Amplicon Sequence Variants Artificially Split Bacterial Genomes into Separate Clusters

16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological inform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:mSphere Ročník 6; číslo 4; s. e0019121
Hlavní autor: Schloss, Patrick D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Society for Microbiology 25.08.2021
Témata:
ISSN:2379-5042, 2379-5042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an rrn copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli . This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. IMPORTANCE 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.
AbstractList 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an rrn copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli . This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. IMPORTANCE 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.
Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an rrn copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli. This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. IMPORTANCE 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an rrn copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli. This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. IMPORTANCE 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.
Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an rrn copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli. This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. IMPORTANCE 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.
Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli. This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.
16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene.
Author Schloss, Patrick D.
Author_xml – sequence: 1
  givenname: Patrick D.
  orcidid: 0000-0002-6935-4275
  surname: Schloss
  fullname: Schloss, Patrick D.
  organization: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34287003$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhSNURB90zwplySbFrzjOBmkYQVupEouBbi3HuW49cuxgO0j993g6U9QiwcqW7zmfju85rY588FBV7zC6wJiIj9NmvocIFwjhHjcEv6pOCO36pkWMHD27H1fnKW1RkXHCecffVMeUEdEhRE-q29U0O6uDrzfwcwGvob5V0SqfU72K2RqrrXLuod4UWa4_K52hjF19CT5MkGrrcyjeWUWVoV67JRVBelu9NsolOD-cZ9WPr1--r6-am2-X1-vVTaNahHIDHHODTDfgsdUMaWZ6YEogJsTYmw4MYaBNa4gmfORmMIB2sXFLEQIARM-q6z13DGor52gnFR9kUFY-PoR4J1X5hXYgmeB41LgzPeqY7sVAqWj1gCkmVPMOF9anPWtehglGDT5H5V5AX068vZd34ZcUVHDG2wL4cADEUHaZspxs0uCc8hCWJEnbUlFqQaRIm71UpYnIbViiL2uSGMldtfJQrXysVpJdtvfPs_0J9VRkEfC9QMeQUgQjtc0q27CLat3_yOgv4xP7n5bf8anFgg
CitedBy_id crossref_primary_10_3389_fanim_2023_1270550
crossref_primary_10_1128_aem_02108_22
crossref_primary_10_2174_0115748936299440240709070105
crossref_primary_10_1016_j_scienta_2024_112844
crossref_primary_10_3390_ijms252212015
crossref_primary_10_1093_jmammal_gyac098
crossref_primary_10_3389_fmicb_2022_905050
crossref_primary_10_1002_ecs2_70031
crossref_primary_10_1016_j_biortech_2023_128959
crossref_primary_10_1172_JCI154944
crossref_primary_10_1007_s00248_022_02098_2
crossref_primary_10_3390_ijms24054603
crossref_primary_10_1038_s41430_024_01412_0
crossref_primary_10_7717_peerj_14779
crossref_primary_10_1183_23120541_00720_2022
crossref_primary_10_1186_s40168_024_01865_2
crossref_primary_10_3390_foods12142760
crossref_primary_10_1007_s00431_023_05341_1
crossref_primary_10_1128_spectrum_01252_23
crossref_primary_10_1007_s00345_023_04588_5
crossref_primary_10_3390_f15010205
crossref_primary_10_1186_s12931_022_02086_7
crossref_primary_10_3389_fmars_2022_975042
crossref_primary_10_3390_jcm14082786
crossref_primary_10_3897_mbmg_8_135082
crossref_primary_10_1093_femsec_fiac089
crossref_primary_10_1007_s00248_024_02480_2
crossref_primary_10_3389_fmars_2021_692538
crossref_primary_10_3389_fmicb_2025_1553124
crossref_primary_10_1128_spectrum_02881_24
crossref_primary_10_1038_s42003_023_04919_7
crossref_primary_10_1111_jvim_16824
crossref_primary_10_1093_femsmc_xtac019
crossref_primary_10_1016_j_fbio_2023_103079
crossref_primary_10_1038_s41522_025_00714_w
crossref_primary_10_1073_pnas_2304663120
crossref_primary_10_1371_journal_pone_0323657
crossref_primary_10_3389_fmicb_2023_1188544
crossref_primary_10_1186_s12866_023_02764_6
crossref_primary_10_1080_1828051X_2025_2465703
crossref_primary_10_3389_fcimb_2021_770668
crossref_primary_10_1002_imt2_38
crossref_primary_10_1016_j_quascirev_2024_108619
crossref_primary_10_1007_s12649_024_02429_z
crossref_primary_10_1128_mra_01310_22
crossref_primary_10_1186_s40793_025_00720_7
crossref_primary_10_1016_j_renene_2025_123161
crossref_primary_10_1128_mbio_01555_25
crossref_primary_10_1128_spectrum_04398_22
crossref_primary_10_3389_fmicb_2023_1067906
crossref_primary_10_1111_ele_14393
crossref_primary_10_1007_s11356_023_31643_w
crossref_primary_10_1007_s00248_022_02127_0
crossref_primary_10_1186_s12859_025_06078_4
crossref_primary_10_1016_j_jhazmat_2023_131660
crossref_primary_10_1111_mec_70000
crossref_primary_10_1002_fsn3_4212
crossref_primary_10_3168_jds_2023_24479
crossref_primary_10_3390_microorganisms11040949
crossref_primary_10_3390_nu15020383
crossref_primary_10_1128_spectrum_02065_22
crossref_primary_10_1038_s41598_021_98985_8
crossref_primary_10_1016_j_cbd_2024_101302
crossref_primary_10_1128_msphere_00324_22
crossref_primary_10_1086_729377
crossref_primary_10_1371_journal_pntd_0012441
crossref_primary_10_1099_mgen_0_001461
crossref_primary_10_3389_fmicb_2021_764605
crossref_primary_10_3389_fvets_2024_1446924
crossref_primary_10_1128_msystems_00620_24
crossref_primary_10_3390_d14010014
crossref_primary_10_1093_ismeco_ycaf085
crossref_primary_10_3390_nu14224930
crossref_primary_10_1186_s13099_023_00563_y
crossref_primary_10_1128_aem_01871_24
crossref_primary_10_1016_j_ijporl_2025_112487
crossref_primary_10_1093_jas_skab346
crossref_primary_10_1161_JAHA_124_037447
crossref_primary_10_1371_journal_pone_0317202
crossref_primary_10_1080_15257770_2025_2479620
crossref_primary_10_1128_msystems_00786_24
crossref_primary_10_1093_femsec_fiad095
crossref_primary_10_1111_mec_70060
crossref_primary_10_1371_journal_pone_0311906
crossref_primary_10_3389_fmicb_2023_1128917
crossref_primary_10_1002_aps3_11628
crossref_primary_10_1016_j_chom_2024_02_012
crossref_primary_10_1128_spectrum_01888_25
crossref_primary_10_1007_s00248_024_02449_1
crossref_primary_10_1007_s00431_022_04494_9
crossref_primary_10_1007_s12562_022_01631_z
crossref_primary_10_1007_s40199_024_00521_2
crossref_primary_10_5492_wjccm_v14_i1_98241
crossref_primary_10_3389_frwa_2021_799840
crossref_primary_10_1016_j_ecss_2025_109339
crossref_primary_10_1111_1755_0998_13709
crossref_primary_10_1002_edn3_333
crossref_primary_10_3390_microorganisms10101961
crossref_primary_10_1186_s40793_023_00542_5
crossref_primary_10_3390_life15030463
crossref_primary_10_1128_aem_00530_22
crossref_primary_10_1002_cam4_6298
crossref_primary_10_3389_fmicb_2022_764566
crossref_primary_10_3389_fmicb_2025_1499813
crossref_primary_10_3390_nu17030512
crossref_primary_10_1177_10815589241251695
Cites_doi 10.1128/AEM.01541-09
10.1038/ismej.2017.119
10.1099/ijs.0.64483-0
10.1128/mSphereDirect.00073-17
10.1093/nar/gks1219
10.1093/nar/gku1201
10.1073/pnas.82.20.6955
10.1128/AEM.00014-18
10.1038/nmeth.3869
10.1038/nrmicro3330
10.1038/s41587-020-0501-8
10.1038/ismej.2014.195
10.1038/s41467-019-13036-1
10.1101/081257
10.1007/s10482-013-0084-1
10.1128/mBio.02475-19
10.1093/bioinformatics/bty113
10.1099/00207713-44-4-846
10.1128/mSystems.00191-16
10.1128/AEM.01282-13
10.1098/rstb.2006.1914
10.1128/AEM.02953-09
10.1128/AEM.02810-10
10.1111/mpp.12506
10.1016/j.tim.2020.12.010
10.1128/JB.187.18.6258-6264.2005
ContentType Journal Article
Copyright Copyright © 2021 Schloss.
Copyright © 2021 Schloss. 2021 Schloss
Copyright_xml – notice: Copyright © 2021 Schloss.
– notice: Copyright © 2021 Schloss. 2021 Schloss
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mSphere.00191-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2379-5042
Editor McMahon, Katherine
Editor_xml – sequence: 1
  givenname: Katherine
  surname: McMahon
  fullname: McMahon, Katherine
ExternalDocumentID oai_doaj_org_article_4861dc17f9074c98b3385cb13123c671
PMC8386465
mSphere00191-21
34287003
10_1128_mSphere_00191_21
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U01 AI124255
– fundername: NIDDK NIH HHS
  grantid: P30 DK034933
– fundername: NCI NIH HHS
  grantid: R01 CA215574
– fundername: HHS | National Institutes of Health (NIH)
  grantid: P30DK034933; U01AI124255; R01CA215574
  funderid: https://doi.org/10.13039/100000002
– fundername: ;
  grantid: P30DK034933; U01AI124255; R01CA215574
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
R9-
RHI
RPM
RSF
UKHRP
3V.
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RHF
0R
ADACO
BBAFP
BXI
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-a500t-e616f0f7b1d5c40c4f9e4a80488d9f7ef24ecf5f2c26d6fbfe0700315300eee03
IEDL.DBID DOA
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709948400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-5042
IngestDate Fri Oct 03 12:30:47 EDT 2025
Tue Nov 04 01:54:18 EST 2025
Thu Sep 04 14:10:51 EDT 2025
Tue Dec 28 13:59:24 EST 2021
Thu Jan 02 22:56:34 EST 2025
Sat Nov 29 03:33:48 EST 2025
Tue Nov 18 21:07:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords OTU
ASV
bioinformatics
microbial communities
microbial ecology
microbiome
16S rRNA gene
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a500t-e616f0f7b1d5c40c4f9e4a80488d9f7ef24ecf5f2c26d6fbfe0700315300eee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Schloss PD. 2021. Amplicon sequence variants artificially split bacterial genomes into separate clusters. mSphere 6:e00191-21. https://doi.org/10.1128/mSphere.00191-21.
ORCID 0000-0002-6935-4275
OpenAccessLink https://doaj.org/article/4861dc17f9074c98b3385cb13123c671
PMID 34287003
PQID 2553823702
PQPubID 23479
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_4861dc17f9074c98b3385cb13123c671
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8386465
proquest_miscellaneous_2553823702
asm2_journals_10_1128_mSphere_00191_21
pubmed_primary_34287003
crossref_citationtrail_10_1128_mSphere_00191_21
crossref_primary_10_1128_mSphere_00191_21
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSphere
PublicationTitleAbbrev mSphere
PublicationTitleAlternate mSphere
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
Stackebrandt E (e_1_3_2_6_2) 2006; 33
Westcott, SL, Schloss, PD (B27) 2017; 2
Stackebrandt, E, Ebers, J (B5) 2006; 33
Callahan, BJ, McMurdie, PJ, Holmes, SP (B13) 2017; 11
Schloss, PD, Westcott, SL (B15) 2011; 77
Johnson, JS, Spakowicz, DJ, Hong, B-Y, Petersen, LM, Demkowicz, P, Chen, L, Leopold, SR, Hanson, BM, Agresta, HO, Gerstein, M, Sodergren, E, Weinstock, GM (B16) 2019; 10
Barco, RA, Garrity, GM, Scott, JJ, Amend, JP, Nealson, KH, Emerson, D (B22) 2020; 11
Baltrus, DA, McCann, HC, Guttman, DS (B20) 2017; 18
Konstantinidis, KT, Tiedje, JM (B21) 2005; 187
Eren, AM, Morrison, HG, Lescault, PJ, Reveillaud, J, Vineis, JH, Sogin, ML (B10) 2015; 9
Amir, A, McDonald, D, Navas-Molina, JA, Kopylova, E, Morton, JT, Zech Xu, Z, Kightley, EP, Thompson, LR, Hyde, ER, Gonzalez, A, Knight, R (B8) 2017; 2
Yarza, P, Yilmaz, P, Pruesse, E, Glöckner, FO, Ludwig, W, Schleifer, K-H, Whitman, WB, Euzéby, J, Amann, R, Rosselló-Móra, R (B24) 2014; 12
Schloss, PD, Westcott, SL, Ryabin, T, Hall, JR, Hartmann, M, Hollister, EB, Lesniewski, RA, Oakley, BB, Parks, DH, Robinson, CJ, Sahl, JW, Stres, B, Thallinger, GG, Van Horn, DJ, Weber, CF (B25) 2009; 75
Rodriguez-R, LM, Castro, JC, Kyrpides, NC, Cole, JR, Tiedje, JM, Konstantinidis, KT (B4) 2018; 84
Oren, A, Garrity, GM (B18) 2014; 106
Stackebrandt, E, Goebel, BM (B2) 1994; 44
Pei, AY, Oberdorf, WE, Nossa, CW, Agarwal, A, Chokshi, P, Gerz, EA, Jin, Z, Lee, P, Yang, L, Poles, M, Brown, SM, Sotero, S, DeSantis, T, Brodie, E, Nelson, K, Pei, Z (B11) 2010; 76
Sun, D-L, Jiang, X, Wu, QL, Zhou, N-Y (B12) 2013; 79
Staley, JT (B17) 2006; 361
Stoddard, SF, Smith, BJ, Hein, R, Roller, BRK, Schmidt, TM (B14) 2015; 43
Quast, C, Pruesse, E, Yilmaz, P, Gerken, J, Schweer, T, Yarza, P, Peplies, J, Glöckner, FO (B26) 2013; 41
Goris, J, Konstantinidis, KT, Klappenbach, JA, Coenye, T, Vandamme, P, Tiedje, JM (B3) 2007; 57
Edgar, RC (B6) 2018; 34
Parks, DH, Chuvochina, M, Chaumeil, P-A, Rinke, C, Mussig, AJ, Hugenholtz, P (B23) 2020; 38
B7
Lane, DJ, Pace, B, Olsen, GJ, Stahl, DA, Sogin, ML, Pace, NR (B1) 1985; 82
Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, Holmes, SP (B9) 2016; 13
Sanford, RA, Lloyd, KG, Konstantinidis, KT, Löffler, FE (B19) 2021; 29
References_xml – ident: e_1_3_2_26_2
  doi: 10.1128/AEM.01541-09
– ident: e_1_3_2_14_2
  doi: 10.1038/ismej.2017.119
– ident: e_1_3_2_4_2
  doi: 10.1099/ijs.0.64483-0
– ident: e_1_3_2_28_2
  doi: 10.1128/mSphereDirect.00073-17
– ident: e_1_3_2_27_2
  doi: 10.1093/nar/gks1219
– ident: e_1_3_2_15_2
  doi: 10.1093/nar/gku1201
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.82.20.6955
– ident: e_1_3_2_5_2
  doi: 10.1128/AEM.00014-18
– ident: e_1_3_2_10_2
  doi: 10.1038/nmeth.3869
– ident: e_1_3_2_25_2
  doi: 10.1038/nrmicro3330
– ident: e_1_3_2_24_2
  doi: 10.1038/s41587-020-0501-8
– ident: e_1_3_2_11_2
  doi: 10.1038/ismej.2014.195
– ident: e_1_3_2_17_2
  doi: 10.1038/s41467-019-13036-1
– ident: e_1_3_2_8_2
  doi: 10.1101/081257
– ident: e_1_3_2_19_2
  doi: 10.1007/s10482-013-0084-1
– ident: e_1_3_2_23_2
  doi: 10.1128/mBio.02475-19
– ident: e_1_3_2_7_2
  doi: 10.1093/bioinformatics/bty113
– ident: e_1_3_2_3_2
  doi: 10.1099/00207713-44-4-846
– ident: e_1_3_2_9_2
  doi: 10.1128/mSystems.00191-16
– ident: e_1_3_2_13_2
  doi: 10.1128/AEM.01282-13
– ident: e_1_3_2_18_2
  doi: 10.1098/rstb.2006.1914
– volume: 33
  start-page: 152
  year: 2006
  ident: e_1_3_2_6_2
  article-title: Taxonomic parameters revisited: tarnished gold standards
  publication-title: Microbiol Today
– ident: e_1_3_2_12_2
  doi: 10.1128/AEM.02953-09
– ident: e_1_3_2_16_2
  doi: 10.1128/AEM.02810-10
– ident: e_1_3_2_21_2
  doi: 10.1111/mpp.12506
– ident: e_1_3_2_20_2
  doi: 10.1016/j.tim.2020.12.010
– ident: e_1_3_2_22_2
  doi: 10.1128/JB.187.18.6258-6264.2005
– volume: 10
  start-page: 5029
  year: 2019
  ident: B16
  article-title: Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13036-1
– volume: 187
  start-page: 6258
  year: 2005
  end-page: 6264
  ident: B21
  article-title: Towards a genome-based taxonomy for prokaryotes
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.18.6258-6264.2005
– volume: 79
  start-page: 5962
  year: 2013
  end-page: 5969
  ident: B12
  article-title: Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01282-13
– volume: 44
  start-page: 846
  year: 1994
  end-page: 849
  ident: B2
  article-title: Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-44-4-846
– ident: B7
  article-title: Edgar RC . 2016 . UNOISE2: improved error-correction for Illumina 16S and its amplicon sequencing . bioRxiv https://doi.org/10.1101/081257 .
– volume: 11
  start-page: 2639
  year: 2017
  end-page: 2643
  ident: B13
  article-title: Exact sequence variants should replace operational taxonomic units in marker-gene data analysis
  publication-title: ISME J
  doi: 10.1038/ismej.2017.119
– volume: 57
  start-page: 81
  year: 2007
  end-page: 91
  ident: B3
  article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.64483-0
– volume: 29
  start-page: 394
  year: 2021
  end-page: 404
  ident: B19
  article-title: Microbial taxonomy run amok
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2020.12.010
– volume: 12
  start-page: 635
  year: 2014
  end-page: 645
  ident: B24
  article-title: Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3330
– volume: 2
  year: 2017
  ident: B8
  article-title: Deblur rapidly resolves single-nucleotide community sequence patterns
  publication-title: mSystems
  doi: 10.1128/mSystems.00191-16
– volume: 77
  start-page: 3219
  year: 2011
  end-page: 3226
  ident: B15
  article-title: Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02810-10
– volume: 13
  start-page: 581
  year: 2016
  end-page: 583
  ident: B9
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  ident: B25
  article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01541-09
– volume: 38
  start-page: 1079
  year: 2020
  end-page: 1086
  ident: B23
  article-title: A complete domain-to-species taxonomy for bacteria and archaea
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0501-8
– volume: 43
  start-page: D593
  year: 2015
  end-page: D598
  ident: B14
  article-title: rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1201
– volume: 18
  start-page: 152
  year: 2017
  end-page: 168
  ident: B20
  article-title: Evolution, genomics and epidemiology of Pseudomonas syringae
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12506
– volume: 76
  start-page: 3886
  year: 2010
  end-page: 3897
  ident: B11
  article-title: Diversity of 16S rRNA genes within individual prokaryotic genomes
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02953-09
– volume: 33
  start-page: 152
  year: 2006
  end-page: 155
  ident: B5
  article-title: Taxonomic parameters revisited: tarnished gold standards
  publication-title: Microbiol Today
– volume: 84
  year: 2018
  ident: B4
  article-title: How much do rRNA gene surveys underestimate extant bacterial diversity?
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00014-18
– volume: 2
  year: 2017
  ident: B27
  article-title: OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units
  publication-title: mSphere
  doi: 10.1128/mSphereDirect.00073-17
– volume: 361
  start-page: 1899
  year: 2006
  end-page: 1909
  ident: B17
  article-title: The bacterial species dilemma and the genomic-phylogenetic species concept
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2006.1914
– volume: 11
  year: 2020
  ident: B22
  article-title: A genus definition for bacteria and archaea based on a standard genome relatedness index
  publication-title: mBio
  doi: 10.1128/mBio.02475-19
– volume: 34
  start-page: 2371
  year: 2018
  end-page: 2375
  ident: B6
  article-title: Updating the 97% identity threshold for 16S ribosomal RNA OTUs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty113
– volume: 82
  start-page: 6955
  year: 1985
  end-page: 6959
  ident: B1
  article-title: Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.82.20.6955
– volume: 106
  start-page: 43
  year: 2014
  end-page: 56
  ident: B18
  article-title: Then and now: a systematic review of the systematics of prokaryotes in the last 80 years
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-013-0084-1
– volume: 9
  start-page: 968
  year: 2015
  end-page: 979
  ident: B10
  article-title: Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences
  publication-title: ISME J
  doi: 10.1038/ismej.2014.195
– volume: 41
  start-page: D590
  year: 2013
  end-page: D596
  ident: B26
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and Web-based tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
SSID ssj0001626676
Score 2.5253313
Snippet 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene...
Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0019121
SubjectTerms Bacteria - classification
Bacteria - genetics
DNA, Bacterial - genetics
Genetic Variation
Genome, Bacterial
High-Throughput Nucleotide Sequencing
Human Microbiome
Microbiota - genetics
Observation
Phylogeny
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
Title Amplicon Sequence Variants Artificially Split Bacterial Genomes into Separate Clusters
URI https://www.ncbi.nlm.nih.gov/pubmed/34287003
https://journals.asm.org/doi/10.1128/mSphere.00191-21
https://www.proquest.com/docview/2553823702
https://pubmed.ncbi.nlm.nih.gov/PMC8386465
https://doaj.org/article/4861dc17f9074c98b3385cb13123c671
Volume 6
WOSCitedRecordID wos000709948400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaggMQF8SY8qiAhJA5RE8evHLerXUCCqqJQlZMVO2NRqU3QJkXaf4_HyVYtQsuFSw6OJ7HGM_aMZ_wNIW9yg4ZtmfnVD49uqpwnxvsRCeemKpmtlAw3vJef5GymVqtiflDqC3PCenjgnnETpkRW2Uw69OJsoYz3qbg1We6XXCvC7XHqrZ4DZyqcrng7Xch9XJKqyXaB1_QBIw9FliA06Khst_RoOwqo_X8zNf_MmDzYgs7vk3uD7Rif9GN-QG5A_ZDc6atJXj4iy5OQHd7U8WLIj46X3hPGRJdA02NFbC7jhe_WxdMep9l_8D3UzRbaeF13jacNaOAQn252CKLQPibfzs--nn5IhrIJCVY36BIQmXCpkyaruGWpZa4AVipU1apwEhxlYB131FJRCWcceLXHYg95mgJAmj8ho7qp4RmJvTWkjLSMQSFYZbwulxLAcK4MLZyFiLxFJupB7lsdXAqq9MBtHbitaRaRyRWbtR3Ax7EGxuYaind7ip898MY1fac4c_t-CJkdGrwg6UGQ9L8EKSKvr-ZdexXDuElZQ7Nrtfe6MFoqUxqRp70c7H-Vh0hxmkdEHknI0ViO39TrHwHGW-VKMMGf_4_BvyB3KSbbpH7Z4y_JqLvYwSty2_7q1u3FmNyUKxmeakxuTc9m8y_joC9jTHWd-7b5x8_z778BEoYYyQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplicon+Sequence+Variants+Artificially+Split+Bacterial+Genomes+into+Separate+Clusters&rft.jtitle=mSphere&rft.au=Schloss%2C+Patrick+D&rft.date=2021-08-25&rft.eissn=2379-5042&rft.volume=6&rft.issue=4&rft.spage=e0019121&rft_id=info:doi/10.1128%2FmSphere.00191-21&rft_id=info%3Apmid%2F34287003&rft.externalDocID=34287003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon