Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales
The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature...
Gespeichert in:
| Veröffentlicht in: | Journal of Geophysical Research: Oceans Jg. 117; H. C10 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington, DC
Blackwell Publishing Ltd
01.10.2012
American Geophysical Union |
| Schlagworte: | |
| ISSN: | 0148-0227, 2169-9275, 2156-2202, 2169-9291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian‐Svalbard margin were subject to significant cooling until 1980 (by ∼2°C offshore NW‐Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (∼0.3°C in deep‐water areas offshore NW‐Svalbard and mid‐Norwegian margin and ∼2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near‐surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW‐Svalbard might be associated with El Niño events of 1976–1977, 1986–1987 and 1997–1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean.
Key Points
Increasing seabed temperatures makes gas hydrate unstable in shallow regions
Temperature increase in deep areas is not enough to destabilize gas hydrate
Bottom water temperature seems to be partly regulated by the NAO |
|---|---|
| AbstractList | The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by similar to 2 degree C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 ( similar to 0.3 degree C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and similar to 2 degree C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Nino events of 1976-1977, 1986-1987 and 1997-1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian‐Svalbard margin were subject to significant cooling until 1980 (by ∼2°C offshore NW‐Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (∼0.3°C in deep‐water areas offshore NW‐Svalbard and mid‐Norwegian margin and ∼2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near‐surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW‐Svalbard might be associated with El Niño events of 1976–1977, 1986–1987 and 1997–1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Key Points Increasing seabed temperatures makes gas hydrate unstable in shallow regions Temperature increase in deep areas is not enough to destabilize gas hydrate Bottom water temperature seems to be partly regulated by the NAO The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by 2°C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (0.3°C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and 2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Niño events of 19761977, 19861987 and 19971998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian‐Svalbard margin were subject to significant cooling until 1980 (by ∼2°C offshore NW‐Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (∼0.3°C in deep‐water areas offshore NW‐Svalbard and mid‐Norwegian margin and ∼2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near‐surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW‐Svalbard might be associated with El Niño events of 1976–1977, 1986–1987 and 1997–1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Increasing seabed temperatures makes gas hydrate unstable in shallow regions Temperature increase in deep areas is not enough to destabilize gas hydrate Bottom water temperature seems to be partly regulated by the NAO The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by 2 degree C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (0.3 degree C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and 2 degree C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Nino events of 1976-1977, 1986-1987 and 1997-1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Key Points * Increasing seabed temperatures makes gas hydrate unstable in shallow regions * Temperature increase in deep areas is not enough to destabilize gas hydrate * Bottom water temperature seems to be partly regulated by the NAO |
| Author | Mienert, Jürgen Feseker, Tomas Ferré, Bénédicte |
| Author_xml | – sequence: 1 givenname: Bénédicte surname: Ferré fullname: Ferré, Bénédicte email: benedicte.ferre@uit.no, benedicte.ferre@uit.no organization: Institute of Geology, University of Tromsø, Tromsø, Norway – sequence: 2 givenname: Jürgen surname: Mienert fullname: Mienert, Jürgen organization: Institute of Geology, University of Tromsø, Tromsø, Norway – sequence: 3 givenname: Tomas surname: Feseker fullname: Feseker, Tomas organization: MARUM-Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26581114$$DView record in Pascal Francis |
| BookMark | eNqFkd1u1DAQhSNUJJbSOx7AEkLigpSx4_xdoqjdpVStxE_hzpo6k12XrLPYTsu-Qp8ah20RqgT4ZuSj75zRzDxN9uxgKUmeczjkIOo3Arg4aQCqDOBRMhM8L1IhQOwlM-CySkGI8kly4P0VxCfzQgKfJbfnmtCyQOsNOQyjI3aNzuCl6U3Ysm5wLKyIbdAHVgDbEjrPBvtLPBvcDS0N2vTjNfaX6Fq2Rrc0lhnb9SNZTZ4t0bPVto3ZxHy4z40Jq3E9NTbrqGvsyT9LHnfYezq4q_vJ5-OjT80iPT2fv2venqaYg4AUSXegZdnmmmpdlIWWNVRSyrYrAUVb6RbaPKKt6EoZv3UnosazqoSsrvNsP3m1y9244ftIPqi18Zr6Hi0No1e85nVdcAny_6iocqiquP6IvniAXg2js3GQSAkoBC8FROrlHYXT0J1Dq41XG2fi5rZKFHnFOZ8aix2n3eC9o05pEzCYwQaHplcc1HR09efRo-n1A9N97l_wbIffmJ62_2TVyfxDw0VeT6505zI-0I_fLnTfVFFmZa6-nM0VLN5ffG0uFuo4-wkxJ8ux |
| CitedBy_id | crossref_primary_10_1016_j_jngse_2021_104127 crossref_primary_10_1038_s41558_025_02258_5 crossref_primary_10_1016_j_epsl_2023_117993 crossref_primary_10_1002_2013GC005179 crossref_primary_10_1002_2015JC011084 crossref_primary_10_1038_s41467_020_17289_z crossref_primary_10_1002_2016GL068999 crossref_primary_10_5194_os_15_1055_2019 crossref_primary_10_5194_os_18_233_2022 crossref_primary_10_1016_j_marpetgeo_2013_06_009 crossref_primary_10_1002_2015GC006153 crossref_primary_10_1002_lno_10307 crossref_primary_10_1073_pnas_1618926114 crossref_primary_10_1016_j_marpetgeo_2019_08_014 crossref_primary_10_1155_2014_582424 crossref_primary_10_1038_s41598_020_57921_y crossref_primary_10_1038_s41598_024_51532_7 crossref_primary_10_5194_bg_14_2929_2017 crossref_primary_10_1016_j_dsr_2015_06_002 crossref_primary_10_1016_j_margeo_2014_04_003 crossref_primary_10_1002_lom3_10307 crossref_primary_10_1016_j_jmarsys_2016_08_009 crossref_primary_10_1038_490491a crossref_primary_10_1016_j_marpetgeo_2024_107088 crossref_primary_10_1002_2015GC006119 crossref_primary_10_1016_j_dsr_2023_104156 crossref_primary_10_1007_s40641_020_00169_5 crossref_primary_10_1002_2016JD025590 crossref_primary_10_1073_pnas_1619288114 crossref_primary_10_1002_lno_10388 crossref_primary_10_1016_j_csr_2019_104030 crossref_primary_10_1016_j_gca_2016_11_015 crossref_primary_10_3389_fmars_2025_1589660 crossref_primary_10_1002_2016GL071841 crossref_primary_10_3390_w13020202 crossref_primary_10_1002_2017GC007288 crossref_primary_10_1029_2019GL082750 crossref_primary_10_1029_2021EA001711 crossref_primary_10_1007_s12040_021_01689_w crossref_primary_10_1029_2022JB025231 crossref_primary_10_1029_2024JC020949 crossref_primary_10_5194_cp_11_669_2015 crossref_primary_10_1002_2017GC007107 crossref_primary_10_1038_s43247_021_00264_x crossref_primary_10_1016_j_polar_2016_11_004 |
| Cites_doi | 10.1016/0198‐0149(81)90050‐9 10.3997/1365‐2397.1990012 10.1126/science.1058761 10.1029/2009GC002409 10.1016/j.epsl.2008.02.017 10.1016/j.chemgeo.2005.02.008 10.1016/S0012‐821X(03)00097‐9 10.1029/2011GL047222 10.1016/j.epsl.2009.03.038 10.1039/c0ee00203h 10.1016/0960‐1481(93)90108‐S 10.1029/2009GL038777 10.1029/94JD02829 10.1029/93RG00268 10.1016/S0928‐8937(05)80054‐2 10.1175/1520‐0442(2000)013<2671:TAORTT>2.0.CO;2 10.1126/science.1182221 10.1016/S0967‐0637(99)00070‐9 10.1088/1748‐9326/4/3/034007 10.1007/978-3-642-55846-7 10.1111/j.1751‐8369.2001.tb00061.x 10.1111/j.2153‐3490.1966.tb00303.x 10.1016/j.marpetgeo.2004.10.018 10.1016/j.marpetgeo.2011.12.008 10.1029/2009GL039191 10.1029/97JC02790 10.1126/science.1197397 10.1029/91JC00299 10.1016/S0277‐3791(97)00072‐3 10.4043/7693-MS 10.1073/pnas.0800885105 10.1130/0091‐7613(1994)022<0255:MGPOYT>2.3.CO;2 10.1016/S0278‐4343(99)00041‐2 10.1016/0009‐2541(88)90104‐0 10.1175/1520‐0485(1981)011<0573:PCOPTD>2.0.CO;2 10.1007/s003670050101 10.1029/2011GL049319 10.1038/nature09051 10.1029/2003EO310001 10.1016/j.dsr.2006.01.001 10.1016/j.gca.2011.05.029 10.1126/science.1121381 10.1144/petgeo.4.2.165 10.1144/GSL.SP.1998.137.01.22 10.1029/JZ064i010p01557 10.1073/pnas.1106378108 10.1016/j.margeo.2004.10.007 10.1016/j.earscirev.2003.11.002 10.1098/rspb.2003.2415 10.1126/science.269.5224.676 10.1007/978‐94‐010‐0093‐2_24 10.1038/nature08355 10.1029/2010RG000345 10.1144/GSL.SP.1998.137.01.03 10.1029/2009GL041332 10.1111/j.1751‐8369.1985.tb00492.x 10.1038/nature06502 10.1029/96GL03259 10.1038/374046a0 10.1007/s003670050088 10.1017/CBO9780511546013 10.1016/0264‐8172(84)90082‐5 10.1007/BF00144504 10.1134/S1028334X09090311 10.1016/S0079‐6611(99)00052‐X 10.1029/2003GC000687 |
| ContentType | Journal Article |
| Copyright | 2012. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS Copyright American Geophysical Union 2012 |
| Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS – notice: Copyright American Geophysical Union 2012 |
| DBID | BSCLL AAYXX CITATION IQODW 3V. 7TG 7TN 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U |
| DOI | 10.1029/2012JC008300 |
| DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
| EISSN | 2156-2202 2169-9291 |
| EndPage | n/a |
| ExternalDocumentID | 2827338271 26581114 10_1029_2012JC008300 JGRC12590 ark_67375_WNG_0HKVXCVH_F |
| Genre | article |
| GeographicLocations | Barents Sea Norway Arctic region Europe Arctic Ocean polar regions Svalbard Pacific Ocean Scandinavia PNE, Barents Sea PNE, Norway, Svalbard, Spitsbergen, Prins Karls Forland AN, North Atlantic, North Atlantic Oscillation |
| GeographicLocations_xml | – name: PNE, Norway, Svalbard, Spitsbergen, Prins Karls Forland – name: PNE, Barents Sea – name: AN, North Atlantic, North Atlantic Oscillation |
| GroupedDBID | 12K 1OC 7XC 88I 8FE 8FH 8G5 8R4 8R5 AAHQN AAMNL AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AGYGG AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAYXX CITATION IQODW 05W 0R~ 33P 3V. 50Y 52M 702 7TG 7TN 7XB 8-1 8CJ 8FK AAESR AASGY AAZKR ABPVW ACGOD ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFFHD AFKRA AFRAH AIURR ALVPJ ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BMXJE CCPQU D1J D1K DPXWK F1W FEDTE H96 HGLYW HVGLF HZ~ K6- KL. L.G LEEKS LK5 M7R MY~ O9- P2W PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PROAC PYCSY Q9U R.K SUPJJ WBKPD PUEGO |
| ID | FETCH-LOGICAL-a5020-aecf0c47d5ce9c676c4908444df70a2d8cd0d5502d2f74d8c9f28cd1387039953 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310343100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-0227 2169-9275 |
| IngestDate | Wed Oct 01 13:58:21 EDT 2025 Fri Sep 05 11:05:21 EDT 2025 Fri Nov 21 03:41:40 EST 2025 Mon Jul 21 09:16:43 EDT 2025 Tue Nov 18 22:23:21 EST 2025 Sat Nov 29 03:11:12 EST 2025 Tue Sep 09 05:12:11 EDT 2025 Sun Sep 21 06:18:59 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C10 |
| Keywords | continental slope world ocean reservoirs Deep water variability Shallow water offshore quality surface water bottom water North Atlantic oscillation El Nino gas hydrates dissociation methane cooling warming temperature data bases Triggering continental margin stability climate change outer shelf |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5020-aecf0c47d5ce9c676c4908444df70a2d8cd0d5502d2f74d8c9f28cd1387039953 |
| Notes | ark:/67375/WNG-0HKVXCVH-F Tab-delimited Table 1. istex:8E8575A24DD208DC511FF2D13C1B221848C0B88F ArticleID:2012JC008300 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JC008300 |
| PQID | 1220621720 |
| PQPubID | 23462 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1919961404 proquest_miscellaneous_1285088029 proquest_journals_1220621720 pascalfrancis_primary_26581114 crossref_citationtrail_10_1029_2012JC008300 crossref_primary_10_1029_2012JC008300 wiley_primary_10_1029_2012JC008300_JGRC12590 istex_primary_ark_67375_WNG_0HKVXCVH_F |
| PublicationCentury | 2000 |
| PublicationDate | October 2012 |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC – name: Washington |
| PublicationTitle | Journal of Geophysical Research: Oceans |
| PublicationTitleAlternate | J. Geophys. Res |
| PublicationYear | 2012 |
| Publisher | Blackwell Publishing Ltd American Geophysical Union |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
| References | Archer, D., B. Buffett, and V. Brovkin (2009), Ocean methane hydrates as a slow tipping point in the global carbon cycle, Proc. Natl. Acad. Sci. U. S. A., 106(49), 20,596-20,601, doi:10.1073/pnas.0800885105. Mienert, J., and P. E. Weaver (2003), European Margin Sediment Dynamics: Side-Scan Sonar and Seismic Images, Springer, Berlin. Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kallen, and G. Svensson (2008), Vertical structure of recent Arctic warming, Nature, 451(7174), 53-56, doi:10.1038/nature06502. Biastoch, A., et al. (2011), Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602, doi:10.1029/2011GL047222. Krey, V., et al. (2009), Gas hydrates: Entrance to a methane age or climate threat?, Environ. Res. Lett., 4, 034007, doi:10.1088/1748-9326/4/3/034007. Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., Clarendon, Oxford, U. K. Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45(2), 109-208, doi:10.1016/S0079-6611(99)00052-X. Piechura, J., A. Beszczyńska-Möller, and R. Osiński (2001), Volume, heat and salt transport by the West Spitsbergen Current, Polar Res., 20(2), 233-240, doi:10.1111/j.1751-8369.2001.tb00061.x. Burwicz, E. B., L. H. Rüpke, and K. Wallmann (2011), Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation, Geochim. Cosmochim. Acta, 75(16), 4562-4576, doi:10.1016/j.gca.2011.05.029. Hustoft, S., S. Bünz, J. Mienert, and S. Chand (2009b), Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard, Earth Planet. Sci. Lett., 284(1-2), 12-24, doi:10.1016/j.epsl.2009.03.038. Harris, C. L., A. J. Plueddemann, and G. G. Gawarkiewicz (1998), Water mass distribution and polar front structure in the western Barents Sea, J. Geophys. Res., 103(C2), 2905-2917, doi:10.1029/97JC02790. Midttomme, K., and E. Roaldset (2008), The effect of grain size on thermal conductivity of quartz sands and silts, Pet. Geosci., 4(2), 165-172, doi:10.1144/petgeo.4.2.165. Bondevik, S., J. Mangerud, S. Dawson, A. Dawson, and Ø. Lohne (2003), Record-breaking height for 8000-year-old tsunami in the North Atlantic, Eos Trans. AGU, 84(31), 289, doi:10.1029/2003EO310001. R Development Core Team (2010), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna. [Available at http://www.R-project.org.] Vogt, P. R., and E. Sundvor (1996), Heat flow highs on the Norwegian-Barents-Svalbard continental slope: Deep crustal fractures, dewatering or "memory in the mud," Geophys. Res. Lett., 23(24), 3571-3574, doi:10.1029/96GL03259. Kvenvolden, K. (1988), Methane hydrate-A major reservoir of carbon in the shallow geosphere?, Chem. Geol., 71(1-3), 41-51, doi:10.1016/0009-2541(88)90104-0. Mienert, J., and J. Posewang (1999), Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments, Geo Mar. Lett., 19(1), 143-149, doi:10.1007/s003670050101. Andreassen, K., and T. Hansen (1995), Inferred gas hydrates offshore Norway and Svalbard, Norw. J. Geol., 45, 10-34. Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson (2010), Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221. Fisher, R. E., et al. (2011), Arctic methane sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38, L21803, doi:10.1029/2011GL049319. Vogt, P. R., J. Gardner, and K. Crane (1999), The Norwegian-Barents-Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane, Geo Mar. Lett., 19(1), 2-21, doi:10.1007/s003670050088. Harvey, L. D. D., and Z. Huang (1995), Evaluation of the potential impact of methane clathrate destabilization on future global warming, J. Geophys. Res., 100(D2), 2905-2926, doi:10.1029/94JD02829. Westbrook, G. K., et al. (2009), Escape of methane gas from the seabed along the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608, doi:10.1029/2009GL039191. Milkov, A. V. (2004), Global estimates of hydrate-bound gas in marine sediments: How much is really out there?, Earth Sci. Rev., 66(3-4), 183-197, doi:10.1016/j.earscirev.2003.11.002. Boswell, R., and T. S. Collett (2011), Current perspectives on gas hydrate resources, Energy Environ. Sci., 4, 1206-1215, doi:10.1039/c0ee00203h. Knies, J., E. Damm, J. Gutt, U. Mann, and L. Pinturier (2004), Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages, Geochem. Geophys. Geosyst., 5, Q06003, doi:10.1029/2003GC000687. Schlichtholz, P., and I. Goszczko (2006), Interannual variability of the Atlantic water layer in the West Spitsbergen Current at 76.5°N in summer 1991-2003, Deep Sea Res. Part I, 53(4), 608-626, doi:10.1016/j.dsr.2006.01.001. Vinther, B. M., et al. (2009), Holocene thinning of the Greenland ice sheet, Nature, 461(7262), 385-388, doi:10.1038/nature08355. Bjerknes, J. (1966), A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus, 18(4), 820-829, doi:10.1111/j.2153-3490.1966.tb00303.x. Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269(5224), 676-679, doi:10.1126/science.269.5224.676. Vorren, T. O., J. S. Laberg, F. Blaume, J. A. Dowdeswells, N. H. Kenyon, J. Mienert, J. Rumohr, and F. Werner (1998), The Norwegian-Greenland Sea continental margins: Morphology and late quaternary sedimentary processes and environment, Quat. Sci. Rev., 17, 273-302, doi:10.1016/S0277-3791(97)00072-3. Mienert, J., M. Vanneste, S. Bünz, K. Andreassen, H. Haflidason, and H. P. Sejrup (2005), Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide, Mar. Pet. Geol., 22, 233-244, doi:10.1016/j.marpetgeo.2004.10.018. Hustoft, S., B. Dugan, and J. Mienert (2009a), Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway, Geochem. Geophys. Geosyst., 10, Q06012, doi:10.1029/2009GC002409. Solheim, A., and A. Elverhøi (1985), A pockmark field in the Central Barents Sea; Gas from a petrogenic source?, Polar Res., 3(1), 11-19, doi:10.1111/j.1751-8369.1985.tb00492.x. Turpeinen, H., A. Hampel, T. Karow, and G. Maniatis (2008), Effect of ice sheet growth and melting on the slip evolution of thrust faults, Earth Planet. Sci. Lett., 269(1-2), 230-241, doi:10.1016/j.epsl.2008.02.017. Blindheim, J., V. Borovkov, B. Hansen, S. A. Malmberg, W. R. Turrell, and S. Østerhus (2000), Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing, Deep Sea Res. Part I, 47(4), 655-680, doi:10.1016/S0967-0637(99)00070-9. Hurrell, J. W., Y. Kushnir, and M. Visbeck (2001), The North Atlantic Oscillation, Science, 291(5504), 603-605, doi:10.1126/science.1058761. Rajan, A., J. Mienert, and S. Bünz (2012), Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW-Svalbard, Mar. Pet. Geol., 32, 36-49, doi:10.1016/j.marpetgeo.2011.12.008. Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland ice sheet, Science, 311(5763), 986-990, doi:10.1126/science.1121381. Swift, J. H., and K. Aagaard (1981), Seasonal transitions and water mass formation in the Iceland and Greenland seas, Deep Sea Res. Part A, 28(10), 1107-1129, doi:10.1016/0198-0149(81)90050-9. Tishchenko, P., Hensen, C., Wallmann, K., and C. S. Wong (2005), Calculation of the stability and solubility of methane hydrate in seawater, Chem. Geol., 219, 37-52, doi:10.1016/j.chemgeo.2005.02.008. Faleide, J. I., S. T. Gudlaugsson, and G. Jacquart (1984), Evolution of the western Barents Sea, Mar. Pet. Geol., 1(2), 123-150, doi:10.1016/0264-8172(84)90082-5. Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz, and B. Ådlandsvik (2003), Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond, Proc. R. Soc. London Ser. B, 270(1529), 2087-2096, doi:10.1098/rspb.2003.2415. MacDonald, G. J. (1990), Role of methane clathrates in past and future climates, Clim. Change, 16(3), 247-281, doi:10.1007/BF00144504. Sætre, R. (1999), Features of the central Norwegian shelf circulation, Cont. Shelf Res., 19(14), 1809-1831, doi:10.1016/S0278-4343(99)00041-2. Vogt, P. R., K. Crane, E. Sundvor, M. D. Max, and S. L. Pfirman (1994), Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait, Geology, 22(3), 255-258, doi:10.1130/0091-7613(1994)022<0255:MGPOYT>2.3.CO;2. Andreassen, K., K. Hogstad, K. A. Berteussen (1990), Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly, First Break, 8(6), 235-245, doi:10.3997/1365-2397.1990012. Saunders, P. M. (1981), Practical conversion of pressure to depth, J. Phys. Oceanogr., 11, 573-574, doi:10.1175/1520-0485(1981)011<0573:PCOPTD>2.0.CO;2. Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York. Kvenvolden, K. A. (1993), Gas hydrates-geological perspective and global change, Rev. Geophys., 31(2), 173-187, doi:10.1029/93RG00268. Haugan, P. M., G. Evensen, J. A. Johannessen, O. M. Johannessen, and L. H. Pettersson (1991), Modeled and observed mesoscale circulation and wave-current refraction during the 1988 2004; 66 1966; 18 1959; 64 2000; 47 1990; 16 2000; 45 1991; 96 2010; 464 1994; 22 2003; 270 2005; 219 2004; 5 2008; 269 2008; 4 1995; 374 1988; 71 1993; 3 2005; 22 2003; 209 1998; 17 2004; 213 2009; 10 1990 1999; 19 2000; 13 2001; 291 1993; 31 2009; 284 1979; 63 2003; 84 1996; 23 2009; 66 2006; 53 2010; 327 2010 1985; 3 2011; 75 1998 2007 1995 1998; 137 1981; 28 2003 2011; 4 2011; 38 1959 2012; 32 2011; 331 2001; 20 2006; 311 2009; 36 2011; 108 2010; 48 1984; 1 1995; 45 1995; 269 1998; 103 1995; 100 2009; 4 2009; 461 2008; 451 1990; 8 2009; 429 2005; 12 2009; 106 1981; 11 e_1_2_8_28_1 Hegerl G. C. (e_1_2_8_29_1) 2007 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 Sloan E. D. J. (e_1_2_8_59_1) 1990 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 R Development Core Team (e_1_2_8_49_1) 2010 Carslaw H. S. (e_1_2_8_16_1) 1959 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Shipley T. H. (e_1_2_8_57_1) 1979; 63 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 Andreassen K. (e_1_2_8_2_1) 1995; 45 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – reference: Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., Clarendon, Oxford, U. K. – reference: Vorren, T. O., J. S. Laberg, F. Blaume, J. A. Dowdeswells, N. H. Kenyon, J. Mienert, J. Rumohr, and F. Werner (1998), The Norwegian-Greenland Sea continental margins: Morphology and late quaternary sedimentary processes and environment, Quat. Sci. Rev., 17, 273-302, doi:10.1016/S0277-3791(97)00072-3. – reference: Hustoft, S., S. Bünz, J. Mienert, and S. Chand (2009b), Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard, Earth Planet. Sci. Lett., 284(1-2), 12-24, doi:10.1016/j.epsl.2009.03.038. – reference: Turpeinen, H., A. Hampel, T. Karow, and G. Maniatis (2008), Effect of ice sheet growth and melting on the slip evolution of thrust faults, Earth Planet. Sci. Lett., 269(1-2), 230-241, doi:10.1016/j.epsl.2008.02.017. – reference: Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang (2009), Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777. – reference: Mienert, J., M. Vanneste, S. Bünz, K. Andreassen, H. Haflidason, and H. P. Sejrup (2005), Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide, Mar. Pet. Geol., 22, 233-244, doi:10.1016/j.marpetgeo.2004.10.018. – reference: Rajan, A., J. Mienert, and S. Bünz (2012), Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW-Svalbard, Mar. Pet. Geol., 32, 36-49, doi:10.1016/j.marpetgeo.2011.12.008. – reference: Harris, C. L., A. J. Plueddemann, and G. G. Gawarkiewicz (1998), Water mass distribution and polar front structure in the western Barents Sea, J. Geophys. Res., 103(C2), 2905-2917, doi:10.1029/97JC02790. – reference: Hurrell, J. W., Y. Kushnir, and M. Visbeck (2001), The North Atlantic Oscillation, Science, 291(5504), 603-605, doi:10.1126/science.1058761. – reference: Krey, V., et al. (2009), Gas hydrates: Entrance to a methane age or climate threat?, Environ. Res. Lett., 4, 034007, doi:10.1088/1748-9326/4/3/034007. – reference: Sætre, R. (1999), Features of the central Norwegian shelf circulation, Cont. Shelf Res., 19(14), 1809-1831, doi:10.1016/S0278-4343(99)00041-2. – reference: Swift, J. H., and K. Aagaard (1981), Seasonal transitions and water mass formation in the Iceland and Greenland seas, Deep Sea Res. Part A, 28(10), 1107-1129, doi:10.1016/0198-0149(81)90050-9. – reference: Midttomme, K., and E. Roaldset (2008), The effect of grain size on thermal conductivity of quartz sands and silts, Pet. Geosci., 4(2), 165-172, doi:10.1144/petgeo.4.2.165. – reference: Fisher, R. E., et al. (2011), Arctic methane sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38, L21803, doi:10.1029/2011GL049319. – reference: Harvey, L. D. D., and Z. Huang (1995), Evaluation of the potential impact of methane clathrate destabilization on future global warming, J. Geophys. Res., 100(D2), 2905-2926, doi:10.1029/94JD02829. – reference: Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45(2), 109-208, doi:10.1016/S0079-6611(99)00052-X. – reference: R Development Core Team (2010), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna. [Available at http://www.R-project.org.] – reference: Knies, J., E. Damm, J. Gutt, U. Mann, and L. Pinturier (2004), Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages, Geochem. Geophys. Geosyst., 5, Q06003, doi:10.1029/2003GC000687. – reference: Shipley, T. H., M. H. Houston, R. T. Buffler, F. J. Shaub, K. J. McMillen, J. W. Ladd, and J. L. Worzel (1979), Seismic reflection evidence for widespread occurrence of possible gas-hydrate horizons on continental slopes and rises, Am. Assoc. Pet. Geol. Bull., 63, 2204-2213. – reference: Screen, J. A., and I. Simmonds (2010), The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464(7293), 1334-1337, doi:10.1038/nature09051. – reference: Mienert, J., and P. E. Weaver (2003), European Margin Sediment Dynamics: Side-Scan Sonar and Seismic Images, Springer, Berlin. – reference: Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kallen, and G. Svensson (2008), Vertical structure of recent Arctic warming, Nature, 451(7174), 53-56, doi:10.1038/nature06502. – reference: Archer, D., B. Buffett, and V. Brovkin (2009), Ocean methane hydrates as a slow tipping point in the global carbon cycle, Proc. Natl. Acad. Sci. U. S. A., 106(49), 20,596-20,601, doi:10.1073/pnas.0800885105. – reference: Hustoft, S., B. Dugan, and J. Mienert (2009a), Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway, Geochem. Geophys. Geosyst., 10, Q06012, doi:10.1029/2009GC002409. – reference: Andreassen, K., and T. Hansen (1995), Inferred gas hydrates offshore Norway and Svalbard, Norw. J. Geol., 45, 10-34. – reference: Biastoch, A., et al. (2011), Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602, doi:10.1029/2011GL047222. – reference: Burwicz, E. B., L. H. Rüpke, and K. Wallmann (2011), Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation, Geochim. Cosmochim. Acta, 75(16), 4562-4576, doi:10.1016/j.gca.2011.05.029. – reference: Sidorova, A., and A. Shcherbinin (2009), Barents Sea hydrodynamics change during the El Niño event, Dokl. Earth Sci., 429(2), 1562-1566, doi:10.1134/S1028334X09090311. – reference: Jain, P. C. (1993), Greenhouse effect and climate change: Scientific basis and overview, Renew. Energy, 3(4-5), 403-420, doi:10.1016/0960-1481(93)90108-S. – reference: Haugan, P. M., G. Evensen, J. A. Johannessen, O. M. Johannessen, and L. H. Pettersson (1991), Modeled and observed mesoscale circulation and wave-current refraction during the 1988 Norwegian continental shelf experiment, J. Geophys. Res., 96(C6), 10,487-10,506, doi:10.1029/91JC00299. – reference: Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson (2010), Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221. – reference: Andreassen, K., K. Hogstad, K. A. Berteussen (1990), Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly, First Break, 8(6), 235-245, doi:10.3997/1365-2397.1990012. – reference: Tishchenko, P., Hensen, C., Wallmann, K., and C. S. Wong (2005), Calculation of the stability and solubility of methane hydrate in seawater, Chem. Geol., 219, 37-52, doi:10.1016/j.chemgeo.2005.02.008. – reference: Saunders, P. M. (1981), Practical conversion of pressure to depth, J. Phys. Oceanogr., 11, 573-574, doi:10.1175/1520-0485(1981)011<0573:PCOPTD>2.0.CO;2. – reference: Vogt, P. R., J. Gardner, and K. Crane (1999), The Norwegian-Barents-Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane, Geo Mar. Lett., 19(1), 2-21, doi:10.1007/s003670050088. – reference: Bjerknes, J. (1966), A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus, 18(4), 820-829, doi:10.1111/j.2153-3490.1966.tb00303.x. – reference: Blindheim, J., V. Borovkov, B. Hansen, S. A. Malmberg, W. R. Turrell, and S. Østerhus (2000), Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing, Deep Sea Res. Part I, 47(4), 655-680, doi:10.1016/S0967-0637(99)00070-9. – reference: Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland ice sheet, Science, 311(5763), 986-990, doi:10.1126/science.1121381. – reference: Sloan, E. D. J. (1990), Clathrate Hydrates of Natural Gases, 641 pp., Marcel Dekker, New York. – reference: Vogt, P. R., K. Crane, E. Sundvor, M. D. Max, and S. L. Pfirman (1994), Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait, Geology, 22(3), 255-258, doi:10.1130/0091-7613(1994)022<0255:MGPOYT>2.3.CO;2. – reference: Bondevik, S., J. Mangerud, S. Dawson, A. Dawson, and Ø. Lohne (2003), Record-breaking height for 8000-year-old tsunami in the North Atlantic, Eos Trans. AGU, 84(31), 289, doi:10.1029/2003EO310001. – reference: Von Herzen, R. P., and A. E. Maxwell (1959), The measurement of thermal conductivity of deep-sea sediments by a needle-probe method, J. Geophys. Res., 64, 1557-1563, doi:10.1029/JZ064i010p01557. – reference: Kvenvolden, K. (1988), Methane hydrate-A major reservoir of carbon in the shallow geosphere?, Chem. Geol., 71(1-3), 41-51, doi:10.1016/0009-2541(88)90104-0. – reference: Faleide, J. I., S. T. Gudlaugsson, and G. Jacquart (1984), Evolution of the western Barents Sea, Mar. Pet. Geol., 1(2), 123-150, doi:10.1016/0264-8172(84)90082-5. – reference: Boswell, R., and T. S. Collett (2011), Current perspectives on gas hydrate resources, Energy Environ. Sci., 4, 1206-1215, doi:10.1039/c0ee00203h. – reference: Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269(5224), 676-679, doi:10.1126/science.269.5224.676. – reference: Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York. – reference: Dickson, R. R., T. J. Osborn, J. W. Hurrell, J. Meincke, J. Blindheim, B. Adlandsvik, T. Vinje, G. Alekseev, and W. Maslowski (2000), The Arctic Ocean response to the North Atlantic Oscillation, J. Clim., 13(15), 2671-2696, doi:10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2. – reference: Reagan, M. T., and G. J. Moridis (2009), Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin, Geophys. Res. Lett., 36, L23612, doi:10.1029/2009GL041332. – reference: Vogt, P. R., and E. Sundvor (1996), Heat flow highs on the Norwegian-Barents-Svalbard continental slope: Deep crustal fractures, dewatering or "memory in the mud," Geophys. Res. Lett., 23(24), 3571-3574, doi:10.1029/96GL03259. – reference: MacDonald, G. J. (1990), Role of methane clathrates in past and future climates, Clim. Change, 16(3), 247-281, doi:10.1007/BF00144504. – reference: Mienert, J., and J. Posewang (1999), Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments, Geo Mar. Lett., 19(1), 143-149, doi:10.1007/s003670050101. – reference: Milkov, A. V. (2004), Global estimates of hydrate-bound gas in marine sediments: How much is really out there?, Earth Sci. Rev., 66(3-4), 183-197, doi:10.1016/j.earscirev.2003.11.002. – reference: Boyer, T. P., et al. (2009), World Ocean Database 2009, NOAA Atlas NESDIS, vol. 66, 216 pp., NOAA, Silver Spring, Md. – reference: Schlichtholz, P., and I. Goszczko (2006), Interannual variability of the Atlantic water layer in the West Spitsbergen Current at 76.5°N in summer 1991-2003, Deep Sea Res. Part I, 53(4), 608-626, doi:10.1016/j.dsr.2006.01.001. – reference: Vinther, B. M., et al. (2009), Holocene thinning of the Greenland ice sheet, Nature, 461(7262), 385-388, doi:10.1038/nature08355. – reference: Westbrook, G. K., et al. (2009), Escape of methane gas from the seabed along the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608, doi:10.1029/2009GL039191. – reference: Antoniades, D., P. Francus, R. Pienitz, G. St-Onge, and W. F. Vincent (2011), Holocene dynamics of the Arctic's largest ice shelf, Proc. Natl. Acad. Sci. U. S. A., 108, 1-6, doi:10.1073/pnas.1106378108. – reference: Solheim, A., and A. Elverhøi (1985), A pockmark field in the Central Barents Sea; Gas from a petrogenic source?, Polar Res., 3(1), 11-19, doi:10.1111/j.1751-8369.1985.tb00492.x. – reference: Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud (1995), Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46-49, doi:10.1038/374046a0. – reference: Bünz, S., J. Mienert, and C. Berndt (2003), Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin, Earth Planet. Sci. Lett., 209(3-4), 291-307, doi:10.1016/S0012-821X(03)00097-9. – reference: Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010), Global surface temperature change, Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345. – reference: Spielhagen, R. F., K. Werner, S. A. Sørensen, K. Zamelczyk, E. Kandiano, G. Budeus, K. Husum, T. M. Marchitto, and M. Hald (2011), Enhanced modern heat transfer to the Arctic by warm Atlantic water, Science, 331(6016), 450-453, doi:10.1126/science.1197397. – reference: Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz, and B. Ådlandsvik (2003), Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond, Proc. R. Soc. London Ser. B, 270(1529), 2087-2096, doi:10.1098/rspb.2003.2415. – reference: Haflidason, H., H. P. Sejrup, A. Nygård, J. Mienert, P. Bryn, R. Lien, C. F. Forsberg, K. Berg, and D. G. Masson (2004), The Storegga Slide: Architecture, geometry and slide development, Mar. Geol., 213, 201-234, doi:10.1016/j.margeo.2004.10.007. – reference: Piechura, J., A. Beszczyńska-Möller, and R. Osiński (2001), Volume, heat and salt transport by the West Spitsbergen Current, Polar Res., 20(2), 233-240, doi:10.1111/j.1751-8369.2001.tb00061.x. – reference: Kvenvolden, K. A. (1993), Gas hydrates-geological perspective and global change, Rev. Geophys., 31(2), 173-187, doi:10.1029/93RG00268. – volume: 269 start-page: 676 issue: 5224 year: 1995 end-page: 679 article-title: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation publication-title: Science – volume: 461 start-page: 385 issue: 7262 year: 2009 end-page: 388 article-title: Holocene thinning of the Greenland ice sheet publication-title: Nature – volume: 106 start-page: 20,596 issue: 49 year: 2009 end-page: 20,601 article-title: Ocean methane hydrates as a slow tipping point in the global carbon cycle publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 233 year: 2005 end-page: 244 article-title: Ocean warming and gas hydrate stability on the mid‐Norwegian margin at the Storegga Slide publication-title: Mar. Pet. Geol. – volume: 22 start-page: 255 issue: 3 year: 1994 end-page: 258 article-title: Methane‐generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait publication-title: Geology – volume: 270 start-page: 2087 issue: 1529 year: 2003 end-page: 2096 article-title: Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond publication-title: Proc. R. Soc. London Ser. B – volume: 269 start-page: 230 issue: 1–2 year: 2008 end-page: 241 article-title: Effect of ice sheet growth and melting on the slip evolution of thrust faults publication-title: Earth Planet. Sci. Lett. – volume: 16 start-page: 247 issue: 3 year: 1990 end-page: 281 article-title: Role of methane clathrates in past and future climates publication-title: Clim. Change – volume: 36 year: 2009 article-title: Large‐scale simulation of methane hydrate dissociation along the West Spitsbergen Margin publication-title: Geophys. Res. Lett. – volume: 137 start-page: 275 year: 1998 end-page: 291 – volume: 63 start-page: 2204 year: 1979 end-page: 2213 article-title: Seismic reflection evidence for widespread occurrence of possible gas‐hydrate horizons on continental slopes and rises publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 100 start-page: 2905 issue: D2 year: 1995 end-page: 2926 article-title: Evaluation of the potential impact of methane clathrate destabilization on future global warming publication-title: J. Geophys. Res. – volume: 10 year: 2009 article-title: Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3‐D seismic data, offshore mid‐Norway publication-title: Geochem. Geophys. Geosyst. – volume: 284 start-page: 12 issue: 1–2 year: 2009 end-page: 24 article-title: Gas hydrate reservoir and active methane‐venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW‐Svalbard publication-title: Earth Planet. Sci. Lett. – volume: 20 start-page: 233 issue: 2 year: 2001 end-page: 240 article-title: Volume, heat and salt transport by the West Spitsbergen Current publication-title: Polar Res. – volume: 429 start-page: 1562 issue: 2 year: 2009 end-page: 1566 article-title: Barents Sea hydrodynamics change during the El Niño event publication-title: Dokl. Earth Sci. – volume: 374 start-page: 46 year: 1995 end-page: 49 article-title: Variations in atmospheric methane concentration during the Holocene epoch publication-title: Nature – volume: 38 year: 2011 article-title: Arctic methane sources: Isotopic evidence for atmospheric inputs publication-title: Geophys. Res. Lett. – volume: 18 start-page: 820 issue: 4 year: 1966 end-page: 829 article-title: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature publication-title: Tellus – volume: 464 start-page: 1334 issue: 7293 year: 2010 end-page: 1337 article-title: The central role of diminishing sea ice in recent Arctic temperature amplification publication-title: Nature – volume: 209 start-page: 291 issue: 3–4 year: 2003 end-page: 307 article-title: Geological controls on the Storegga gas‐hydrate system of the mid‐Norwegian continental margin publication-title: Earth Planet. Sci. Lett. – volume: 19 start-page: 1809 issue: 14 year: 1999 end-page: 1831 article-title: Features of the central Norwegian shelf circulation publication-title: Cont. Shelf Res. – volume: 17 start-page: 273 year: 1998 end-page: 302 article-title: The Norwegian‐Greenland Sea continental margins: Morphology and late quaternary sedimentary processes and environment publication-title: Quat. Sci. Rev. – year: 1990 – volume: 45 start-page: 10 year: 1995 end-page: 34 article-title: Inferred gas hydrates offshore Norway and Svalbard publication-title: Norw. J. Geol. – volume: 12 start-page: 271 year: 2005 end-page: 284 – volume: 11 start-page: 573 year: 1981 end-page: 574 article-title: Practical conversion of pressure to depth publication-title: J. Phys. Oceanogr. – volume: 451 start-page: 53 issue: 7174 year: 2008 end-page: 56 article-title: Vertical structure of recent Arctic warming publication-title: Nature – volume: 32 start-page: 36 year: 2012 end-page: 49 article-title: Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW‐Svalbard publication-title: Mar. Pet. Geol. – volume: 19 start-page: 2 issue: 1 year: 1999 end-page: 21 article-title: The Norwegian‐Barents‐Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane publication-title: Geo Mar. Lett. – volume: 53 start-page: 608 issue: 4 year: 2006 end-page: 626 article-title: Interannual variability of the Atlantic water layer in the West Spitsbergen Current at 76.5°N in summer 1991–2003 publication-title: Deep Sea Res. Part I – year: 1959 – volume: 3 start-page: 11 issue: 1 year: 1985 end-page: 19 article-title: A pockmark field in the Central Barents Sea; Gas from a petrogenic source? publication-title: Polar Res. – volume: 108 start-page: 1 year: 2011 end-page: 6 article-title: Holocene dynamics of the Arctic's largest ice shelf publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 year: 2011 article-title: Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification publication-title: Geophys. Res. Lett. – volume: 66 year: 2009 – volume: 64 start-page: 1557 year: 1959 end-page: 1563 article-title: The measurement of thermal conductivity of deep‐sea sediments by a needle‐probe method publication-title: J. Geophys. Res. – volume: 28 start-page: 1107 issue: 10 year: 1981 end-page: 1129 article-title: Seasonal transitions and water mass formation in the Iceland and Greenland seas publication-title: Deep Sea Res. Part A – volume: 1 start-page: 123 issue: 2 year: 1984 end-page: 150 article-title: Evolution of the western Barents Sea publication-title: Mar. Pet. Geol. – volume: 36 year: 2009 article-title: Escape of methane gas from the seabed along the West Spitsbergen continental margin publication-title: Geophys. Res. Lett. – volume: 3 start-page: 403 issue: 4–5 year: 1993 end-page: 420 article-title: Greenhouse effect and climate change: Scientific basis and overview publication-title: Renew. Energy – start-page: 663 year: 2007 end-page: 745 – volume: 291 start-page: 603 issue: 5504 year: 2001 end-page: 605 article-title: The North Atlantic Oscillation publication-title: Science – start-page: 215 year: 2003 end-page: 222 – volume: 213 start-page: 201 year: 2004 end-page: 234 article-title: The Storegga Slide: Architecture, geometry and slide development publication-title: Mar. Geol. – volume: 4 start-page: 165 issue: 2 year: 2008 end-page: 172 article-title: The effect of grain size on thermal conductivity of quartz sands and silts publication-title: Pet. Geosci. – volume: 331 start-page: 450 issue: 6016 year: 2011 end-page: 453 article-title: Enhanced modern heat transfer to the Arctic by warm Atlantic water publication-title: Science – volume: 4 start-page: 1206 year: 2011 end-page: 1215 article-title: Current perspectives on gas hydrate resources publication-title: Energy Environ. Sci. – volume: 66 start-page: 183 issue: 3–4 year: 2004 end-page: 197 article-title: Global estimates of hydrate‐bound gas in marine sediments: How much is really out there? publication-title: Earth Sci. Rev. – volume: 19 start-page: 143 issue: 1 year: 1999 end-page: 149 article-title: Evidence of shallow‐ and deep‐water gas hydrate destabilizations in North Atlantic polar continental margin sediments publication-title: Geo Mar. Lett. – year: 2007 – year: 2003 – volume: 219 start-page: 37 year: 2005 end-page: 52 article-title: Calculation of the stability and solubility of methane hydrate in seawater publication-title: Chem. Geol. – volume: 36 year: 2009 article-title: Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation publication-title: Geophys. Res. Lett. – volume: 96 start-page: 10,487 issue: C6 year: 1991 end-page: 10,506 article-title: Modeled and observed mesoscale circulation and wave‐current refraction during the 1988 Norwegian continental shelf experiment publication-title: J. Geophys. Res. – volume: 8 start-page: 235 issue: 6 year: 1990 end-page: 245 article-title: Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly publication-title: First Break – volume: 13 start-page: 2671 issue: 15 year: 2000 end-page: 2696 article-title: The Arctic Ocean response to the North Atlantic Oscillation publication-title: J. Clim. – year: 2010 – volume: 23 start-page: 3571 issue: 24 year: 1996 end-page: 3574 article-title: Heat flow highs on the Norwegian‐Barents‐Svalbard continental slope: Deep crustal fractures, dewatering or “memory in the mud,” publication-title: Geophys. Res. Lett. – volume: 84 start-page: 289 issue: 31 year: 2003 article-title: Record‐breaking height for 8000‐year‐old tsunami in the North Atlantic publication-title: Eos Trans. AGU – volume: 47 start-page: 655 issue: 4 year: 2000 end-page: 680 article-title: Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing publication-title: Deep Sea Res. Part I – volume: 31 start-page: 173 issue: 2 year: 1993 end-page: 187 article-title: Gas hydrates‐geological perspective and global change publication-title: Rev. Geophys. – volume: 327 start-page: 1246 issue: 5970 year: 2010 end-page: 1250 article-title: Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf publication-title: Science – volume: 4 year: 2009 article-title: Gas hydrates: Entrance to a methane age or climate threat? publication-title: Environ. Res. Lett. – year: 1995 – volume: 48 year: 2010 article-title: Global surface temperature change publication-title: Rev. Geophys. – volume: 75 start-page: 4562 issue: 16 year: 2011 end-page: 4576 article-title: Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction‐transport modeling and a novel parameterization of Holocene sedimentation publication-title: Geochim. Cosmochim. Acta – volume: 311 start-page: 986 issue: 5763 year: 2006 end-page: 990 article-title: Changes in the velocity structure of the Greenland ice sheet publication-title: Science – start-page: 31 year: 1998 end-page: 50 – volume: 71 start-page: 41 issue: 1–3 year: 1988 end-page: 51 article-title: Methane hydrate—A major reservoir of carbon in the shallow geosphere? publication-title: Chem. Geol. – volume: 45 start-page: 109 issue: 2 year: 2000 end-page: 208 article-title: North Atlantic‐Nordic Seas exchanges publication-title: Prog. Oceanogr. – volume: 103 start-page: 2905 issue: C2 year: 1998 end-page: 2917 article-title: Water mass distribution and polar front structure in the western Barents Sea publication-title: J. Geophys. Res. – volume: 5 year: 2004 article-title: Near‐surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages publication-title: Geochem. Geophys. Geosyst. – ident: e_1_2_8_64_1 doi: 10.1016/0198‐0149(81)90050‐9 – ident: e_1_2_8_3_1 doi: 10.3997/1365‐2397.1990012 – ident: e_1_2_8_31_1 doi: 10.1126/science.1058761 – ident: e_1_2_8_32_1 doi: 10.1029/2009GC002409 – ident: e_1_2_8_66_1 doi: 10.1016/j.epsl.2008.02.017 – ident: e_1_2_8_65_1 doi: 10.1016/j.chemgeo.2005.02.008 – volume: 63 start-page: 2204 year: 1979 ident: e_1_2_8_57_1 article-title: Seismic reflection evidence for widespread occurrence of possible gas‐hydrate horizons on continental slopes and rises publication-title: Am. Assoc. Pet. Geol. Bull. – ident: e_1_2_8_14_1 doi: 10.1016/S0012‐821X(03)00097‐9 – ident: e_1_2_8_6_1 doi: 10.1029/2011GL047222 – ident: e_1_2_8_33_1 doi: 10.1016/j.epsl.2009.03.038 – volume: 45 start-page: 10 year: 1995 ident: e_1_2_8_2_1 article-title: Inferred gas hydrates offshore Norway and Svalbard publication-title: Norw. J. Geol. – ident: e_1_2_8_11_1 doi: 10.1039/c0ee00203h – ident: e_1_2_8_35_1 doi: 10.1016/0960‐1481(93)90108‐S – ident: e_1_2_8_17_1 doi: 10.1029/2009GL038777 – ident: e_1_2_8_27_1 doi: 10.1029/94JD02829 – ident: e_1_2_8_39_1 doi: 10.1029/93RG00268 – volume-title: R: A Language and Environment for Statistical Computing year: 2010 ident: e_1_2_8_49_1 – ident: e_1_2_8_67_1 doi: 10.1016/S0928‐8937(05)80054‐2 – ident: e_1_2_8_18_1 doi: 10.1175/1520‐0442(2000)013<2671:TAORTT>2.0.CO;2 – ident: e_1_2_8_56_1 doi: 10.1126/science.1182221 – ident: e_1_2_8_8_1 doi: 10.1016/S0967‐0637(99)00070‐9 – ident: e_1_2_8_37_1 doi: 10.1088/1748‐9326/4/3/034007 – ident: e_1_2_8_43_1 doi: 10.1007/978-3-642-55846-7 – ident: e_1_2_8_47_1 doi: 10.1111/j.1751‐8369.2001.tb00061.x – ident: e_1_2_8_7_1 doi: 10.1111/j.2153‐3490.1966.tb00303.x – ident: e_1_2_8_45_1 doi: 10.1016/j.marpetgeo.2004.10.018 – ident: e_1_2_8_48_1 doi: 10.1016/j.marpetgeo.2011.12.008 – ident: e_1_2_8_74_1 doi: 10.1029/2009GL039191 – ident: e_1_2_8_26_1 doi: 10.1029/97JC02790 – ident: e_1_2_8_62_1 doi: 10.1126/science.1197397 – ident: e_1_2_8_28_1 doi: 10.1029/91JC00299 – ident: e_1_2_8_73_1 doi: 10.1016/S0277‐3791(97)00072‐3 – ident: e_1_2_8_21_1 doi: 10.4043/7693-MS – ident: e_1_2_8_5_1 doi: 10.1073/pnas.0800885105 – ident: e_1_2_8_70_1 doi: 10.1130/0091‐7613(1994)022<0255:MGPOYT>2.3.CO;2 – ident: e_1_2_8_12_1 – ident: e_1_2_8_52_1 doi: 10.1016/S0278‐4343(99)00041‐2 – ident: e_1_2_8_38_1 doi: 10.1016/0009‐2541(88)90104‐0 – volume-title: Conduction of Heat in Solids year: 1959 ident: e_1_2_8_16_1 – ident: e_1_2_8_53_1 doi: 10.1175/1520‐0485(1981)011<0573:PCOPTD>2.0.CO;2 – ident: e_1_2_8_42_1 doi: 10.1007/s003670050101 – ident: e_1_2_8_20_1 doi: 10.1029/2011GL049319 – ident: e_1_2_8_55_1 doi: 10.1038/nature09051 – ident: e_1_2_8_10_1 doi: 10.1029/2003EO310001 – ident: e_1_2_8_54_1 doi: 10.1016/j.dsr.2006.01.001 – ident: e_1_2_8_15_1 doi: 10.1016/j.gca.2011.05.029 – ident: e_1_2_8_51_1 doi: 10.1126/science.1121381 – ident: e_1_2_8_41_1 doi: 10.1144/petgeo.4.2.165 – ident: e_1_2_8_44_1 doi: 10.1144/GSL.SP.1998.137.01.22 – ident: e_1_2_8_72_1 doi: 10.1029/JZ064i010p01557 – ident: e_1_2_8_4_1 doi: 10.1073/pnas.1106378108 – start-page: 663 volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_8_29_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.margeo.2004.10.007 – ident: e_1_2_8_46_1 doi: 10.1016/j.earscirev.2003.11.002 – ident: e_1_2_8_63_1 doi: 10.1098/rspb.2003.2415 – ident: e_1_2_8_30_1 doi: 10.1126/science.269.5224.676 – volume-title: Clathrate Hydrates of Natural Gases year: 1990 ident: e_1_2_8_59_1 – ident: e_1_2_8_13_1 doi: 10.1007/978‐94‐010‐0093‐2_24 – ident: e_1_2_8_68_1 doi: 10.1038/nature08355 – ident: e_1_2_8_25_1 doi: 10.1029/2010RG000345 – ident: e_1_2_8_60_1 doi: 10.1144/GSL.SP.1998.137.01.03 – ident: e_1_2_8_50_1 doi: 10.1029/2009GL041332 – ident: e_1_2_8_61_1 doi: 10.1111/j.1751‐8369.1985.tb00492.x – ident: e_1_2_8_22_1 doi: 10.1038/nature06502 – ident: e_1_2_8_69_1 doi: 10.1029/96GL03259 – ident: e_1_2_8_9_1 doi: 10.1038/374046a0 – ident: e_1_2_8_71_1 doi: 10.1007/s003670050088 – ident: e_1_2_8_34_1 doi: 10.1017/CBO9780511546013 – ident: e_1_2_8_19_1 doi: 10.1016/0264‐8172(84)90082‐5 – ident: e_1_2_8_40_1 doi: 10.1007/BF00144504 – ident: e_1_2_8_58_1 doi: 10.1134/S1028334X09090311 – ident: e_1_2_8_24_1 doi: 10.1016/S0079‐6611(99)00052‐X – ident: e_1_2_8_36_1 doi: 10.1029/2003GC000687 |
| SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000818449 |
| Score | 2.3270097 |
| Snippet | The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Bottom water Climate change Continental margins Continental slope Cooling Deep water Earth Earth sciences Earth, ocean, space El Nino Exact sciences and technology gas hydrate Gas hydrates Geophysics Hydrates Marine Marine geology Methane Norwegian Arctic Norwegian margin Ocean temperature Oceanography Oceans Physical oceanography Shallow water Surface water Water column Water temperature |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLag5QEhcUcExmQk4AWiOY5z8ROCal01pDINGH2LHMcp1UYykm7Qv8Cv5hzHDd0DfeExyXHky7H92T7-PkJeiKgIpdDSV9wIXyiGl5VF6YehhhRlHKsyt2ITyXSazmbyyG24tS6scj0m2oG6qDXuke8FnLMY1ZTY2_MfPqpG4emqk9C4TobIVCYGZPh-f3p03O-yIGGbsBiYB7H0JU8iF_3OuISFf8APR4hC8ILbxrw0xCr-hXGSqoWqKjuNiysgdBPK2rlofOd_S3GX3HYolL7r3OYeuWaq--TWR21U5SisH5Df9pEid5UjXqaXsLDueL1XFMAuBfBIIe9LGjO6gi7T0rqyL6d189PMwfP8T-DJOXgh_a6a-aKii7UoSkvnqqXfVgVyVVDAqO6_8AerG0hR9Z5ivZj2Ifky3v88mvhOucFXEa5HFTQz0yIpIm2kjpNY4_miEKIoE6Y4KiaxAtZGvOBlIuBRlhzeBSGMHnjXNnxEBlVdmceE5ibFFoR1HM9FmKRKsYIHWnOZx0FaMI-8Xrdbph2tOaprnGX2eJ3LbLOVPfKytz7v6Dz-YffKukBvpJpTDIFLouzr9CBjkw8ns9HJJBt7ZPeKj_QJOEA7mEeER3bWnpC54aHN_rqBR573n6Fj42mNqkx9gTYpgmfI2RYbiUHkyJDkkTfWIbeWKjs8OB4BopXsyfZcPSU3MV0XtLhDBsvmwjwjN_TlctE2u66T_QHSBSxy priority: 102 providerName: ProQuest |
| Title | Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales |
| URI | https://api.istex.fr/ark:/67375/WNG-0HKVXCVH-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JC008300 https://www.proquest.com/docview/1220621720 https://www.proquest.com/docview/1285088029 https://www.proquest.com/docview/1919961404 |
| Volume | 117 |
| WOSCitedRecordID | wos000310343100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Collection customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0000818449 issn: 0148-0227 databaseCode: PCBAR dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0000818449 issn: 0148-0227 databaseCode: PATMY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121215 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0000818449 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121215 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121031 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: M2P dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0000818449 issn: 0148-0227 databaseCode: M2P dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: M2P dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030586 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030584 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: WIN dateStart: 20030101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: WIN dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030583 issn: 0148-0227 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030583 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0043761 issn: 0148-0227 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030582 issn: 0148-0227 databaseCode: DRFUL dateStart: 20030101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030585 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030584 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030586 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2156-2202 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0030581 issn: 0148-0227 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYCxJC4mOAFhiVkWAvEJE6ztdjF9aWwUI12Na3yPkqFWuCkm7QN_4AHvgb-Uu4c9yQPjAJ8eazz65r39ln5_w7Qp5xKzE9Hnu6YCnXuTDwsTLPdNOMoUZm2yKLZLAJJwjc6dSbqAs3fAtT40M0F26oGXK9RgUXUaXABhAjE3YuduijCWHAkb3LQHStDum-Ph6evGtuWSRayh-njz6XzzhrAiTd3SBYmzDbBG8TVpuw1wQHTa2DH3JXR1w-5WUPnX3V7urG_tfFqfyG_piiginJ6lgaG8Zu22SWe97wzv-O1l1yW1m7dFCL5z1yLc23yc6gwvv3YrGie1Sm6-uVapvcqENjriA1SlVKOwK7viglBRX88zkY2ars1vs4FblC3YZKk7qh--SHLKAIvKVQo-mlAF2TrsArCpY6BcuXwoAsqW3QFeh7RYtcZgZF-TWdgdr8-v7zAyhiBEpEF6KczXM6X8d0qehMVPTTKkGoDQomtmoZ2pBhD-lyvoB8GO60ekBOhgcf_bGuAk_owsLjtAApNWLuJFacerHt2DF-HuWcJ5ljCIYBn4wEjnYsYZnDgfQyBnl9ExY_fCpsPiSdvMjTHUKj1IWKHhxDWQQi4gphJKwfx8yL7L6bGBp5sRaHMFao7Bgc5DyU3gHMC9szp5HnDfeXGo3kL3x7UrIaJlF-Rg8-xwrPglFojN-eTv3TcTjUSG9D9JoKDCxT2Aa5RnbXshiq1a0K-4wZNkY2gx962hTDuoQfm0SeFhfI46LtDz27gsdDH3gEeNLISym9V_6r8HB07INB7hmP_o39MbmJBbUP5i7pLMuL9Am5Hl8u51XZI939g2By3FNrR49sHbEJUBN_fwC5W2dvgt96o2NI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nc9MwEN0pCTMwzPDNYChFzNBewFNFlj904FACadqU0Cltyc0osh0yUKfEaUv-Aj-G38iu4pj0QG49cLSyVmxpV3qynvYBvJR-4ilplKtFKl2pOR1WlpnreQbvyIJAZ30rNhF2u1Gvp_ZX4Pf8LAzRKudjoh2ok5Ghb-SbDSF4QGpKvGRQdtLpBa7Pijc777Az14VovT9stt1SQsDVPi2MNP4fNzJMfJMqE4SBoY0uKWWShVwLku7hCYJ0kYgslHipMoFlDQ_dmA59eljvxukPl1SqaDe3lOy4BvUoUL6sQX2_-XbroPqqQwnipMXcohEoV4nQL9n2XKhNnGzFbpNQDx2oW5gH69SlP4mXqQvsmmymqXEJ9C5CZzv3te78b612F26XKJttzcLiHqyk-X249dGkOi9TdD-AX_aSUW6uMrE0O9cYjpYtPGUI5hmCY4ZtNWEBZ1N8sYKNclvYHY0v0gFGlvsJI7WPUcZO9HgwzNlwLvpSsIEu2NdpQrk4GGLwsl6sweoissnwBMuxH9LiIRxdSQM9glo-ytPHwPppRB6D61TRl14Yac0T0TBGqH7QiBLuwKu5n8SmTNtO6iHfY0sfECpe9CoH1ivr01m6kn_YbViXq4z0-BtR_EI__tzdjnm7c9xrHrfjlgNrl3yyukEgdMV5UjqwOve8uBz-iviv2znwovoZBy7ajdJ5Ojojm4gWB_hkS2wUkeQpA5QDr20ALH2reHf7oImIXfEny5_qOdxoH37Yi_d2up2ncJPqmBE0V6E2GZ-lz-C6OZ8Mi_FaGeAMvlx1wPwBpoGIXQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NFqEJif9ogTGMxHiBqK7jJvEDQqOj61ZUqjFG34LrJKWCpaPpNvoV-Eh8Ou7cpHQP9G0PPNq5WP5zZ_9sn-8H8Fw2Yk9Jo1wtEulKzemxskxdzzP4R-r7Oh1Ysomg2w37fdVbg9_lWxhyqyznRDtRx2NDZ-S1uhDcJzYlXksLt4jebuvN6Q-XGKToprWk05irSCeZXeD2LX-9v4tjvS1E691Rs-0WDAOubtC-SWN1uJFB3DCJMn7gG7oHk1LGacC1IGYfHiOGF7FIA4lJlQrMq3uo5fQm1MNyr0E19DFZgWqv-XbncHHCQ8HipMXfou4rV4mgUXjec6FquPCKgyYhIHpct7QmVml4f5KPps5xmNI5v8YlALwMo-062Lr9P_fgHbhVoG-2MzeXu7CWZPfg5geT6KwI3X0fftkko5hdRcBpdq7RTK0X8YwhyGcImhn225T5nM2wFTkbZzazO55cJEO0OPcjWvAArY-d6MlwlLFRSQaTs6HO2ddZTDE6GGLzolwswfIlsunoBPNxTJL8AXy6kt54CJVsnCUbwAZJSNqD-1cxkF4Qas1jUTdGqIFfD2PuwMtSZyJThHMnVpHvkXUrECpa1jAHthfSp_MwJv-Qe2HVbyGkJ9_I9S9oRJ-7exFvd477zeN21HJg65J-Ln4QCGlx_ZQObJZaGBXTYh79VUEHni0-44RGt1Q6S8ZnJBPSpgFrtkJGkfM8RYZy4JU1hpWtig72DpuI5BV_tLpWT-EGmkT0fr_beQzrVMTcb3MTKtPJWfIErpvz6SifbBW2zuDLVRvHH1w_kRM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ocean+temperature+variability+for+the+past+60+years+on+the+Norwegian%E2%80%90Svalbard+margin+influences+gas+hydrate+stability+on+human+time+scales&rft.jtitle=Journal+of+Geophysical+Research%3A+Oceans&rft.au=Ferr%C3%A9%2C+B%C3%A9n%C3%A9dicte&rft.au=Mienert%2C+J%C3%BCrgen&rft.au=Feseker%2C+Tomas&rft.date=2012-10-01&rft.issn=0148-0227&rft.volume=117&rft.issue=C10&rft_id=info:doi/10.1029%2F2012JC008300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2012JC008300 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |