Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales

The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Oceans Jg. 117; H. C10
Hauptverfasser: Ferré, Bénédicte, Mienert, Jürgen, Feseker, Tomas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington, DC Blackwell Publishing Ltd 01.10.2012
American Geophysical Union
Schlagworte:
ISSN:0148-0227, 2169-9275, 2156-2202, 2169-9291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian‐Svalbard margin were subject to significant cooling until 1980 (by ∼2°C offshore NW‐Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (∼0.3°C in deep‐water areas offshore NW‐Svalbard and mid‐Norwegian margin and ∼2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near‐surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW‐Svalbard might be associated with El Niño events of 1976–1977, 1986–1987 and 1997–1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Key Points Increasing seabed temperatures makes gas hydrate unstable in shallow regions Temperature increase in deep areas is not enough to destabilize gas hydrate Bottom water temperature seems to be partly regulated by the NAO
AbstractList The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by similar to 2 degree C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 ( similar to 0.3 degree C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and similar to 2 degree C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Nino events of 1976-1977, 1986-1987 and 1997-1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean.
The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian‐Svalbard margin were subject to significant cooling until 1980 (by ∼2°C offshore NW‐Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (∼0.3°C in deep‐water areas offshore NW‐Svalbard and mid‐Norwegian margin and ∼2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near‐surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW‐Svalbard might be associated with El Niño events of 1976–1977, 1986–1987 and 1997–1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Key Points Increasing seabed temperatures makes gas hydrate unstable in shallow regions Temperature increase in deep areas is not enough to destabilize gas hydrate Bottom water temperature seems to be partly regulated by the NAO
The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by 2°C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (0.3°C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and 2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Niño events of 19761977, 19861987 and 19971998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean.
The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian‐Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian‐Svalbard margin were subject to significant cooling until 1980 (by ∼2°C offshore NW‐Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (∼0.3°C in deep‐water areas offshore NW‐Svalbard and mid‐Norwegian margin and ∼2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near‐surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW‐Svalbard might be associated with El Niño events of 1976–1977, 1986–1987 and 1997–1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Increasing seabed temperatures makes gas hydrate unstable in shallow regions Temperature increase in deep areas is not enough to destabilize gas hydrate Bottom water temperature seems to be partly regulated by the NAO
The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by 2 degree C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (0.3 degree C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and 2 degree C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Nino events of 1976-1977, 1986-1987 and 1997-1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean. Key Points * Increasing seabed temperatures makes gas hydrate unstable in shallow regions * Temperature increase in deep areas is not enough to destabilize gas hydrate * Bottom water temperature seems to be partly regulated by the NAO
Author Mienert, Jürgen
Feseker, Tomas
Ferré, Bénédicte
Author_xml – sequence: 1
  givenname: Bénédicte
  surname: Ferré
  fullname: Ferré, Bénédicte
  email: benedicte.ferre@uit.no, benedicte.ferre@uit.no
  organization: Institute of Geology, University of Tromsø, Tromsø, Norway
– sequence: 2
  givenname: Jürgen
  surname: Mienert
  fullname: Mienert, Jürgen
  organization: Institute of Geology, University of Tromsø, Tromsø, Norway
– sequence: 3
  givenname: Tomas
  surname: Feseker
  fullname: Feseker, Tomas
  organization: MARUM-Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26581114$$DView record in Pascal Francis
BookMark eNqFkd1u1DAQhSNUJJbSOx7AEkLigpSx4_xdoqjdpVStxE_hzpo6k12XrLPYTsu-Qp8ah20RqgT4ZuSj75zRzDxN9uxgKUmeczjkIOo3Arg4aQCqDOBRMhM8L1IhQOwlM-CySkGI8kly4P0VxCfzQgKfJbfnmtCyQOsNOQyjI3aNzuCl6U3Ysm5wLKyIbdAHVgDbEjrPBvtLPBvcDS0N2vTjNfaX6Fq2Rrc0lhnb9SNZTZ4t0bPVto3ZxHy4z40Jq3E9NTbrqGvsyT9LHnfYezq4q_vJ5-OjT80iPT2fv2venqaYg4AUSXegZdnmmmpdlIWWNVRSyrYrAUVb6RbaPKKt6EoZv3UnosazqoSsrvNsP3m1y9244ftIPqi18Zr6Hi0No1e85nVdcAny_6iocqiquP6IvniAXg2js3GQSAkoBC8FROrlHYXT0J1Dq41XG2fi5rZKFHnFOZ8aix2n3eC9o05pEzCYwQaHplcc1HR09efRo-n1A9N97l_wbIffmJ62_2TVyfxDw0VeT6505zI-0I_fLnTfVFFmZa6-nM0VLN5ffG0uFuo4-wkxJ8ux
CitedBy_id crossref_primary_10_1016_j_jngse_2021_104127
crossref_primary_10_1038_s41558_025_02258_5
crossref_primary_10_1016_j_epsl_2023_117993
crossref_primary_10_1002_2013GC005179
crossref_primary_10_1002_2015JC011084
crossref_primary_10_1038_s41467_020_17289_z
crossref_primary_10_1002_2016GL068999
crossref_primary_10_5194_os_15_1055_2019
crossref_primary_10_5194_os_18_233_2022
crossref_primary_10_1016_j_marpetgeo_2013_06_009
crossref_primary_10_1002_2015GC006153
crossref_primary_10_1002_lno_10307
crossref_primary_10_1073_pnas_1618926114
crossref_primary_10_1016_j_marpetgeo_2019_08_014
crossref_primary_10_1155_2014_582424
crossref_primary_10_1038_s41598_020_57921_y
crossref_primary_10_1038_s41598_024_51532_7
crossref_primary_10_5194_bg_14_2929_2017
crossref_primary_10_1016_j_dsr_2015_06_002
crossref_primary_10_1016_j_margeo_2014_04_003
crossref_primary_10_1002_lom3_10307
crossref_primary_10_1016_j_jmarsys_2016_08_009
crossref_primary_10_1038_490491a
crossref_primary_10_1016_j_marpetgeo_2024_107088
crossref_primary_10_1002_2015GC006119
crossref_primary_10_1016_j_dsr_2023_104156
crossref_primary_10_1007_s40641_020_00169_5
crossref_primary_10_1002_2016JD025590
crossref_primary_10_1073_pnas_1619288114
crossref_primary_10_1002_lno_10388
crossref_primary_10_1016_j_csr_2019_104030
crossref_primary_10_1016_j_gca_2016_11_015
crossref_primary_10_3389_fmars_2025_1589660
crossref_primary_10_1002_2016GL071841
crossref_primary_10_3390_w13020202
crossref_primary_10_1002_2017GC007288
crossref_primary_10_1029_2019GL082750
crossref_primary_10_1029_2021EA001711
crossref_primary_10_1007_s12040_021_01689_w
crossref_primary_10_1029_2022JB025231
crossref_primary_10_1029_2024JC020949
crossref_primary_10_5194_cp_11_669_2015
crossref_primary_10_1002_2017GC007107
crossref_primary_10_1038_s43247_021_00264_x
crossref_primary_10_1016_j_polar_2016_11_004
Cites_doi 10.1016/0198‐0149(81)90050‐9
10.3997/1365‐2397.1990012
10.1126/science.1058761
10.1029/2009GC002409
10.1016/j.epsl.2008.02.017
10.1016/j.chemgeo.2005.02.008
10.1016/S0012‐821X(03)00097‐9
10.1029/2011GL047222
10.1016/j.epsl.2009.03.038
10.1039/c0ee00203h
10.1016/0960‐1481(93)90108‐S
10.1029/2009GL038777
10.1029/94JD02829
10.1029/93RG00268
10.1016/S0928‐8937(05)80054‐2
10.1175/1520‐0442(2000)013<2671:TAORTT>2.0.CO;2
10.1126/science.1182221
10.1016/S0967‐0637(99)00070‐9
10.1088/1748‐9326/4/3/034007
10.1007/978-3-642-55846-7
10.1111/j.1751‐8369.2001.tb00061.x
10.1111/j.2153‐3490.1966.tb00303.x
10.1016/j.marpetgeo.2004.10.018
10.1016/j.marpetgeo.2011.12.008
10.1029/2009GL039191
10.1029/97JC02790
10.1126/science.1197397
10.1029/91JC00299
10.1016/S0277‐3791(97)00072‐3
10.4043/7693-MS
10.1073/pnas.0800885105
10.1130/0091‐7613(1994)022<0255:MGPOYT>2.3.CO;2
10.1016/S0278‐4343(99)00041‐2
10.1016/0009‐2541(88)90104‐0
10.1175/1520‐0485(1981)011<0573:PCOPTD>2.0.CO;2
10.1007/s003670050101
10.1029/2011GL049319
10.1038/nature09051
10.1029/2003EO310001
10.1016/j.dsr.2006.01.001
10.1016/j.gca.2011.05.029
10.1126/science.1121381
10.1144/petgeo.4.2.165
10.1144/GSL.SP.1998.137.01.22
10.1029/JZ064i010p01557
10.1073/pnas.1106378108
10.1016/j.margeo.2004.10.007
10.1016/j.earscirev.2003.11.002
10.1098/rspb.2003.2415
10.1126/science.269.5224.676
10.1007/978‐94‐010‐0093‐2_24
10.1038/nature08355
10.1029/2010RG000345
10.1144/GSL.SP.1998.137.01.03
10.1029/2009GL041332
10.1111/j.1751‐8369.1985.tb00492.x
10.1038/nature06502
10.1029/96GL03259
10.1038/374046a0
10.1007/s003670050088
10.1017/CBO9780511546013
10.1016/0264‐8172(84)90082‐5
10.1007/BF00144504
10.1134/S1028334X09090311
10.1016/S0079‐6611(99)00052‐X
10.1029/2003GC000687
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TG
7TN
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
DOI 10.1029/2012JC008300
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9291
EndPage n/a
ExternalDocumentID 2827338271
26581114
10_1029_2012JC008300
JGRC12590
ark_67375_WNG_0HKVXCVH_F
Genre article
GeographicLocations Barents Sea
Norway
Arctic region
Europe
Arctic Ocean
polar regions
Svalbard
Pacific Ocean
Scandinavia
PNE, Barents Sea
PNE, Norway, Svalbard, Spitsbergen, Prins Karls Forland
AN, North Atlantic, North Atlantic Oscillation
GeographicLocations_xml – name: PNE, Norway, Svalbard, Spitsbergen, Prins Karls Forland
– name: PNE, Barents Sea
– name: AN, North Atlantic, North Atlantic Oscillation
GroupedDBID 12K
1OC
7XC
88I
8FE
8FH
8G5
8R4
8R5
AAHQN
AAMNL
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AGYGG
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAYXX
CITATION
IQODW
05W
0R~
33P
3V.
50Y
52M
702
7TG
7TN
7XB
8-1
8CJ
8FK
AAESR
AASGY
AAZKR
ABPVW
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFFHD
AFKRA
AFRAH
AIURR
ALVPJ
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BMXJE
CCPQU
D1J
D1K
DPXWK
F1W
FEDTE
H96
HGLYW
HVGLF
HZ~
K6-
KL.
L.G
LEEKS
LK5
M7R
MY~
O9-
P2W
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PYCSY
Q9U
R.K
SUPJJ
WBKPD
PUEGO
ID FETCH-LOGICAL-a5020-aecf0c47d5ce9c676c4908444df70a2d8cd0d5502d2f74d8c9f28cd1387039953
IEDL.DBID DRFUL
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310343100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-0227
2169-9275
IngestDate Wed Oct 01 13:58:21 EDT 2025
Fri Sep 05 11:05:21 EDT 2025
Fri Nov 21 03:41:40 EST 2025
Mon Jul 21 09:16:43 EDT 2025
Tue Nov 18 22:23:21 EST 2025
Sat Nov 29 03:11:12 EST 2025
Tue Sep 09 05:12:11 EDT 2025
Sun Sep 21 06:18:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C10
Keywords continental slope
world ocean
reservoirs
Deep water
variability
Shallow water
offshore
quality
surface water
bottom water
North Atlantic oscillation
El Nino
gas hydrates
dissociation
methane
cooling
warming
temperature
data bases
Triggering
continental margin
stability
climate change
outer shelf
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5020-aecf0c47d5ce9c676c4908444df70a2d8cd0d5502d2f74d8c9f28cd1387039953
Notes ark:/67375/WNG-0HKVXCVH-F
Tab-delimited Table 1.
istex:8E8575A24DD208DC511FF2D13C1B221848C0B88F
ArticleID:2012JC008300
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JC008300
PQID 1220621720
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_1919961404
proquest_miscellaneous_1285088029
proquest_journals_1220621720
pascalfrancis_primary_26581114
crossref_citationtrail_10_1029_2012JC008300
crossref_primary_10_1029_2012JC008300
wiley_primary_10_1029_2012JC008300_JGRC12590
istex_primary_ark_67375_WNG_0HKVXCVH_F
PublicationCentury 2000
PublicationDate October 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Oceans
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Archer, D., B. Buffett, and V. Brovkin (2009), Ocean methane hydrates as a slow tipping point in the global carbon cycle, Proc. Natl. Acad. Sci. U. S. A., 106(49), 20,596-20,601, doi:10.1073/pnas.0800885105.
Mienert, J., and P. E. Weaver (2003), European Margin Sediment Dynamics: Side-Scan Sonar and Seismic Images, Springer, Berlin.
Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kallen, and G. Svensson (2008), Vertical structure of recent Arctic warming, Nature, 451(7174), 53-56, doi:10.1038/nature06502.
Biastoch, A., et al. (2011), Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602, doi:10.1029/2011GL047222.
Krey, V., et al. (2009), Gas hydrates: Entrance to a methane age or climate threat?, Environ. Res. Lett., 4, 034007, doi:10.1088/1748-9326/4/3/034007.
Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., Clarendon, Oxford, U. K.
Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45(2), 109-208, doi:10.1016/S0079-6611(99)00052-X.
Piechura, J., A. Beszczyńska-Möller, and R. Osiński (2001), Volume, heat and salt transport by the West Spitsbergen Current, Polar Res., 20(2), 233-240, doi:10.1111/j.1751-8369.2001.tb00061.x.
Burwicz, E. B., L. H. Rüpke, and K. Wallmann (2011), Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation, Geochim. Cosmochim. Acta, 75(16), 4562-4576, doi:10.1016/j.gca.2011.05.029.
Hustoft, S., S. Bünz, J. Mienert, and S. Chand (2009b), Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard, Earth Planet. Sci. Lett., 284(1-2), 12-24, doi:10.1016/j.epsl.2009.03.038.
Harris, C. L., A. J. Plueddemann, and G. G. Gawarkiewicz (1998), Water mass distribution and polar front structure in the western Barents Sea, J. Geophys. Res., 103(C2), 2905-2917, doi:10.1029/97JC02790.
Midttomme, K., and E. Roaldset (2008), The effect of grain size on thermal conductivity of quartz sands and silts, Pet. Geosci., 4(2), 165-172, doi:10.1144/petgeo.4.2.165.
Bondevik, S., J. Mangerud, S. Dawson, A. Dawson, and Ø. Lohne (2003), Record-breaking height for 8000-year-old tsunami in the North Atlantic, Eos Trans. AGU, 84(31), 289, doi:10.1029/2003EO310001.
R Development Core Team (2010), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna. [Available at http://www.R-project.org.]
Vogt, P. R., and E. Sundvor (1996), Heat flow highs on the Norwegian-Barents-Svalbard continental slope: Deep crustal fractures, dewatering or "memory in the mud," Geophys. Res. Lett., 23(24), 3571-3574, doi:10.1029/96GL03259.
Kvenvolden, K. (1988), Methane hydrate-A major reservoir of carbon in the shallow geosphere?, Chem. Geol., 71(1-3), 41-51, doi:10.1016/0009-2541(88)90104-0.
Mienert, J., and J. Posewang (1999), Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments, Geo Mar. Lett., 19(1), 143-149, doi:10.1007/s003670050101.
Andreassen, K., and T. Hansen (1995), Inferred gas hydrates offshore Norway and Svalbard, Norw. J. Geol., 45, 10-34.
Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson (2010), Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221.
Fisher, R. E., et al. (2011), Arctic methane sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38, L21803, doi:10.1029/2011GL049319.
Vogt, P. R., J. Gardner, and K. Crane (1999), The Norwegian-Barents-Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane, Geo Mar. Lett., 19(1), 2-21, doi:10.1007/s003670050088.
Harvey, L. D. D., and Z. Huang (1995), Evaluation of the potential impact of methane clathrate destabilization on future global warming, J. Geophys. Res., 100(D2), 2905-2926, doi:10.1029/94JD02829.
Westbrook, G. K., et al. (2009), Escape of methane gas from the seabed along the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608, doi:10.1029/2009GL039191.
Milkov, A. V. (2004), Global estimates of hydrate-bound gas in marine sediments: How much is really out there?, Earth Sci. Rev., 66(3-4), 183-197, doi:10.1016/j.earscirev.2003.11.002.
Boswell, R., and T. S. Collett (2011), Current perspectives on gas hydrate resources, Energy Environ. Sci., 4, 1206-1215, doi:10.1039/c0ee00203h.
Knies, J., E. Damm, J. Gutt, U. Mann, and L. Pinturier (2004), Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages, Geochem. Geophys. Geosyst., 5, Q06003, doi:10.1029/2003GC000687.
Schlichtholz, P., and I. Goszczko (2006), Interannual variability of the Atlantic water layer in the West Spitsbergen Current at 76.5°N in summer 1991-2003, Deep Sea Res. Part I, 53(4), 608-626, doi:10.1016/j.dsr.2006.01.001.
Vinther, B. M., et al. (2009), Holocene thinning of the Greenland ice sheet, Nature, 461(7262), 385-388, doi:10.1038/nature08355.
Bjerknes, J. (1966), A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus, 18(4), 820-829, doi:10.1111/j.2153-3490.1966.tb00303.x.
Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269(5224), 676-679, doi:10.1126/science.269.5224.676.
Vorren, T. O., J. S. Laberg, F. Blaume, J. A. Dowdeswells, N. H. Kenyon, J. Mienert, J. Rumohr, and F. Werner (1998), The Norwegian-Greenland Sea continental margins: Morphology and late quaternary sedimentary processes and environment, Quat. Sci. Rev., 17, 273-302, doi:10.1016/S0277-3791(97)00072-3.
Mienert, J., M. Vanneste, S. Bünz, K. Andreassen, H. Haflidason, and H. P. Sejrup (2005), Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide, Mar. Pet. Geol., 22, 233-244, doi:10.1016/j.marpetgeo.2004.10.018.
Hustoft, S., B. Dugan, and J. Mienert (2009a), Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway, Geochem. Geophys. Geosyst., 10, Q06012, doi:10.1029/2009GC002409.
Solheim, A., and A. Elverhøi (1985), A pockmark field in the Central Barents Sea; Gas from a petrogenic source?, Polar Res., 3(1), 11-19, doi:10.1111/j.1751-8369.1985.tb00492.x.
Turpeinen, H., A. Hampel, T. Karow, and G. Maniatis (2008), Effect of ice sheet growth and melting on the slip evolution of thrust faults, Earth Planet. Sci. Lett., 269(1-2), 230-241, doi:10.1016/j.epsl.2008.02.017.
Blindheim, J., V. Borovkov, B. Hansen, S. A. Malmberg, W. R. Turrell, and S. Østerhus (2000), Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing, Deep Sea Res. Part I, 47(4), 655-680, doi:10.1016/S0967-0637(99)00070-9.
Hurrell, J. W., Y. Kushnir, and M. Visbeck (2001), The North Atlantic Oscillation, Science, 291(5504), 603-605, doi:10.1126/science.1058761.
Rajan, A., J. Mienert, and S. Bünz (2012), Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW-Svalbard, Mar. Pet. Geol., 32, 36-49, doi:10.1016/j.marpetgeo.2011.12.008.
Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland ice sheet, Science, 311(5763), 986-990, doi:10.1126/science.1121381.
Swift, J. H., and K. Aagaard (1981), Seasonal transitions and water mass formation in the Iceland and Greenland seas, Deep Sea Res. Part A, 28(10), 1107-1129, doi:10.1016/0198-0149(81)90050-9.
Tishchenko, P., Hensen, C., Wallmann, K., and C. S. Wong (2005), Calculation of the stability and solubility of methane hydrate in seawater, Chem. Geol., 219, 37-52, doi:10.1016/j.chemgeo.2005.02.008.
Faleide, J. I., S. T. Gudlaugsson, and G. Jacquart (1984), Evolution of the western Barents Sea, Mar. Pet. Geol., 1(2), 123-150, doi:10.1016/0264-8172(84)90082-5.
Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz, and B. Ådlandsvik (2003), Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond, Proc. R. Soc. London Ser. B, 270(1529), 2087-2096, doi:10.1098/rspb.2003.2415.
MacDonald, G. J. (1990), Role of methane clathrates in past and future climates, Clim. Change, 16(3), 247-281, doi:10.1007/BF00144504.
Sætre, R. (1999), Features of the central Norwegian shelf circulation, Cont. Shelf Res., 19(14), 1809-1831, doi:10.1016/S0278-4343(99)00041-2.
Vogt, P. R., K. Crane, E. Sundvor, M. D. Max, and S. L. Pfirman (1994), Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait, Geology, 22(3), 255-258, doi:10.1130/0091-7613(1994)022<0255:MGPOYT>2.3.CO;2.
Andreassen, K., K. Hogstad, K. A. Berteussen (1990), Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly, First Break, 8(6), 235-245, doi:10.3997/1365-2397.1990012.
Saunders, P. M. (1981), Practical conversion of pressure to depth, J. Phys. Oceanogr., 11, 573-574, doi:10.1175/1520-0485(1981)011<0573:PCOPTD>2.0.CO;2.
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York.
Kvenvolden, K. A. (1993), Gas hydrates-geological perspective and global change, Rev. Geophys., 31(2), 173-187, doi:10.1029/93RG00268.
Haugan, P. M., G. Evensen, J. A. Johannessen, O. M. Johannessen, and L. H. Pettersson (1991), Modeled and observed mesoscale circulation and wave-current refraction during the 1988
2004; 66
1966; 18
1959; 64
2000; 47
1990; 16
2000; 45
1991; 96
2010; 464
1994; 22
2003; 270
2005; 219
2004; 5
2008; 269
2008; 4
1995; 374
1988; 71
1993; 3
2005; 22
2003; 209
1998; 17
2004; 213
2009; 10
1990
1999; 19
2000; 13
2001; 291
1993; 31
2009; 284
1979; 63
2003; 84
1996; 23
2009; 66
2006; 53
2010; 327
2010
1985; 3
2011; 75
1998
2007
1995
1998; 137
1981; 28
2003
2011; 4
2011; 38
1959
2012; 32
2011; 331
2001; 20
2006; 311
2009; 36
2011; 108
2010; 48
1984; 1
1995; 45
1995; 269
1998; 103
1995; 100
2009; 4
2009; 461
2008; 451
1990; 8
2009; 429
2005; 12
2009; 106
1981; 11
e_1_2_8_28_1
Hegerl G. C. (e_1_2_8_29_1) 2007
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
Sloan E. D. J. (e_1_2_8_59_1) 1990
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
R Development Core Team (e_1_2_8_49_1) 2010
Carslaw H. S. (e_1_2_8_16_1) 1959
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Shipley T. H. (e_1_2_8_57_1) 1979; 63
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
Andreassen K. (e_1_2_8_2_1) 1995; 45
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – reference: Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., Clarendon, Oxford, U. K.
– reference: Vorren, T. O., J. S. Laberg, F. Blaume, J. A. Dowdeswells, N. H. Kenyon, J. Mienert, J. Rumohr, and F. Werner (1998), The Norwegian-Greenland Sea continental margins: Morphology and late quaternary sedimentary processes and environment, Quat. Sci. Rev., 17, 273-302, doi:10.1016/S0277-3791(97)00072-3.
– reference: Hustoft, S., S. Bünz, J. Mienert, and S. Chand (2009b), Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard, Earth Planet. Sci. Lett., 284(1-2), 12-24, doi:10.1016/j.epsl.2009.03.038.
– reference: Turpeinen, H., A. Hampel, T. Karow, and G. Maniatis (2008), Effect of ice sheet growth and melting on the slip evolution of thrust faults, Earth Planet. Sci. Lett., 269(1-2), 230-241, doi:10.1016/j.epsl.2008.02.017.
– reference: Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang (2009), Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777.
– reference: Mienert, J., M. Vanneste, S. Bünz, K. Andreassen, H. Haflidason, and H. P. Sejrup (2005), Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide, Mar. Pet. Geol., 22, 233-244, doi:10.1016/j.marpetgeo.2004.10.018.
– reference: Rajan, A., J. Mienert, and S. Bünz (2012), Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW-Svalbard, Mar. Pet. Geol., 32, 36-49, doi:10.1016/j.marpetgeo.2011.12.008.
– reference: Harris, C. L., A. J. Plueddemann, and G. G. Gawarkiewicz (1998), Water mass distribution and polar front structure in the western Barents Sea, J. Geophys. Res., 103(C2), 2905-2917, doi:10.1029/97JC02790.
– reference: Hurrell, J. W., Y. Kushnir, and M. Visbeck (2001), The North Atlantic Oscillation, Science, 291(5504), 603-605, doi:10.1126/science.1058761.
– reference: Krey, V., et al. (2009), Gas hydrates: Entrance to a methane age or climate threat?, Environ. Res. Lett., 4, 034007, doi:10.1088/1748-9326/4/3/034007.
– reference: Sætre, R. (1999), Features of the central Norwegian shelf circulation, Cont. Shelf Res., 19(14), 1809-1831, doi:10.1016/S0278-4343(99)00041-2.
– reference: Swift, J. H., and K. Aagaard (1981), Seasonal transitions and water mass formation in the Iceland and Greenland seas, Deep Sea Res. Part A, 28(10), 1107-1129, doi:10.1016/0198-0149(81)90050-9.
– reference: Midttomme, K., and E. Roaldset (2008), The effect of grain size on thermal conductivity of quartz sands and silts, Pet. Geosci., 4(2), 165-172, doi:10.1144/petgeo.4.2.165.
– reference: Fisher, R. E., et al. (2011), Arctic methane sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38, L21803, doi:10.1029/2011GL049319.
– reference: Harvey, L. D. D., and Z. Huang (1995), Evaluation of the potential impact of methane clathrate destabilization on future global warming, J. Geophys. Res., 100(D2), 2905-2926, doi:10.1029/94JD02829.
– reference: Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45(2), 109-208, doi:10.1016/S0079-6611(99)00052-X.
– reference: R Development Core Team (2010), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna. [Available at http://www.R-project.org.]
– reference: Knies, J., E. Damm, J. Gutt, U. Mann, and L. Pinturier (2004), Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages, Geochem. Geophys. Geosyst., 5, Q06003, doi:10.1029/2003GC000687.
– reference: Shipley, T. H., M. H. Houston, R. T. Buffler, F. J. Shaub, K. J. McMillen, J. W. Ladd, and J. L. Worzel (1979), Seismic reflection evidence for widespread occurrence of possible gas-hydrate horizons on continental slopes and rises, Am. Assoc. Pet. Geol. Bull., 63, 2204-2213.
– reference: Screen, J. A., and I. Simmonds (2010), The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464(7293), 1334-1337, doi:10.1038/nature09051.
– reference: Mienert, J., and P. E. Weaver (2003), European Margin Sediment Dynamics: Side-Scan Sonar and Seismic Images, Springer, Berlin.
– reference: Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kallen, and G. Svensson (2008), Vertical structure of recent Arctic warming, Nature, 451(7174), 53-56, doi:10.1038/nature06502.
– reference: Archer, D., B. Buffett, and V. Brovkin (2009), Ocean methane hydrates as a slow tipping point in the global carbon cycle, Proc. Natl. Acad. Sci. U. S. A., 106(49), 20,596-20,601, doi:10.1073/pnas.0800885105.
– reference: Hustoft, S., B. Dugan, and J. Mienert (2009a), Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway, Geochem. Geophys. Geosyst., 10, Q06012, doi:10.1029/2009GC002409.
– reference: Andreassen, K., and T. Hansen (1995), Inferred gas hydrates offshore Norway and Svalbard, Norw. J. Geol., 45, 10-34.
– reference: Biastoch, A., et al. (2011), Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602, doi:10.1029/2011GL047222.
– reference: Burwicz, E. B., L. H. Rüpke, and K. Wallmann (2011), Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation, Geochim. Cosmochim. Acta, 75(16), 4562-4576, doi:10.1016/j.gca.2011.05.029.
– reference: Sidorova, A., and A. Shcherbinin (2009), Barents Sea hydrodynamics change during the El Niño event, Dokl. Earth Sci., 429(2), 1562-1566, doi:10.1134/S1028334X09090311.
– reference: Jain, P. C. (1993), Greenhouse effect and climate change: Scientific basis and overview, Renew. Energy, 3(4-5), 403-420, doi:10.1016/0960-1481(93)90108-S.
– reference: Haugan, P. M., G. Evensen, J. A. Johannessen, O. M. Johannessen, and L. H. Pettersson (1991), Modeled and observed mesoscale circulation and wave-current refraction during the 1988 Norwegian continental shelf experiment, J. Geophys. Res., 96(C6), 10,487-10,506, doi:10.1029/91JC00299.
– reference: Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson (2010), Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221.
– reference: Andreassen, K., K. Hogstad, K. A. Berteussen (1990), Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly, First Break, 8(6), 235-245, doi:10.3997/1365-2397.1990012.
– reference: Tishchenko, P., Hensen, C., Wallmann, K., and C. S. Wong (2005), Calculation of the stability and solubility of methane hydrate in seawater, Chem. Geol., 219, 37-52, doi:10.1016/j.chemgeo.2005.02.008.
– reference: Saunders, P. M. (1981), Practical conversion of pressure to depth, J. Phys. Oceanogr., 11, 573-574, doi:10.1175/1520-0485(1981)011<0573:PCOPTD>2.0.CO;2.
– reference: Vogt, P. R., J. Gardner, and K. Crane (1999), The Norwegian-Barents-Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane, Geo Mar. Lett., 19(1), 2-21, doi:10.1007/s003670050088.
– reference: Bjerknes, J. (1966), A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus, 18(4), 820-829, doi:10.1111/j.2153-3490.1966.tb00303.x.
– reference: Blindheim, J., V. Borovkov, B. Hansen, S. A. Malmberg, W. R. Turrell, and S. Østerhus (2000), Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing, Deep Sea Res. Part I, 47(4), 655-680, doi:10.1016/S0967-0637(99)00070-9.
– reference: Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland ice sheet, Science, 311(5763), 986-990, doi:10.1126/science.1121381.
– reference: Sloan, E. D. J. (1990), Clathrate Hydrates of Natural Gases, 641 pp., Marcel Dekker, New York.
– reference: Vogt, P. R., K. Crane, E. Sundvor, M. D. Max, and S. L. Pfirman (1994), Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait, Geology, 22(3), 255-258, doi:10.1130/0091-7613(1994)022<0255:MGPOYT>2.3.CO;2.
– reference: Bondevik, S., J. Mangerud, S. Dawson, A. Dawson, and Ø. Lohne (2003), Record-breaking height for 8000-year-old tsunami in the North Atlantic, Eos Trans. AGU, 84(31), 289, doi:10.1029/2003EO310001.
– reference: Von Herzen, R. P., and A. E. Maxwell (1959), The measurement of thermal conductivity of deep-sea sediments by a needle-probe method, J. Geophys. Res., 64, 1557-1563, doi:10.1029/JZ064i010p01557.
– reference: Kvenvolden, K. (1988), Methane hydrate-A major reservoir of carbon in the shallow geosphere?, Chem. Geol., 71(1-3), 41-51, doi:10.1016/0009-2541(88)90104-0.
– reference: Faleide, J. I., S. T. Gudlaugsson, and G. Jacquart (1984), Evolution of the western Barents Sea, Mar. Pet. Geol., 1(2), 123-150, doi:10.1016/0264-8172(84)90082-5.
– reference: Boswell, R., and T. S. Collett (2011), Current perspectives on gas hydrate resources, Energy Environ. Sci., 4, 1206-1215, doi:10.1039/c0ee00203h.
– reference: Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269(5224), 676-679, doi:10.1126/science.269.5224.676.
– reference: Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York.
– reference: Dickson, R. R., T. J. Osborn, J. W. Hurrell, J. Meincke, J. Blindheim, B. Adlandsvik, T. Vinje, G. Alekseev, and W. Maslowski (2000), The Arctic Ocean response to the North Atlantic Oscillation, J. Clim., 13(15), 2671-2696, doi:10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2.
– reference: Reagan, M. T., and G. J. Moridis (2009), Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin, Geophys. Res. Lett., 36, L23612, doi:10.1029/2009GL041332.
– reference: Vogt, P. R., and E. Sundvor (1996), Heat flow highs on the Norwegian-Barents-Svalbard continental slope: Deep crustal fractures, dewatering or "memory in the mud," Geophys. Res. Lett., 23(24), 3571-3574, doi:10.1029/96GL03259.
– reference: MacDonald, G. J. (1990), Role of methane clathrates in past and future climates, Clim. Change, 16(3), 247-281, doi:10.1007/BF00144504.
– reference: Mienert, J., and J. Posewang (1999), Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments, Geo Mar. Lett., 19(1), 143-149, doi:10.1007/s003670050101.
– reference: Milkov, A. V. (2004), Global estimates of hydrate-bound gas in marine sediments: How much is really out there?, Earth Sci. Rev., 66(3-4), 183-197, doi:10.1016/j.earscirev.2003.11.002.
– reference: Boyer, T. P., et al. (2009), World Ocean Database 2009, NOAA Atlas NESDIS, vol. 66, 216 pp., NOAA, Silver Spring, Md.
– reference: Schlichtholz, P., and I. Goszczko (2006), Interannual variability of the Atlantic water layer in the West Spitsbergen Current at 76.5°N in summer 1991-2003, Deep Sea Res. Part I, 53(4), 608-626, doi:10.1016/j.dsr.2006.01.001.
– reference: Vinther, B. M., et al. (2009), Holocene thinning of the Greenland ice sheet, Nature, 461(7262), 385-388, doi:10.1038/nature08355.
– reference: Westbrook, G. K., et al. (2009), Escape of methane gas from the seabed along the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608, doi:10.1029/2009GL039191.
– reference: Antoniades, D., P. Francus, R. Pienitz, G. St-Onge, and W. F. Vincent (2011), Holocene dynamics of the Arctic's largest ice shelf, Proc. Natl. Acad. Sci. U. S. A., 108, 1-6, doi:10.1073/pnas.1106378108.
– reference: Solheim, A., and A. Elverhøi (1985), A pockmark field in the Central Barents Sea; Gas from a petrogenic source?, Polar Res., 3(1), 11-19, doi:10.1111/j.1751-8369.1985.tb00492.x.
– reference: Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud (1995), Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46-49, doi:10.1038/374046a0.
– reference: Bünz, S., J. Mienert, and C. Berndt (2003), Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin, Earth Planet. Sci. Lett., 209(3-4), 291-307, doi:10.1016/S0012-821X(03)00097-9.
– reference: Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010), Global surface temperature change, Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.
– reference: Spielhagen, R. F., K. Werner, S. A. Sørensen, K. Zamelczyk, E. Kandiano, G. Budeus, K. Husum, T. M. Marchitto, and M. Hald (2011), Enhanced modern heat transfer to the Arctic by warm Atlantic water, Science, 331(6016), 450-453, doi:10.1126/science.1197397.
– reference: Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz, and B. Ådlandsvik (2003), Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond, Proc. R. Soc. London Ser. B, 270(1529), 2087-2096, doi:10.1098/rspb.2003.2415.
– reference: Haflidason, H., H. P. Sejrup, A. Nygård, J. Mienert, P. Bryn, R. Lien, C. F. Forsberg, K. Berg, and D. G. Masson (2004), The Storegga Slide: Architecture, geometry and slide development, Mar. Geol., 213, 201-234, doi:10.1016/j.margeo.2004.10.007.
– reference: Piechura, J., A. Beszczyńska-Möller, and R. Osiński (2001), Volume, heat and salt transport by the West Spitsbergen Current, Polar Res., 20(2), 233-240, doi:10.1111/j.1751-8369.2001.tb00061.x.
– reference: Kvenvolden, K. A. (1993), Gas hydrates-geological perspective and global change, Rev. Geophys., 31(2), 173-187, doi:10.1029/93RG00268.
– volume: 269
  start-page: 676
  issue: 5224
  year: 1995
  end-page: 679
  article-title: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation
  publication-title: Science
– volume: 461
  start-page: 385
  issue: 7262
  year: 2009
  end-page: 388
  article-title: Holocene thinning of the Greenland ice sheet
  publication-title: Nature
– volume: 106
  start-page: 20,596
  issue: 49
  year: 2009
  end-page: 20,601
  article-title: Ocean methane hydrates as a slow tipping point in the global carbon cycle
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  start-page: 233
  year: 2005
  end-page: 244
  article-title: Ocean warming and gas hydrate stability on the mid‐Norwegian margin at the Storegga Slide
  publication-title: Mar. Pet. Geol.
– volume: 22
  start-page: 255
  issue: 3
  year: 1994
  end-page: 258
  article-title: Methane‐generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait
  publication-title: Geology
– volume: 270
  start-page: 2087
  issue: 1529
  year: 2003
  end-page: 2096
  article-title: Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond
  publication-title: Proc. R. Soc. London Ser. B
– volume: 269
  start-page: 230
  issue: 1–2
  year: 2008
  end-page: 241
  article-title: Effect of ice sheet growth and melting on the slip evolution of thrust faults
  publication-title: Earth Planet. Sci. Lett.
– volume: 16
  start-page: 247
  issue: 3
  year: 1990
  end-page: 281
  article-title: Role of methane clathrates in past and future climates
  publication-title: Clim. Change
– volume: 36
  year: 2009
  article-title: Large‐scale simulation of methane hydrate dissociation along the West Spitsbergen Margin
  publication-title: Geophys. Res. Lett.
– volume: 137
  start-page: 275
  year: 1998
  end-page: 291
– volume: 63
  start-page: 2204
  year: 1979
  end-page: 2213
  article-title: Seismic reflection evidence for widespread occurrence of possible gas‐hydrate horizons on continental slopes and rises
  publication-title: Am. Assoc. Pet. Geol. Bull.
– volume: 100
  start-page: 2905
  issue: D2
  year: 1995
  end-page: 2926
  article-title: Evaluation of the potential impact of methane clathrate destabilization on future global warming
  publication-title: J. Geophys. Res.
– volume: 10
  year: 2009
  article-title: Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3‐D seismic data, offshore mid‐Norway
  publication-title: Geochem. Geophys. Geosyst.
– volume: 284
  start-page: 12
  issue: 1–2
  year: 2009
  end-page: 24
  article-title: Gas hydrate reservoir and active methane‐venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW‐Svalbard
  publication-title: Earth Planet. Sci. Lett.
– volume: 20
  start-page: 233
  issue: 2
  year: 2001
  end-page: 240
  article-title: Volume, heat and salt transport by the West Spitsbergen Current
  publication-title: Polar Res.
– volume: 429
  start-page: 1562
  issue: 2
  year: 2009
  end-page: 1566
  article-title: Barents Sea hydrodynamics change during the El Niño event
  publication-title: Dokl. Earth Sci.
– volume: 374
  start-page: 46
  year: 1995
  end-page: 49
  article-title: Variations in atmospheric methane concentration during the Holocene epoch
  publication-title: Nature
– volume: 38
  year: 2011
  article-title: Arctic methane sources: Isotopic evidence for atmospheric inputs
  publication-title: Geophys. Res. Lett.
