoos
Tamang, Suzanne
Gianfrancesco, Milena A
Schmajuk, Gabriela
Author_xml – sequence: 1
  givenname: Milena A
  surname: Gianfrancesco
  fullname: Gianfrancesco, Milena A
  organization: Division of Rheumatology, Department of Medicine, University of California, San Francisco
– sequence: 2
  givenname: Suzanne
  surname: Tamang
  fullname: Tamang, Suzanne
  organization: Center for Population Health Sciences, Stanford University, Palo Alto, California
– sequence: 3
  givenname: Jinoos
  surname: Yazdany
  fullname: Yazdany, Jinoos
  organization: Division of Rheumatology, Department of Medicine, University of California, San Francisco
– sequence: 4
  givenname: Gabriela
  surname: Schmajuk
  fullname: Schmajuk, Gabriela
  organization: Veterans Affairs Medical Center, San Francisco, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30128552$$D View this record in MEDLINE/PubMed
BookMark eNpNkEFPAjEUhBuDEUT-gvboZbGv7ZbuERHFBKNRPJN29y2U7Ha1LQf_vRgxcS4zmXyZw5yTnu88EnIFbAyMwc3OtMb5hMG3WI05Az0WEyVOyICD0pkCkL1_uU9GMe7YQZoxKcQZ6QsGXOc5H5C3ly6hT8409NaZiJE6T59MuXUe6RJN8M5v6LTZdMGlbRvpe_wp5g2WKXTelXSBpklb-oplFyp6Z5K5IKe1aSKOjj4kq_v5arbIls8Pj7PpMjM54ynLJyDAqkmt60pakUOBZcGYrWxdWyaVzm0BRqDUUClutQWUUNS2lEoCCj4k17-zH6H73GNM69bFEpvGeOz2cc1ZAVzkulAH9PKI7u3hs_VHcK0JX-u_H_g3rNllEg
CitedBy_id crossref_primary_10_1097_ICO_0000000000003129
crossref_primary_10_1098_rsos_241873
crossref_primary_10_1016_j_ajo_2024_07_039
crossref_primary_10_1001_jamanetworkopen_2024_21290
crossref_primary_10_1016_j_jpedsurg_2019_09_009
crossref_primary_10_1007_s10916_025_02140_z
crossref_primary_10_1093_jamia_ocad066
crossref_primary_10_1016_j_arth_2023_08_047
crossref_primary_10_1093_jamia_ocac097
crossref_primary_10_1111_1468_0009_12504
crossref_primary_10_1080_13669877_2021_1958047
crossref_primary_10_1111_bju_16024
crossref_primary_10_1016_S2352_3018_21_00247_2
crossref_primary_10_1097_CCM_0000000000004659
crossref_primary_10_1148_radiol_221926
crossref_primary_10_1186_s12911_022_02057_4
crossref_primary_10_1038_s42256_023_00651_3
crossref_primary_10_1097_CCM_0000000000005750
crossref_primary_10_1093_jamia_ocaf132
crossref_primary_10_1186_s12911_021_01446_5
crossref_primary_10_1371_journal_pdig_0000078
crossref_primary_10_1007_s40620_023_01573_4
crossref_primary_10_1038_s41591_024_02885_z
crossref_primary_10_1177_20552076241308615
crossref_primary_10_1002_cam4_70728
crossref_primary_10_1093_jamia_ocad058
crossref_primary_10_1145_3418034
crossref_primary_10_1007_s00586_021_06961_7
crossref_primary_10_1016_j_jvsv_2024_102162
crossref_primary_10_1016_j_whi_2021_11_003
crossref_primary_10_1513_AnnalsATS_202002_141ED
crossref_primary_10_1038_s41598_025_14477_z
crossref_primary_10_1089_pop_2021_0170
crossref_primary_10_1287_msom_2021_0971
crossref_primary_10_1213_ANE_0000000000005880
crossref_primary_10_1016_j_jaci_2020_11_045
crossref_primary_10_3390_bdcc5020018
crossref_primary_10_1097_BOR_0000000000000612
crossref_primary_10_7759_cureus_89990
crossref_primary_10_1001_jama_2021_13304
crossref_primary_10_1186_s12910_025_01236_y
crossref_primary_10_1371_journal_pone_0312193
crossref_primary_10_1177_18333583241256048
crossref_primary_10_3390_a18030156
crossref_primary_10_1016_j_indmarman_2023_08_013
crossref_primary_10_4103_ijo_IJO_1420_21
crossref_primary_10_3390_jcm10225284
crossref_primary_10_1055_s_0041_1731784
crossref_primary_10_1136_ard_2022_222626
crossref_primary_10_7759_cureus_89873
crossref_primary_10_1007_s43681_022_00141_z
crossref_primary_10_1002_trc2_70070
crossref_primary_10_1038_s41386_023_01724_y
crossref_primary_10_3390_biom15060834
crossref_primary_10_1038_s41386_023_01700_6
crossref_primary_10_1016_j_artmed_2023_102658
crossref_primary_10_3390_s24237673
crossref_primary_10_1093_jamia_ocae060
crossref_primary_10_1038_s44159_025_00491_5
crossref_primary_10_1002_jclp_23202
crossref_primary_10_1016_j_ahj_2020_07_009
crossref_primary_10_3390_brainsci14080831
crossref_primary_10_1111_jgh_15378
crossref_primary_10_3390_tomography11090096
crossref_primary_10_1001_jama_2018_18932
crossref_primary_10_1007_s11606_021_07018_7
crossref_primary_10_1055_s_0043_1770160
crossref_primary_10_1093_jamia_ocaf039
crossref_primary_10_3389_fpsyt_2021_574440
crossref_primary_10_1287_msom_2021_0999
crossref_primary_10_1186_s12889_024_21081_9
crossref_primary_10_3389_fnagi_2025_1638340
crossref_primary_10_1093_jamia_ocac065
crossref_primary_10_2196_57673
crossref_primary_10_1016_j_ijmedinf_2021_104510
crossref_primary_10_1186_s13073_019_0689_8
crossref_primary_10_1016_j_trre_2025_100934
crossref_primary_10_1093_ptj_pzab279
crossref_primary_10_1097_EDE_0000000000001564
crossref_primary_10_1097_01_CSS_0000772700_37126_33
crossref_primary_10_1001_jamanetworkopen_2022_27779
crossref_primary_10_1016_S0140_6736_22_00173_8
crossref_primary_10_1177_21925682211008424
crossref_primary_10_1177_03008916241231035
crossref_primary_10_1016_j_jcjq_2020_08_002
crossref_primary_10_1111_1475_6773_13860
crossref_primary_10_1007_s42843_025_00136_4
crossref_primary_10_1016_j_jaclp_2020_12_005
crossref_primary_10_2196_47645
crossref_primary_10_1093_jamiaopen_ooad107
crossref_primary_10_1016_j_tacc_2021_02_007
crossref_primary_10_1186_s12911_024_02650_9
crossref_primary_10_3390_jpm15080390
crossref_primary_10_1016_j_health_2022_100042
crossref_primary_10_21202_jdtl_2025_7
crossref_primary_10_25300_MISQ_2024_18251
crossref_primary_10_1016_j_sdentj_2024_03_008
crossref_primary_10_1016_S0140_6736_22_02079_7
crossref_primary_10_3389_fdgth_2024_1330160
crossref_primary_10_3390_su14052497
crossref_primary_10_1016_j_fhj_2024_100007
crossref_primary_10_1007_s00439_022_02439_8
crossref_primary_10_1186_s13037_024_00393_0
crossref_primary_10_1016_j_ccc_2023_03_003
crossref_primary_10_1186_s12910_024_01151_8
crossref_primary_10_1093_jamia_ocz230
crossref_primary_10_1016_S0140_6736_20_30318_4
crossref_primary_10_1080_08874417_2023_2240755
crossref_primary_10_1053_j_semvascsurg_2021_10_008
crossref_primary_10_1097_AIA_0000000000000344
crossref_primary_10_3389_frhs_2025_1545864
crossref_primary_10_1007_s10551_024_05862_1
crossref_primary_10_1136_medhum_2021_012318
crossref_primary_10_1111_1468_0009_12712
crossref_primary_10_1111_jocn_16699
crossref_primary_10_1080_08820538_2023_2168486
crossref_primary_10_7202_1081509ar
crossref_primary_10_2471_BLT_19_237099
crossref_primary_10_1016_j_jemermed_2022_01_001
crossref_primary_10_1089_jpm_2024_0496
crossref_primary_10_1093_neuros_nyab337
crossref_primary_10_3390_children11080996
crossref_primary_10_1007_s00330_023_10465_x
crossref_primary_10_1161_JAHA_123_033194
crossref_primary_10_1177_20552076231170499
crossref_primary_10_1017_cts_2024_532
crossref_primary_10_1038_s41591_020_1115_x
crossref_primary_10_1213_ANE_0000000000004636
crossref_primary_10_1515_dx_2019_0016
crossref_primary_10_2196_28921
crossref_primary_10_1016_j_jamda_2024_105266
crossref_primary_10_1136_bmjhci_2023_100971
crossref_primary_10_1371_journal_pone_0226518
crossref_primary_10_2196_34366
crossref_primary_10_1016_j_gloepi_2025_100204
crossref_primary_10_2196_17707
crossref_primary_10_1136_bmjdhai_2025_000013
crossref_primary_10_1177_08404704211015428
crossref_primary_10_1161_JAHA_124_035425
crossref_primary_10_1016_j_jbi_2023_104294
crossref_primary_10_1136_bmjqs_2022_015173
crossref_primary_10_1146_annurev_publhealth_051920_110928
crossref_primary_10_1038_s41746_024_01245_y
crossref_primary_10_1016_j_chest_2020_12_051
crossref_primary_10_1186_s12874_024_02304_4
crossref_primary_10_5312_wjo_v15_i2_105
crossref_primary_10_2196_47430
crossref_primary_10_1002_art_42296
crossref_primary_10_1016_j_jvs_2023_07_006
crossref_primary_10_1016_S2155_8256_20_30022_3
crossref_primary_10_1097_ANS_0000000000000282
crossref_primary_10_1016_j_ipm_2024_103682
crossref_primary_10_1016_j_cmi_2019_09_009
crossref_primary_10_3390_jcm12134209
crossref_primary_10_1016_j_drudis_2024_104068
crossref_primary_10_1016_j_ecoinf_2025_103434
crossref_primary_10_1111_eci_70017
crossref_primary_10_1038_s41746_025_01834_5
crossref_primary_10_1080_19466315_2022_2120533
crossref_primary_10_3928_00485713_20190416_03
crossref_primary_10_3389_fdgth_2022_932123
crossref_primary_10_3390_info15080491
crossref_primary_10_3389_fmed_2021_695185
crossref_primary_10_1038_s44159_023_00175_y
crossref_primary_10_1002_wps_21237
crossref_primary_10_1016_j_jvs_2025_03_198
crossref_primary_10_1038_s41746_019_0189_7
crossref_primary_10_1109_ACCESS_2023_3335375
crossref_primary_10_1016_j_bpsc_2021_02_001
crossref_primary_10_1001_jamanetworkopen_2024_8895
crossref_primary_10_1001_jama_2019_18058
crossref_primary_10_1016_j_bas_2024_102858
crossref_primary_10_1007_s40615_024_02057_2
crossref_primary_10_1093_jamia_ocab287
crossref_primary_10_1016_j_jbi_2023_104356
crossref_primary_10_1093_jamia_ocaa075
crossref_primary_10_1136_bmjopen_2019_030279
crossref_primary_10_1007_s00146_022_01591_z
crossref_primary_10_1038_s41379_022_01147_y
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108154
crossref_primary_10_1016_j_jbi_2024_104750
crossref_primary_10_1308_rcsbull_2025_25
crossref_primary_10_1136_bmj_n304
crossref_primary_10_1097_CCE_0000000000000368
crossref_primary_10_1007_s43681_022_00230_z
crossref_primary_10_3390_encyclopedia1010021
crossref_primary_10_1016_S2215_0366_19_30041_0
crossref_primary_10_2139_ssrn_5426255
crossref_primary_10_1016_j_jtumed_2025_05_007
crossref_primary_10_2196_66699
crossref_primary_10_1111_bjh_16915
crossref_primary_10_1167_iovs_64_10_29
crossref_primary_10_1016_j_techfore_2023_122908
crossref_primary_10_3389_fphar_2021_720694
crossref_primary_10_1097_JS9_0000000000002203
crossref_primary_10_1007_s10278_020_00348_8
crossref_primary_10_1016_j_jbi_2024_104622
crossref_primary_10_1055_s_0041_1729752
crossref_primary_10_1177_15266028251333670
crossref_primary_10_1055_s_0041_1731706
crossref_primary_10_1016_j_cppeds_2021_101110
crossref_primary_10_1136_bmj_m3919
crossref_primary_10_1097_RLI_0000000000000805
crossref_primary_10_1007_s11904_020_00490_6
crossref_primary_10_2196_66200
crossref_primary_10_4097_kja_25075
crossref_primary_10_1016_j_artd_2025_101672
crossref_primary_10_1371_journal_pdig_0000224
crossref_primary_10_1038_s41591_024_02838_6
crossref_primary_10_1200_GO_24_00432
crossref_primary_10_1038_s41746_019_0157_2
crossref_primary_10_1148_ryai_220047
crossref_primary_10_1161_CIRCRESAHA_121_318224
crossref_primary_10_1007_s00405_024_08659_0
crossref_primary_10_1016_j_ijhcs_2023_103003
crossref_primary_10_1016_j_jbi_2022_104095
crossref_primary_10_3390_transplantology2020012
crossref_primary_10_1111_cts_12973
crossref_primary_10_1016_j_hfc_2023_03_001
crossref_primary_10_1080_17512433_2024_2317963
crossref_primary_10_1111_jgs_17718
crossref_primary_10_3390_electronics13193849
crossref_primary_10_1109_ACCESS_2020_3029154
crossref_primary_10_1371_journal_pdig_0000135
crossref_primary_10_1007_s43681_021_00049_0
crossref_primary_10_1007_s43681_023_00329_x
crossref_primary_10_1080_08820538_2024_2308248
crossref_primary_10_1111_nin_12583
crossref_primary_10_1093_jamia_ocaa164
crossref_primary_10_1038_s41746_021_00552_y
crossref_primary_10_1093_jamia_ocaa283
crossref_primary_10_1007_s11673_020_10036_5
crossref_primary_10_14309_ajg_0000000000001617
crossref_primary_10_1016_j_csbj_2025_05_015
crossref_primary_10_25300_MISQ_2024_18340
crossref_primary_10_1093_jalm_jfac085
crossref_primary_10_7759_cureus_76825
crossref_primary_10_3390_math12244041
crossref_primary_10_1016_j_aopr_2022_100078
crossref_primary_10_1111_imj_15200
crossref_primary_10_1016_j_cmi_2020_02_006
crossref_primary_10_2217_pgs_2019_0190
crossref_primary_10_4018_IJEGR_322550
crossref_primary_10_1016_j_modpat_2024_100686
crossref_primary_10_1093_jamiaopen_ooae156
crossref_primary_10_1016_j_ajpath_2021_06_011
crossref_primary_10_1111_jep_13528
crossref_primary_10_1080_19466315_2023_2169752
crossref_primary_10_1111_1468_0009_12545
crossref_primary_10_1136_gutjnl_2021_326271
crossref_primary_10_1016_j_jcrc_2024_154889
crossref_primary_10_1016_j_jbi_2024_104677
crossref_primary_10_1038_s41588_020_0606_5
crossref_primary_10_2196_72938
crossref_primary_10_1177_87564793231178490
crossref_primary_10_3389_frai_2023_1191320
crossref_primary_10_1007_s12525_023_00644_5
crossref_primary_10_1007_s40746_020_00205_4
crossref_primary_10_1111_ijpo_13143
crossref_primary_10_1016_j_suc_2022_11_005
crossref_primary_10_3390_ijms23094574
crossref_primary_10_7759_cureus_49887
crossref_primary_10_1016_j_soncn_2023_151432
crossref_primary_10_1371_journal_pdig_0000278
crossref_primary_10_1186_s12916_022_02522_x
crossref_primary_10_1093_clinchem_hvab165
crossref_primary_10_1007_s10916_022_01803_5
crossref_primary_10_1016_j_compbiomed_2025_110497
crossref_primary_10_1016_j_jbi_2022_104269
crossref_primary_10_1111_eje_13042
crossref_primary_10_1177_15347346241312814
crossref_primary_10_1093_jamia_ocab197
crossref_primary_10_1148_ryai_220010
crossref_primary_10_1177_07487304241310923
crossref_primary_10_1016_j_health_2023_100155
crossref_primary_10_1093_infdis_jiae348
crossref_primary_10_1136_bmjqs_2021_014071
crossref_primary_10_1161_CIR_0000000000001201
crossref_primary_10_1177_1203475420923648
crossref_primary_10_1080_00140139_2023_2243404
crossref_primary_10_1038_s41390_023_02470_z
crossref_primary_10_1016_j_artmed_2020_101901
crossref_primary_10_1093_jamiaopen_ooad043
crossref_primary_10_3390_app12136740
crossref_primary_10_1007_s00784_022_04724_2
crossref_primary_10_3389_fdsfr_2024_1363794
crossref_primary_10_7759_cureus_51963
crossref_primary_10_1007_s12369_019_00612_0
crossref_primary_10_1038_s42256_024_00797_8
crossref_primary_10_1038_s41746_022_00595_9
crossref_primary_10_3390_ijms23052802
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_1145_3591869
crossref_primary_10_1016_j_clindermatol_2023_12_013
crossref_primary_10_1093_jopart_muaa019
crossref_primary_10_1016_j_ijhcs_2023_103162
crossref_primary_10_3390_math11040819
crossref_primary_10_1038_s41598_020_78355_6
crossref_primary_10_1093_jamia_ocab065
crossref_primary_10_3390_diagnostics12102463
crossref_primary_10_1093_jamia_ocad120
crossref_primary_10_1038_s41746_022_00695_6
crossref_primary_10_1016_j_jacr_2023_06_015
crossref_primary_10_1016_j_artmed_2023_102737
crossref_primary_10_18043_001c_120565
crossref_primary_10_1007_s11920_024_01561_w
crossref_primary_10_3389_fpubh_2024_1420297
crossref_primary_10_1007_s11747_023_00949_z
crossref_primary_10_3389_fmed_2023_1291404
crossref_primary_10_1002_eat_24215
crossref_primary_10_1038_s41598_024_83218_5
crossref_primary_10_1111_adj_12812
crossref_primary_10_5435_JAAOS_D_24_01509
crossref_primary_10_1016_j_annepidem_2025_07_024
crossref_primary_10_1186_s12912_025_03348_7
crossref_primary_10_1007_s11904_021_00552_3
crossref_primary_10_1016_j_outlook_2022_09_003
crossref_primary_10_3389_fdgth_2022_964582
crossref_primary_10_1111_bioe_13438
crossref_primary_10_1007_s11547_025_02032_9
crossref_primary_10_1093_jamia_ocaa088
crossref_primary_10_1016_j_lfs_2025_123524
crossref_primary_10_1089_ten_teb_2024_0216
crossref_primary_10_1177_20539517251352815
crossref_primary_10_1177_20420188221090009
crossref_primary_10_3390_app13031858
crossref_primary_10_5498_wjp_v12_i2_306
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1080_15265161_2022_2075051
crossref_primary_10_1016_j_jtos_2021_11_004
crossref_primary_10_2106_JBJS_RVW_21_00142
crossref_primary_10_1016_j_joitmc_2025_100491
crossref_primary_10_3390_diagnostics11112150
crossref_primary_10_1038_s41598_024_52944_1
crossref_primary_10_1186_s12889_023_17255_6
crossref_primary_10_1016_j_jad_2023_11_055
crossref_primary_10_1080_15265161_2022_2055212
crossref_primary_10_3390_diagnostics14090962
crossref_primary_10_3390_biomedicines12051074
crossref_primary_10_1016_j_compbiomed_2025_110118
crossref_primary_10_2196_23776
crossref_primary_10_2147_PPA_S294402
crossref_primary_10_3389_fcvm_2023_1189293
crossref_primary_10_1111_ceo_14310
crossref_primary_10_1002_path_5966
crossref_primary_10_1056_NEJMra1814259
crossref_primary_10_1371_journal_pone_0279953
crossref_primary_10_5498_wjp_v12_i2_298
crossref_primary_10_1177_2150132720958832
crossref_primary_10_1097_SLA_0000000000004419
crossref_primary_10_1371_journal_pdig_0000751
crossref_primary_10_1007_s11042_023_16029_x
crossref_primary_10_1001_jamanetworkopen_2023_1204
crossref_primary_10_1186_s12916_019_1302_0
crossref_primary_10_3389_frai_2024_1458508
crossref_primary_10_1007_s00125_021_05444_0
crossref_primary_10_1371_journal_pone_0253204
crossref_primary_10_18261_tfv_25_3_3
crossref_primary_10_2196_51234
crossref_primary_10_1016_j_jbi_2019_103258
crossref_primary_10_7759_cureus_78155
crossref_primary_10_1055_s_0042_1749119
crossref_primary_10_3390_antibiotics13040307
crossref_primary_10_1007_s10143_025_03745_1
crossref_primary_10_1007_s00586_023_07562_2
crossref_primary_10_1016_j_ifacol_2023_10_1211
crossref_primary_10_1080_15374416_2019_1666400
crossref_primary_10_1002_emp2_12218
crossref_primary_10_1097_SLA_0000000000005978
crossref_primary_10_3390_diagnostics12051237
crossref_primary_10_3233_IDT_230152
crossref_primary_10_1016_j_bbe_2024_07_005
crossref_primary_10_3389_frai_2020_507973
crossref_primary_10_1093_eurheartj_ehab678
crossref_primary_10_1038_s41746_020_00336_w
crossref_primary_10_3390_antiox8060187
crossref_primary_10_1080_15265161_2020_1867934
crossref_primary_10_1016_j_medin_2020_04_003
crossref_primary_10_1177_00243639231162431
crossref_primary_10_1136_bmjhci_2021_100456
crossref_primary_10_2196_55820
crossref_primary_10_1007_s40670_022_01502_3
crossref_primary_10_1001_jamanetworkopen_2020_29068
crossref_primary_10_1016_S0140_6736_21_01824_9
crossref_primary_10_3390_children12030317
crossref_primary_10_1093_jamiaopen_ooaf076
crossref_primary_10_1371_journal_pdig_0000651
crossref_primary_10_1007_s10912_020_09636_4
crossref_primary_10_2196_43832
crossref_primary_10_1007_s10620_025_09362_8
crossref_primary_10_1080_08820538_2021_1889617
crossref_primary_10_1016_j_acpath_2023_100101
crossref_primary_10_1097_CIN_0000000000001151
crossref_primary_10_1080_15265161_2023_2180109
crossref_primary_10_3390_diagnostics13203281
crossref_primary_10_1016_j_engstruct_2024_119508
crossref_primary_10_1111_1467_9566_13818
crossref_primary_10_1016_j_tbench_2025_100215
crossref_primary_10_1093_jamiaopen_ooaf080
crossref_primary_10_1093_jbi_wbad007
crossref_primary_10_1093_ppmgov_gvz014
crossref_primary_10_1016_j_accpm_2022_101126
crossref_primary_10_1080_10543406_2022_2089158
crossref_primary_10_1371_journal_pdig_0000640
crossref_primary_10_1371_journal_pdig_0000642
crossref_primary_10_3389_fneur_2021_790682
crossref_primary_10_1080_22221751_2024_2361791
crossref_primary_10_1109_ACCESS_2023_3286346
crossref_primary_10_3390_jcm11216426
crossref_primary_10_1038_s41598_024_81625_2
crossref_primary_10_1093_cid_ciac775
crossref_primary_10_1146_annurev_biodatasci_103123_094601
crossref_primary_10_1177_0024363920922690
crossref_primary_10_1038_s41591_021_01595_0
crossref_primary_10_1016_j_watres_2025_123514
crossref_primary_10_1136_tobaccocontrol_2020_056438
crossref_primary_10_1016_j_jacadv_2025_102089
crossref_primary_10_1016_j_jvsv_2024_101943
crossref_primary_10_2215_CJN_0000000673
crossref_primary_10_3389_fdgth_2022_958284
crossref_primary_10_1016_j_csbj_2024_07_008
crossref_primary_10_2139_ssrn_4496874
crossref_primary_10_1186_s12909_025_07220_9
crossref_primary_10_4018_IJBDAH_2019010101
crossref_primary_10_1016_j_nutos_2023_07_001
crossref_primary_10_1016_j_prosdent_2024_05_030
crossref_primary_10_1093_milmed_usad296
crossref_primary_10_1136_bmjoq_2024_003017
crossref_primary_10_2196_42683
crossref_primary_10_3390_s22041408
crossref_primary_10_4103_iju_iju_39_24
crossref_primary_10_1055_a_2184_6481
crossref_primary_10_1371_journal_pdig_0000670
crossref_primary_10_1007_s10067_020_04969_w
crossref_primary_10_3171_2022_1_FOCUS21561
crossref_primary_10_1146_annurev_biodatasci_103123_094729
crossref_primary_10_1002_adma_202107902
crossref_primary_10_1016_j_ebiom_2022_104250
crossref_primary_10_2196_65566
crossref_primary_10_1109_ACCESS_2025_3601031
crossref_primary_10_1016_S2155_8256_21_00112_5
crossref_primary_10_1016_j_eswa_2025_128266
crossref_primary_10_1007_s40615_025_02296_x
crossref_primary_10_1017_cts_2020_513
crossref_primary_10_1016_j_compbiomed_2025_110410
crossref_primary_10_1002_pds_70175
crossref_primary_10_1093_aje_kwab010
crossref_primary_10_3390_s25030853
crossref_primary_10_1001_jamanetworkopen_2020_6772
crossref_primary_10_1007_s11747_019_00692_4
crossref_primary_10_1371_journal_pone_0276501
crossref_primary_10_1111_jgs_19578
crossref_primary_10_3348_kjr_2019_0025
crossref_primary_10_7759_cureus_91592
crossref_primary_10_1002_wsbm_1548
crossref_primary_10_1371_journal_pone_0285219
crossref_primary_10_1177_20552076211048654
crossref_primary_10_2196_15182
crossref_primary_10_1109_ACCESS_2021_3054613
crossref_primary_10_1177_17456916221134490
crossref_primary_10_1186_s12911_025_02862_7
crossref_primary_10_1002_crq_21477
crossref_primary_10_1038_s41746_023_00913_9
crossref_primary_10_1093_jamia_ocaa258
crossref_primary_10_1007_s00146_022_01619_4
crossref_primary_10_1038_s41598_025_98573_0
crossref_primary_10_1148_rycan_240290
crossref_primary_10_1161_CIRCOUTCOMES_119_006021
crossref_primary_10_1007_s41999_025_01231_x
crossref_primary_10_3389_fdgth_2025_1492736
crossref_primary_10_1001_jama_2021_2104
crossref_primary_10_2196_18599
crossref_primary_10_1007_s11920_022_01378_5
crossref_primary_10_1007_s11936_023_01032_0
crossref_primary_10_1371_journal_pone_0277507
crossref_primary_10_1093_jamiaopen_ooaf035
crossref_primary_10_3390_cancers13092145
crossref_primary_10_1002_nop2_1429
crossref_primary_10_1007_s10916_024_02097_5
crossref_primary_10_1136_bmjonc_2024_000430
crossref_primary_10_1186_s12911_024_02448_9
crossref_primary_10_1093_gigascience_giab055
crossref_primary_10_1155_2022_4879361
crossref_primary_10_2196_63352
crossref_primary_10_1093_ejo_cjaf054
crossref_primary_10_3390_diagnostics14232675
crossref_primary_10_1053_j_semvascsurg_2023_07_003
crossref_primary_10_1055_a_2309_1599
crossref_primary_10_1007_s10729_020_09522_4
crossref_primary_10_1093_bfgp_elad031
crossref_primary_10_1038_s41746_022_00580_2
crossref_primary_10_1007_s00284_024_03798_3
crossref_primary_10_12968_opti_2020_11_8402
crossref_primary_10_1007_s00146_020_00945_9
crossref_primary_10_1016_j_tsep_2024_103024
crossref_primary_10_3389_fpsyt_2020_00714
crossref_primary_10_2196_50295
crossref_primary_10_2337_dc22_1833
crossref_primary_10_1001_jamanetworkopen_2019_6972
crossref_primary_10_1016_j_ijmedinf_2020_104094
crossref_primary_10_1093_jamia_ocab203
crossref_primary_10_1177_20539517211036799
crossref_primary_10_1007_s11897_020_00469_9
crossref_primary_10_1016_j_preteyeres_2020_100900
crossref_primary_10_1080_15374416_2022_2124516
crossref_primary_10_1051_e3sconf_202129701074
crossref_primary_10_1136_bmjresp_2021_001165
crossref_primary_10_1016_j_semss_2023_101048
crossref_primary_10_1038_s41746_025_01865_y
crossref_primary_10_1002_acr2_11368
crossref_primary_10_3390_cancers15020336
crossref_primary_10_3390_nu14091705
crossref_primary_10_1111_1475_6773_14409
crossref_primary_10_7759_cureus_21434
crossref_primary_10_2196_24012
crossref_primary_10_1001_jamanetworkopen_2021_3909
crossref_primary_10_1513_AnnalsATS_202011_1372OC
crossref_primary_10_1136_bmj_l6927
crossref_primary_10_1016_j_ajog_2024_12_029
crossref_primary_10_1136_medethics_2020_106786
crossref_primary_10_1001_jamanetworkopen_2025_6637
crossref_primary_10_1186_s13244_020_00955_7
crossref_primary_10_1038_s41598_023_39458_y
crossref_primary_10_1136_bmjinnov_2019_000376
crossref_primary_10_1016_j_acepjo_2024_100021
crossref_primary_10_3389_fimmu_2021_694222
crossref_primary_10_1186_s42444_022_00075_x
crossref_primary_10_3390_app11146271
crossref_primary_10_1016_j_lpm_2023_104181
crossref_primary_10_1038_s41598_025_99963_0
crossref_primary_10_1136_bmj_2025_085754
crossref_primary_10_3390_jpm11060587
crossref_primary_10_1016_j_semarthrit_2025_152728
crossref_primary_10_1016_j_tacc_2024_101512
crossref_primary_10_1093_cvr_cvaa021
crossref_primary_10_1016_j_ijmedinf_2024_105604
crossref_primary_10_2196_51514
crossref_primary_10_1016_j_cmpbup_2022_100053
crossref_primary_10_1016_j_ejrad_2024_111867
crossref_primary_10_1177_1179597219856564
crossref_primary_10_1007_s00784_023_04992_6
crossref_primary_10_1007_s41666_024_00164_7
crossref_primary_10_1007_s00146_021_01328_4
crossref_primary_10_3390_ijerph18168613
crossref_primary_10_1080_15265161_2022_2146785
crossref_primary_10_1155_2022_8167821
crossref_primary_10_3390_healthcare12161592
crossref_primary_10_1097_JS9_0000000000000817
crossref_primary_10_1177_0022034520915714
crossref_primary_10_1515_almed_2025_0080
crossref_primary_10_1002_erv_2850
crossref_primary_10_1007_s11936_023_01004_4
crossref_primary_10_3390_diagnostics14141538
crossref_primary_10_1016_j_cjca_2021_08_006
crossref_primary_10_1007_s44186_024_00276_z
crossref_primary_10_1016_j_jvs_2023_08_121
crossref_primary_10_1016_j_gsd_2023_101049
crossref_primary_10_1177_17562848241227031
crossref_primary_10_1097_CRD_0000000000000975
crossref_primary_10_1016_j_annemergmed_2020_05_026
crossref_primary_10_1136_bmjinnov_2019_000359
crossref_primary_10_14309_ctg_0000000000000507
crossref_primary_10_1038_s41560_021_00868_9
crossref_primary_10_1001_jamanetworkopen_2022_34574
crossref_primary_10_1007_s41666_023_00148_z
crossref_primary_10_1038_s41591_021_01620_2
crossref_primary_10_1080_17439884_2022_2156536
crossref_primary_10_2106_JBJS_21_01305
crossref_primary_10_2471_BLT_19_237636
crossref_primary_10_3390_healthcare12060625
crossref_primary_10_3928_00989134_20220308_01
crossref_primary_10_1186_s12911_021_01586_8
crossref_primary_10_1016_j_jretai_2023_10_002
crossref_primary_10_1097_ICU_0000000000000780
crossref_primary_10_1186_s12882_024_03793_7
crossref_primary_10_1016_j_cll_2023_04_009
crossref_primary_10_1038_s41398_022_02162_y
crossref_primary_10_1016_j_ifacol_2024_08_577
crossref_primary_10_1016_j_ijmedinf_2023_105244
crossref_primary_10_1038_s41597_021_01110_7
crossref_primary_10_1055_a_2098_3108
crossref_primary_10_1007_s43681_025_00758_w
crossref_primary_10_3138_cjgim_2024_1105
crossref_primary_10_1001_jamainternmed_2018_7117
crossref_primary_10_1097_ACI_0000000000000691
crossref_primary_10_1093_bib_bbab291
crossref_primary_10_1016_j_jvs_2023_09_037
crossref_primary_10_1016_j_jaapos_2021_01_011
crossref_primary_10_1093_sleep_zsaa176
crossref_primary_10_3389_fdgth_2022_862095
crossref_primary_10_3390_diagnostics12092031
crossref_primary_10_1007_s12032_022_01711_1
crossref_primary_10_1177_20552076241287364
crossref_primary_10_1007_s43032_024_01564_1
crossref_primary_10_3390_sym13010102
crossref_primary_10_1016_j_schres_2020_11_029
crossref_primary_10_1161_CIRCGEN_121_003178
crossref_primary_10_3389_fmed_2021_784455
crossref_primary_10_1038_s41746_023_00905_9
crossref_primary_10_3390_diagnostics12061406
crossref_primary_10_1080_11926422_2023_2268206
crossref_primary_10_1016_j_ccc_2024_03_007
crossref_primary_10_1016_j_kint_2020_08_026
crossref_primary_10_3390_healthcare12222225
crossref_primary_10_1111_1467_9566_13175
crossref_primary_10_1371_journal_pone_0263954
crossref_primary_10_1016_j_jacadv_2023_100578
crossref_primary_10_1016_j_jval_2022_03_022
crossref_primary_10_3390_jcm12062096
crossref_primary_10_1056_NEJMe2004551
crossref_primary_10_1007_s11886_020_01299_w
crossref_primary_10_1002_lrh2_10330
crossref_primary_10_1016_j_medine_2020_04_015
crossref_primary_10_1097_MLR_0000000000002050
crossref_primary_10_1016_j_media_2023_102989
crossref_primary_10_1080_20430795_2021_1874212
crossref_primary_10_1136_bmjebm_2020_111379
crossref_primary_10_1016_j_jhep_2022_03_003
crossref_primary_10_1145_3503488
crossref_primary_10_1016_j_jdent_2025_105868
crossref_primary_10_1016_j_ijmedinf_2024_105762
crossref_primary_10_1001_jamanetworkopen_2025_13685
crossref_primary_10_3390_ijerph19031858
crossref_primary_10_7759_cureus_42460
crossref_primary_10_1093_jamia_ocaf062
crossref_primary_10_1186_s13049_020_00826_6
crossref_primary_10_3390_jimaging10080193
crossref_primary_10_3389_fendo_2024_1369270
crossref_primary_10_1111_padm_12879
crossref_primary_10_1186_s41512_023_00160_2
crossref_primary_10_3389_fimmu_2025_1567685
crossref_primary_10_1097_MLR_0000000000002021
crossref_primary_10_1007_s43032_024_01588_7
crossref_primary_10_1136_bmjhci_2020_100251
crossref_primary_10_1109_ACCESS_2024_3521279
crossref_primary_10_1097_MLR_0000000000001173
crossref_primary_10_1097_SLA_0000000000006181
crossref_primary_10_1186_s13148_025_01864_6
crossref_primary_10_1016_j_artd_2021_07_012
crossref_primary_10_1210_clinem_dgab896
crossref_primary_10_1007_s11926_023_01114_9
crossref_primary_10_1007_s41666_023_00133_6
crossref_primary_10_1038_s41591_019_0649_2
crossref_primary_10_1016_j_jacr_2021_08_018
crossref_primary_10_1177_20552076251320298
crossref_primary_10_1007_s12170_021_00678_4
crossref_primary_10_1089_aipo_2025_0007
crossref_primary_10_1097_CCM_0000000000004246
crossref_primary_10_1007_s11657_024_01418_y
crossref_primary_10_1016_j_arth_2024_10_129
crossref_primary_10_3390_diagnostics15060653
crossref_primary_10_5334_gh_1371
crossref_primary_10_2196_42940
crossref_primary_10_1145_3490234
crossref_primary_10_1016_j_jacadv_2024_100998
crossref_primary_10_3390_clinpract13040089
crossref_primary_10_3389_fpsyt_2021_598434
crossref_primary_10_3390_children7090145
crossref_primary_10_1007_s10462_023_10562_9
crossref_primary_10_1161_JAHA_123_030508
crossref_primary_10_1016_j_acra_2021_08_002
crossref_primary_10_1016_j_wneu_2024_11_048
crossref_primary_10_1038_s43587_024_00657_5
crossref_primary_10_1136_bmjhci_2021_100423
crossref_primary_10_1016_j_jclinepi_2024_111606
crossref_primary_10_1161_JAHA_123_030500
crossref_primary_10_18203_2320_6012_ijrms20250708
crossref_primary_10_1007_s00415_022_11283_9
crossref_primary_10_1146_annurev_biodatasci_122120_113218
crossref_primary_10_1136_leader_2023_000904
crossref_primary_10_1136_bmj_n1190
crossref_primary_10_1177_20552076221089099
crossref_primary_10_1093_pm_pnad129
crossref_primary_10_1016_j_glmedi_2024_100132
crossref_primary_10_1016_j_echo_2023_05_014
crossref_primary_10_1136_jme_2024_110054
crossref_primary_10_3389_fgene_2023_1098439
crossref_primary_10_1016_j_jpeds_2021_02_010
crossref_primary_10_1053_j_gastro_2025_05_012
crossref_primary_10_1212_WNL_0000000000207853
crossref_primary_10_1001_jamanetworkopen_2025_8927
crossref_primary_10_1177_1074248420928651
crossref_primary_10_1016_j_jpeds_2022_04_024
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1001/jamainternmed.2018.3763
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 2168-6114
ExternalDocumentID 30128552
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: F32 AR070585
– fundername: NIAMS NIH HHS
  grantid: P30 AR070155
– fundername: AHRQ HHS
  grantid: R01 HS024412
– fundername: NIAMS NIH HHS
  grantid: K23 AR063770
GroupedDBID 0R~
4.4
53G
AAGZG
AAQQT
AARDX
AAWTL
ABBLC
ABJNI
ABPMR
ACDNT
ACGFS
ADBBV
AENEX
AFCHL
AGFXO
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMJDE
ANMPU
BRYMA
C45
CGR
CUY
CVF
EBD
EBS
ECM
EIF
EJD
EMOBN
EX3
H13
HF~
NPM
OB2
OBH
OCB
OGEVE
OHH
OVD
PQQKQ
RAJ
SV3
TEORI
WH7
WOW
YCJ
YYP
7X8
ID FETCH-LOGICAL-a502t-57131b67f8fd4b3519ec900bdbffb04685b91a3e481d62b8b1e419fbc4641e32
IEDL.DBID 7X8
ISICitedReferencesCount 797
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449215200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-6114
IngestDate Thu Oct 02 06:20:46 EDT 2025
Thu Jan 02 22:58:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a502t-57131b67f8fd4b3519ec900bdbffb04685b91a3e481d62b8b1e419fbc4641e32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6347576
PMID 30128552
PQID 2091235896
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2091235896
pubmed_primary_30128552
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JAMA internal medicine
PublicationTitleAlternate JAMA Intern Med
PublicationYear 2018
SSID ssj0000800433
Score 2.7150137
SecondaryResourceType review_article
Snippet A promise of machine learning in health care is the avoidance of biases in diagnosis and treatment; a computer algorithm could objectively synthesize and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1544
SubjectTerms Algorithms
Electronic Health Records
Healthcare Disparities
Humans
Machine Learning
Socioeconomic Factors
Title Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data
URI https://www.ncbi.nlm.nih.gov/pubmed/30128552
https://www.proquest.com/docview/2091235896
Volume 178
WOSCitedRecordID wos000449215200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BRYiF96O8ZCTWoDhxHGdCBVox0KoSHbpVseNAJEgKCfx-zo5bJiQklkxJFNkX33d3390HcJUiZFCUxR5HE_YYVdIIuQcez3zu60jJILc7_RiPRmI6TcYu4VY7WuXiTLQHdVYpkyPHID2xbZ0Jv5m_e0Y1ylRXnYTGKnRChDLGquOpWOZYDBpiVk0-oFxglETZguLlBg8VNu2GfseQvMR1Ow70N6hpXc5g-78fuwNbDmySXmsdu7Ciyz3YGLpy-j48javGsIXwntsC3VlNipIMLb1SEzd59Zn0Xp_x3c3LW00swYD0l9I5pO1iIm0QS-7TJj2AyaA_uXvwnMqCl0Z-0HgRhqlU8jgXecak0evTKvF9mck8lxg9i0gmNA01Q2TLAykk1YwmuVSMM6rD4BDWyqrUx0CoDFOhwwwRos9iZWq2CHYMyOIIwpKsC5eL1ZqhEZvKRFrq6rOe_axXF47aJZ_N22kbs9C40CgKTv7w9Clsmn1sewXPoJPjL6zPYV19NUX9cWGtA6-j8fAb1XzCkQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Biases+in+Machine+Learning+Algorithms+Using+Electronic+Health+Record+Data&rft.jtitle=JAMA+internal+medicine&rft.au=Gianfrancesco%2C+Milena+A&rft.au=Tamang%2C+Suzanne&rft.au=Yazdany%2C+Jinoos&rft.au=Schmajuk%2C+Gabriela&rft.date=2018-11-01&rft.issn=2168-6114&rft.eissn=2168-6114&rft.volume=178&rft.issue=11&rft.spage=1544&rft_id=info:doi/10.1001%2Fjamainternmed.2018.3763&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6114&client=summon