– volume: 18
  start-page: 820
  issue: 4
  year: 1966
  end-page: 829
  article-title: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature
  publication-title: Tellus
– volume: 464
  start-page: 1334
  issue: 7293
  year: 2010
  end-page: 1337
  article-title: The central role of diminishing sea ice in recent Arctic temperature amplification
  publication-title: Nature
– volume: 209
  start-page: 291
  issue: 3–4
  year: 2003
  end-page: 307
  article-title: Geological controls on the Storegga gas‐hydrate system of the mid‐Norwegian continental margin
  publication-title: Earth Planet. Sci. Lett.
– volume: 19
  start-page: 1809
  issue: 14
  year: 1999
  end-page: 1831
  article-title: Features of the central Norwegian shelf circulation
  publication-title: Cont. Shelf Res.
– volume: 17
  start-page: 273
  year: 1998
  end-page: 302
  article-title: The Norwegian‐Greenland Sea continental margins: Morphology and late quaternary sedimentary processes and environment
  publication-title: Quat. Sci. Rev.
– year: 1990
– volume: 45
  start-page: 10
  year: 1995
  end-page: 34
  article-title: Inferred gas hydrates offshore Norway and Svalbard
  publication-title: Norw. J. Geol.
– volume: 12
  start-page: 271
  year: 2005
  end-page: 284
– volume: 11
  start-page: 573
  year: 1981
  end-page: 574
  article-title: Practical conversion of pressure to depth
  publication-title: J. Phys. Oceanogr.
– volume: 451
  start-page: 53
  issue: 7174
  year: 2008
  end-page: 56
  article-title: Vertical structure of recent Arctic warming
  publication-title: Nature
– volume: 32
  start-page: 36
  year: 2012
  end-page: 49
  article-title: Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW‐Svalbard
  publication-title: Mar. Pet. Geol.
– volume: 19
  start-page: 2
  issue: 1
  year: 1999
  end-page: 21
  article-title: The Norwegian‐Barents‐Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane
  publication-title: Geo Mar. Lett.
– volume: 53
  start-page: 608
  issue: 4
  year: 2006
  end-page: 626
  article-title: Interannual variability of the Atlantic water layer in the West Spitsbergen Current at 76.5°N in summer 1991–2003
  publication-title: Deep Sea Res. Part I
– year: 1959
– volume: 3
  start-page: 11
  issue: 1
  year: 1985
  end-page: 19
  article-title: A pockmark field in the Central Barents Sea; Gas from a petrogenic source?
  publication-title: Polar Res.
– volume: 108
  start-page: 1
  year: 2011
  end-page: 6
  article-title: Holocene dynamics of the Arctic's largest ice shelf
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  year: 2011
  article-title: Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification
  publication-title: Geophys. Res. Lett.
– volume: 66
  year: 2009
– volume: 64
  start-page: 1557
  year: 1959
  end-page: 1563
  article-title: The measurement of thermal conductivity of deep‐sea sediments by a needle‐probe method
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 1107
  issue: 10
  year: 1981
  end-page: 1129
  article-title: Seasonal transitions and water mass formation in the Iceland and Greenland seas
  publication-title: Deep Sea Res. Part A
– volume: 1
  start-page: 123
  issue: 2
  year: 1984
  end-page: 150
  article-title: Evolution of the western Barents Sea
  publication-title: Mar. Pet. Geol.
– volume: 36
  year: 2009
  article-title: Escape of methane gas from the seabed along the West Spitsbergen continental margin
  publication-title: Geophys. Res. Lett.
– volume: 3
  start-page: 403
  issue: 4–5
  year: 1993
  end-page: 420
  article-title: Greenhouse effect and climate change: Scientific basis and overview
  publication-title: Renew. Energy
– start-page: 663
  year: 2007
  end-page: 745
– volume: 291
  start-page: 603
  issue: 5504
  year: 2001
  end-page: 605
  article-title: The North Atlantic Oscillation
  publication-title: Science
– start-page: 215
  year: 2003
  end-page: 222
– volume: 213
  start-page: 201
  year: 2004
  end-page: 234
  article-title: The Storegga Slide: Architecture, geometry and slide development
  publication-title: Mar. Geol.
– volume: 4
  start-page: 165
  issue: 2
  year: 2008
  end-page: 172
  article-title: The effect of grain size on thermal conductivity of quartz sands and silts
  publication-title: Pet. Geosci.
– volume: 331
  start-page: 450
  issue: 6016
  year: 2011
  end-page: 453
  article-title: Enhanced modern heat transfer to the Arctic by warm Atlantic water
  publication-title: Science
– volume: 4
  start-page: 1206
  year: 2011
  end-page: 1215
  article-title: Current perspectives on gas hydrate resources
  publication-title: Energy Environ. Sci.
– volume: 66
  start-page: 183
  issue: 3–4
  year: 2004
  end-page: 197
  article-title: Global estimates of hydrate‐bound gas in marine sediments: How much is really out there?
  publication-title: Earth Sci. Rev.
– volume: 19
  start-page: 143
  issue: 1
  year: 1999
  end-page: 149
  article-title: Evidence of shallow‐ and deep‐water gas hydrate destabilizations in North Atlantic polar continental margin sediments
  publication-title: Geo Mar. Lett.
– year: 2007
– year: 2003
– volume: 219
  start-page: 37
  year: 2005
  end-page: 52
  article-title: Calculation of the stability and solubility of methane hydrate in seawater
  publication-title: Chem. Geol.
– volume: 36
  year: 2009
  article-title: Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation
  publication-title: Geophys. Res. Lett.
– volume: 96
  start-page: 10,487
  issue: C6
  year: 1991
  end-page: 10,506
  article-title: Modeled and observed mesoscale circulation and wave‐current refraction during the 1988 Norwegian continental shelf experiment
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 235
  issue: 6
  year: 1990
  end-page: 245
  article-title: Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly
  publication-title: First Break
– volume: 13
  start-page: 2671
  issue: 15
  year: 2000
  end-page: 2696
  article-title: The Arctic Ocean response to the North Atlantic Oscillation
  publication-title: J. Clim.
– year: 2010
– volume: 23
  start-page: 3571
  issue: 24
  year: 1996
  end-page: 3574
  article-title: Heat flow highs on the Norwegian‐Barents‐Svalbard continental slope: Deep crustal fractures, dewatering or “memory in the mud,”
  publication-title: Geophys. Res. Lett.
– volume: 84
  start-page: 289
  issue: 31
  year: 2003
  article-title: Record‐breaking height for 8000‐year‐old tsunami in the North Atlantic
  publication-title: Eos Trans. AGU
– volume: 47
  start-page: 655
  issue: 4
  year: 2000
  end-page: 680
  article-title: Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing
  publication-title: Deep Sea Res. Part I
– volume: 31
  start-page: 173
  issue: 2
  year: 1993
  end-page: 187
  article-title: Gas hydrates‐geological perspective and global change
  publication-title: Rev. Geophys.
– volume: 327
  start-page: 1246
  issue: 5970
  year: 2010
  end-page: 1250
  article-title: Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf
  publication-title: Science
– volume: 4
  year: 2009
  article-title: Gas hydrates: Entrance to a methane age or climate threat?
  publication-title: Environ. Res. Lett.
– year: 1995
– volume: 48
  year: 2010
  article-title: Global surface temperature change
  publication-title: Rev. Geophys.
– volume: 75
  start-page: 4562
  issue: 16
  year: 2011
  end-page: 4576
  article-title: Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction‐transport modeling and a novel parameterization of Holocene sedimentation
  publication-title: Geochim. Cosmochim. Acta
– volume: 311
  start-page: 986
  issue: 5763
  year: 2006
  end-page: 990
  article-title: Changes in the velocity structure of the Greenland ice sheet
  publication-title: Science
– start-page: 31
  year: 1998
  end-page: 50
– volume: 71
  start-page: 41
  issue: 1–3
  year: 1988
  end-page: 51
  article-title: Methane hydrate—A major reservoir of carbon in the shallow geosphere?
  publication-title: Chem. Geol.
– volume: 45
  start-page: 109
  issue: 2
  year: 2000
  end-page: 208
  article-title: North Atlantic‐Nordic Seas exchanges
  publication-title: Prog. Oceanogr.
– volume: 103
  start-page: 2905
  issue: C2
  year: 1998
  end-page: 2917
  article-title: Water mass distribution and polar front structure in the western Barents Sea
  publication-title: J. Geophys. Res.
– volume: 5
  year: 2004
  article-title: Near‐surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages
  publication-title: Geochem. Geophys. Geosyst.
– ident: e_1_2_8_64_1
  doi: 10.1016/0198‐0149(81)90050‐9
– ident: e_1_2_8_3_1
  doi: 10.3997/1365‐2397.1990012
– ident: e_1_2_8_31_1
  doi: 10.1126/science.1058761
– ident: e_1_2_8_32_1
  doi: 10.1029/2009GC002409
– ident: e_1_2_8_66_1
  doi: 10.1016/j.epsl.2008.02.017
– ident: e_1_2_8_65_1
  doi: 10.1016/j.chemgeo.2005.02.008
– volume: 63
  start-page: 2204
  year: 1979
  ident: e_1_2_8_57_1
  article-title: Seismic reflection evidence for widespread occurrence of possible gas‐hydrate horizons on continental slopes and rises
  publication-title: Am. Assoc. Pet. Geol. Bull.
– ident: e_1_2_8_14_1
  doi: 10.1016/S0012‐821X(03)00097‐9
– ident: e_1_2_8_6_1
  doi: 10.1029/2011GL047222
– ident: e_1_2_8_33_1
  doi: 10.1016/j.epsl.2009.03.038
– volume: 45
  start-page: 10
  year: 1995
  ident: e_1_2_8_2_1
  article-title: Inferred gas hydrates offshore Norway and Svalbard
  publication-title: Norw. J. Geol.
– ident: e_1_2_8_11_1
  doi: 10.1039/c0ee00203h
– ident: e_1_2_8_35_1
  doi: 10.1016/0960‐1481(93)90108‐S
– ident: e_1_2_8_17_1
  doi: 10.1029/2009GL038777
– ident: e_1_2_8_27_1
  doi: 10.1029/94JD02829
– ident: e_1_2_8_39_1
  doi: 10.1029/93RG00268
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2010
  ident: e_1_2_8_49_1
– ident: e_1_2_8_67_1
  doi: 10.1016/S0928‐8937(05)80054‐2
– ident: e_1_2_8_18_1
  doi: 10.1175/1520‐0442(2000)013<2671:TAORTT>2.0.CO;2
– ident: e_1_2_8_56_1
  doi: 10.1126/science.1182221
– ident: e_1_2_8_8_1
  doi: 10.1016/S0967‐0637(99)00070‐9
– ident: e_1_2_8_37_1
  doi: 10.1088/1748‐9326/4/3/034007
– ident: e_1_2_8_43_1
  doi: 10.1007/978-3-642-55846-7
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1751‐8369.2001.tb00061.x
– ident: e_1_2_8_7_1
  doi: 10.1111/j.2153‐3490.1966.tb00303.x
– ident: e_1_2_8_45_1
  doi: 10.1016/j.marpetgeo.2004.10.018
– ident: e_1_2_8_48_1
  doi: 10.1016/j.marpetgeo.2011.12.008
– ident: e_1_2_8_74_1
  doi: 10.1029/2009GL039191
– ident: e_1_2_8_26_1
  doi: 10.1029/97JC02790
– ident: e_1_2_8_62_1
  doi: 10.1126/science.1197397
– ident: e_1_2_8_28_1
  doi: 10.1029/91JC00299
– ident: e_1_2_8_73_1
  doi: 10.1016/S0277‐3791(97)00072‐3
– ident: e_1_2_8_21_1
  doi: 10.4043/7693-MS
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.0800885105
– ident: e_1_2_8_70_1
  doi: 10.1130/0091‐7613(1994)022<0255:MGPOYT>2.3.CO;2
– ident: e_1_2_8_12_1
– ident: e_1_2_8_52_1
  doi: 10.1016/S0278‐4343(99)00041‐2
– ident: e_1_2_8_38_1
  doi: 10.1016/0009‐2541(88)90104‐0
– volume-title: Conduction of Heat in Solids
  year: 1959
  ident: e_1_2_8_16_1
– ident: e_1_2_8_53_1
  doi: 10.1175/1520‐0485(1981)011<0573:PCOPTD>2.0.CO;2
– ident: e_1_2_8_42_1
  doi: 10.1007/s003670050101
– ident: e_1_2_8_20_1
  doi: 10.1029/2011GL049319
– ident: e_1_2_8_55_1
  doi: 10.1038/nature09051
– ident: e_1_2_8_10_1
  doi: 10.1029/2003EO310001
– ident: e_1_2_8_54_1
  doi: 10.1016/j.dsr.2006.01.001
– ident: e_1_2_8_15_1
  doi: 10.1016/j.gca.2011.05.029
– ident: e_1_2_8_51_1
  doi: 10.1126/science.1121381
– ident: e_1_2_8_41_1
  doi: 10.1144/petgeo.4.2.165
– ident: e_1_2_8_44_1
  doi: 10.1144/GSL.SP.1998.137.01.22
– ident: e_1_2_8_72_1
  doi: 10.1029/JZ064i010p01557
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.1106378108
– start-page: 663
  volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_8_29_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.margeo.2004.10.007
– ident: e_1_2_8_46_1
  doi: 10.1016/j.earscirev.2003.11.002
– ident: e_1_2_8_63_1
  doi: 10.1098/rspb.2003.2415
– ident: e_1_2_8_30_1
  doi: 10.1126/science.269.5224.676
– volume-title: Clathrate Hydrates of Natural Gases
  year: 1990
  ident: e_1_2_8_59_1
– ident: e_1_2_8_13_1
  doi: 10.1007/978‐94‐010‐0093‐2_24
– ident: e_1_2_8_68_1
  doi: 10.1038/nature08355
– ident: e_1_2_8_25_1
  doi: 10.1029/2010RG000345
– ident: e_1_2_8_60_1
  doi: 10.1144/GSL.SP.1998.137.01.03
– ident: e_1_2_8_50_1
  doi: 10.1029/2009GL041332
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1751‐8369.1985.tb00492.x
– ident: e_1_2_8_22_1
  doi: 10.1038/nature06502
– ident: e_1_2_8_69_1
  doi: 10.1029/96GL03259
– ident: e_1_2_8_9_1
  doi: 10.1038/374046a0
– ident: e_1_2_8_71_1
  doi: 10.1007/s003670050088
– ident: e_1_2_8_34_1
  doi: 10.1017/CBO9780511546013
– ident: e_1_2_8_19_1
  doi: 10.1016/0264‐8172(84)90082‐5
– ident: e_1_2_8_40_1
  doi: 10.1007/BF00144504
– ident: e_1_2_8_58_1
  doi: 10.1134/S1028334X09090311
– ident: e_1_2_8_24_1
  doi: 10.1016/S0079‐6611(99)00052‐X
– ident: e_1_2_8_36_1
  doi: 10.1029/2003GC000687
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000818449
Score 2.3270097
Snippet The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Bottom water
Climate change
Continental margins
Continental slope
Cooling
Deep water
Earth
Earth sciences
Earth, ocean, space
El Nino
Exact sciences and technology
gas hydrate
Gas hydrates
Geophysics
Hydrates
Marine
Marine geology
Methane
Norwegian Arctic
Norwegian margin
Ocean temperature
Oceanography
Oceans
Physical oceanography
Shallow water
Surface water
Water column
Water temperature
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLag5QEhcUcExmQk4AWiOY5z8ROCal01pDINGH2LHMcp1UYykm7Qv8Cv5hzHDd0DfeExyXHky7H92T7-PkJeiKgIpdDSV9wIXyiGl5VF6YehhhRlHKsyt2ITyXSazmbyyG24tS6scj0m2oG6qDXuke8FnLMY1ZTY2_MfPqpG4emqk9C4TobIVCYGZPh-f3p03O-yIGGbsBiYB7H0JU8iF_3OuISFf8APR4hC8ILbxrw0xCr-hXGSqoWqKjuNiysgdBPK2rlofOd_S3GX3HYolL7r3OYeuWaq--TWR21U5SisH5Df9pEid5UjXqaXsLDueL1XFMAuBfBIIe9LGjO6gi7T0rqyL6d189PMwfP8T-DJOXgh_a6a-aKii7UoSkvnqqXfVgVyVVDAqO6_8AerG0hR9Z5ivZj2Ifky3v88mvhOucFXEa5HFTQz0yIpIm2kjpNY4_miEKIoE6Y4KiaxAtZGvOBlIuBRlhzeBSGMHnjXNnxEBlVdmceE5ibFFoR1HM9FmKRKsYIHWnOZx0FaMI-8Xrdbph2tOaprnGX2eJ3LbLOVPfKytz7v6Dz-YffKukBvpJpTDIFLouzr9CBjkw8ns9HJJBt7ZPeKj_QJOEA7mEeER3bWnpC54aHN_rqBR573n6Fj42mNqkx9gTYpgmfI2RYbiUHkyJDkkTfWIbeWKjs8OB4BopXsyfZcPSU3MV0XtLhDBsvmwjwjN_TlctE2u66T_QHSBSxy
  priority: 102
  providerName: ProQuest
Title Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales
URI https://api.istex.fr/ark:/67375/WNG-0HKVXCVH-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JC008300
https://www.proquest.com/docview/1220621720
https://www.proquest.com/docview/1285088029
https://www.proquest.com/docview/1919961404
Volume 117
WOSCitedRecordID wos000310343100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Collection
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0000818449
  issn: 0148-0227
  databaseCode: PCBAR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0000818449
  issn: 0148-0227
  databaseCode: PATMY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121215
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0000818449
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121215
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121031
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: M2P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0000818449
  issn: 0148-0227
  databaseCode: M2P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: M2P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030586
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030584
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030583
  issn: 0148-0227
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030583
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0043761
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030582
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030585
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030584
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030586
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2156-2202
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0030581
  issn: 0148-0227
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYCxJC4mOAFhiVkWAvEJE6ztdjF9aWwUI12Na3yPkqFWuCkm7QN_4AHvgb-Uu4c9yQPjAJ8eazz65r39ln5_w7Qp5xKzE9Hnu6YCnXuTDwsTLPdNOMoUZm2yKLZLAJJwjc6dSbqAs3fAtT40M0F26oGXK9RgUXUaXABhAjE3YuduijCWHAkb3LQHStDum-Ph6evGtuWSRayh-njz6XzzhrAiTd3SBYmzDbBG8TVpuw1wQHTa2DH3JXR1w-5WUPnX3V7urG_tfFqfyG_piiginJ6lgaG8Zu22SWe97wzv-O1l1yW1m7dFCL5z1yLc23yc6gwvv3YrGie1Sm6-uVapvcqENjriA1SlVKOwK7viglBRX88zkY2ars1vs4FblC3YZKk7qh--SHLKAIvKVQo-mlAF2TrsArCpY6BcuXwoAsqW3QFeh7RYtcZgZF-TWdgdr8-v7zAyhiBEpEF6KczXM6X8d0qehMVPTTKkGoDQomtmoZ2pBhD-lyvoB8GO60ekBOhgcf_bGuAk_owsLjtAApNWLuJFacerHt2DF-HuWcJ5ljCIYBn4wEjnYsYZnDgfQyBnl9ExY_fCpsPiSdvMjTHUKj1IWKHhxDWQQi4gphJKwfx8yL7L6bGBp5sRaHMFao7Bgc5DyU3gHMC9szp5HnDfeXGo3kL3x7UrIaJlF-Rg8-xwrPglFojN-eTv3TcTjUSG9D9JoKDCxT2Aa5RnbXshiq1a0K-4wZNkY2gx962hTDuoQfm0SeFhfI46LtDz27gsdDH3gEeNLISym9V_6r8HB07INB7hmP_o39MbmJBbUP5i7pLMuL9Am5Hl8u51XZI939g2By3FNrR49sHbEJUBN_fwC5W2dvgt96o2NI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nc9MwEN0pCTMwzPDNYChFzNBewFNFlj904FACadqU0Cltyc0osh0yUKfEaUv-Aj-G38iu4pj0QG49cLSyVmxpV3qynvYBvJR-4ilplKtFKl2pOR1WlpnreQbvyIJAZ30rNhF2u1Gvp_ZX4Pf8LAzRKudjoh2ok5Ghb-SbDSF4QGpKvGRQdtLpBa7Pijc777Az14VovT9stt1SQsDVPi2MNP4fNzJMfJMqE4SBoY0uKWWShVwLku7hCYJ0kYgslHipMoFlDQ_dmA59eljvxukPl1SqaDe3lOy4BvUoUL6sQX2_-XbroPqqQwnipMXcohEoV4nQL9n2XKhNnGzFbpNQDx2oW5gH69SlP4mXqQvsmmymqXEJ9C5CZzv3te78b612F26XKJttzcLiHqyk-X249dGkOi9TdD-AX_aSUW6uMrE0O9cYjpYtPGUI5hmCY4ZtNWEBZ1N8sYKNclvYHY0v0gFGlvsJI7WPUcZO9HgwzNlwLvpSsIEu2NdpQrk4GGLwsl6sweoissnwBMuxH9LiIRxdSQM9glo-ytPHwPppRB6D61TRl14Yac0T0TBGqH7QiBLuwKu5n8SmTNtO6iHfY0sfECpe9CoH1ivr01m6kn_YbViXq4z0-BtR_EI__tzdjnm7c9xrHrfjlgNrl3yyukEgdMV5UjqwOve8uBz-iviv2znwovoZBy7ajdJ5Ojojm4gWB_hkS2wUkeQpA5QDr20ALH2reHf7oImIXfEny5_qOdxoH37Yi_d2up2ncJPqmBE0V6E2GZ-lz-C6OZ8Mi_FaGeAMvlx1wPwBpoGIXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NFqEJif9ogTGMxHiBqK7jJvEDQqOj61ZUqjFG34LrJKWCpaPpNvoV-Eh8Ou7cpHQP9G0PPNq5WP5zZ_9sn-8H8Fw2Yk9Jo1wtEulKzemxskxdzzP4R-r7Oh1Ysomg2w37fdVbg9_lWxhyqyznRDtRx2NDZ-S1uhDcJzYlXksLt4jebuvN6Q-XGKToprWk05irSCeZXeD2LX-9v4tjvS1E691Rs-0WDAOubtC-SWN1uJFB3DCJMn7gG7oHk1LGacC1IGYfHiOGF7FIA4lJlQrMq3uo5fQm1MNyr0E19DFZgWqv-XbncHHCQ8HipMXfou4rV4mgUXjec6FquPCKgyYhIHpct7QmVml4f5KPps5xmNI5v8YlALwMo-062Lr9P_fgHbhVoG-2MzeXu7CWZPfg5geT6KwI3X0fftkko5hdRcBpdq7RTK0X8YwhyGcImhn225T5nM2wFTkbZzazO55cJEO0OPcjWvAArY-d6MlwlLFRSQaTs6HO2ddZTDE6GGLzolwswfIlsunoBPNxTJL8AXy6kt54CJVsnCUbwAZJSNqD-1cxkF4Qas1jUTdGqIFfD2PuwMtSZyJThHMnVpHvkXUrECpa1jAHthfSp_MwJv-Qe2HVbyGkJ9_I9S9oRJ-7exFvd477zeN21HJg65J-Ln4QCGlx_ZQObJZaGBXTYh79VUEHni0-44RGt1Q6S8ZnJBPSpgFrtkJGkfM8RYZy4JU1hpWtig72DpuI5BV_tLpWT-EGmkT0fr_beQzrVMTcb3MTKtPJWfIErpvz6SifbBW2zuDLVRvHH1w_kRM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ocean+temperature+variability+for+the+past+60+years+on+the+Norwegian%E2%80%90Svalbard+margin+influences+gas+hydrate+stability+on+human+time+scales&rft.jtitle=Journal+of+Geophysical+Research%3A+Oceans&rft.au=Ferr%C3%A9%2C+B%C3%A9n%C3%A9dicte&rft.au=Mienert%2C+J%C3%BCrgen&rft.au=Feseker%2C+Tomas&rft.date=2012-10-01&rft.issn=0148-0227&rft.volume=117&rft.issue=C10&rft_id=info:doi/10.1029%2F2012JC008300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2012JC008300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon