Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis

Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis Jg. 7; H. 12; S. 8061
Hauptverfasser: Chen, Wei, Filot, Ivo A W, Pestman, Robert, Hensen, Emiel J M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.12.2017
ISSN:2155-5435, 2155-5435
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeeding experiments of C H with CO/H evidence that CH surface intermediates are involved in chain growth and that chain growth is highly reversible. We present a model-based approach of steady-state isotopic transient kinetic analysis measurements at FT conditions involving hydrocarbon products containing up to five carbon atoms. Our data show that the rates of chain growth and chain decoupling are much higher than the rates of monomer formation and chain termination. An important corollary of the microkinetic model is that the fraction of free sites, which is mainly determined by CO pressure, has opposing effects on CO consumption rate and chain-growth probability. Lower CO pressure and more free sites leads to increased CO consumption rate but decreased chain-growth probability because of an increasing ratio of chain decoupling over chain growth. The preferred FT condition involves high CO pressure in which chain-growth probability is increased at the expense of the CO consumption rate.
AbstractList Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeeding experiments of C H with CO/H evidence that CH surface intermediates are involved in chain growth and that chain growth is highly reversible. We present a model-based approach of steady-state isotopic transient kinetic analysis measurements at FT conditions involving hydrocarbon products containing up to five carbon atoms. Our data show that the rates of chain growth and chain decoupling are much higher than the rates of monomer formation and chain termination. An important corollary of the microkinetic model is that the fraction of free sites, which is mainly determined by CO pressure, has opposing effects on CO consumption rate and chain-growth probability. Lower CO pressure and more free sites leads to increased CO consumption rate but decreased chain-growth probability because of an increasing ratio of chain decoupling over chain growth. The preferred FT condition involves high CO pressure in which chain-growth probability is increased at the expense of the CO consumption rate.
Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeeding experiments of 12C3H6 with 13CO/H2 evidence that CH x surface intermediates are involved in chain growth and that chain growth is highly reversible. We present a model-based approach of steady-state isotopic transient kinetic analysis measurements at FT conditions involving hydrocarbon products containing up to five carbon atoms. Our data show that the rates of chain growth and chain decoupling are much higher than the rates of monomer formation and chain termination. An important corollary of the microkinetic model is that the fraction of free sites, which is mainly determined by CO pressure, has opposing effects on CO consumption rate and chain-growth probability. Lower CO pressure and more free sites leads to increased CO consumption rate but decreased chain-growth probability because of an increasing ratio of chain decoupling over chain growth. The preferred FT condition involves high CO pressure in which chain-growth probability is increased at the expense of the CO consumption rate.Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeeding experiments of 12C3H6 with 13CO/H2 evidence that CH x surface intermediates are involved in chain growth and that chain growth is highly reversible. We present a model-based approach of steady-state isotopic transient kinetic analysis measurements at FT conditions involving hydrocarbon products containing up to five carbon atoms. Our data show that the rates of chain growth and chain decoupling are much higher than the rates of monomer formation and chain termination. An important corollary of the microkinetic model is that the fraction of free sites, which is mainly determined by CO pressure, has opposing effects on CO consumption rate and chain-growth probability. Lower CO pressure and more free sites leads to increased CO consumption rate but decreased chain-growth probability because of an increasing ratio of chain decoupling over chain growth. The preferred FT condition involves high CO pressure in which chain-growth probability is increased at the expense of the CO consumption rate.
Author Chen, Wei
Pestman, Robert
Hensen, Emiel J M
Filot, Ivo A W
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 2
  givenname: Ivo A W
  surname: Filot
  fullname: Filot, Ivo A W
  organization: Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 3
  givenname: Robert
  surname: Pestman
  fullname: Pestman, Robert
  organization: Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 4
  givenname: Emiel J M
  surname: Hensen
  fullname: Hensen, Emiel J M
  organization: Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29226010$$D View this record in MEDLINE/PubMed
BookMark eNpNULFOwzAUtFARLaU7E_LIkvLs2HHDhqKWIhV1oMyR7bzQoMQucTqErycVReKWu-F0urtrMnLeISG3DOYMOHvQNljd6XquDHAlFxdkwpmUkRSxHP3TYzIL4RMGCJksFFyRMU85T4DBhGxe0e61q0JDfUkzb3TdRdkptv_GgmZbuu6L1n-g013l3SPlc7qqgt1jG-1afxgUfetdt8dQhRtyWeo64OzMU_K-Wu6ydbTZPr9kT5tIizTtIqEtGhVDXCbSCsVAYAxGJUwqFEpZgNTEXHCzUJYVJjFQigQ1WMsw5mXBp-T-N_fQ-q8jhi5vhkpY19qhP4acpUrK9LR1sN6drUfTYJEf2qrRbZ__PcB_AHgvYCo
CitedBy_id crossref_primary_10_1002_cctc_201900434
crossref_primary_10_1016_j_jcat_2019_09_008
crossref_primary_10_1016_j_jcat_2018_12_022
crossref_primary_10_1016_j_apcata_2020_117740
crossref_primary_10_1039_D4CY01336K
crossref_primary_10_1021_jacs_5c02684
crossref_primary_10_1016_j_cherd_2021_07_011
crossref_primary_10_1016_j_cattod_2019_03_002
crossref_primary_10_1016_j_fuel_2018_05_025
crossref_primary_10_1016_j_jcat_2025_116253
crossref_primary_10_3390_catal13071052
crossref_primary_10_1016_j_ces_2023_119226
crossref_primary_10_1016_j_ijhydene_2020_02_224
crossref_primary_10_1021_acssuschemeng_4c10845
crossref_primary_10_1007_s11426_024_2398_3
crossref_primary_10_1002_cctc_202301577
crossref_primary_10_1016_j_fuel_2020_119233
crossref_primary_10_1016_j_fuel_2024_131054
crossref_primary_10_3390_catal10050583
crossref_primary_10_3390_catal9090717
crossref_primary_10_1002_cctc_202400081
crossref_primary_10_1016_j_cej_2023_143632
crossref_primary_10_3390_catal14120922
crossref_primary_10_1007_s11244_020_01306_y
crossref_primary_10_1016_j_fuel_2022_126980
crossref_primary_10_1016_j_jcou_2020_101290
crossref_primary_10_1039_D0CY00918K
crossref_primary_10_1021_acscentsci_2c00434
crossref_primary_10_1021_acscatal_5c04615
crossref_primary_10_1039_D5DT01578B
crossref_primary_10_1002_ceat_202300092
crossref_primary_10_1007_s42864_022_00197_8
crossref_primary_10_1038_s41467_023_37631_5
crossref_primary_10_3389_fenrg_2024_1344179
crossref_primary_10_1002_cctc_202401617
crossref_primary_10_1002_anie_201806354
crossref_primary_10_1016_j_apcatb_2025_125469
crossref_primary_10_1016_j_cattod_2020_05_002
crossref_primary_10_1016_j_mcat_2021_111580
crossref_primary_10_1134_S2070050420020105
crossref_primary_10_1002_cctc_202001897
crossref_primary_10_1016_j_cattod_2024_114947
crossref_primary_10_1016_j_ijhydene_2024_11_128
crossref_primary_10_1016_j_mcat_2023_112990
crossref_primary_10_1016_j_biortech_2025_132768
crossref_primary_10_1016_j_cclet_2022_107809
crossref_primary_10_3390_catal9060551
crossref_primary_10_1016_j_jct_2022_106782
crossref_primary_10_1039_D4CY01463D
crossref_primary_10_1016_j_checat_2021_05_011
crossref_primary_10_1007_s10562_020_03294_w
crossref_primary_10_1021_jacs_1c06586
crossref_primary_10_3390_catal10010036
crossref_primary_10_1039_D5SC01982F
crossref_primary_10_1016_j_apsusc_2021_151476
crossref_primary_10_1016_j_fuel_2022_125788
crossref_primary_10_1007_s11814_020_0590_6
crossref_primary_10_1016_j_ijhydene_2023_12_050
crossref_primary_10_1016_j_jtice_2019_09_014
crossref_primary_10_1016_j_apcatb_2025_125998
crossref_primary_10_1002_cctc_202001533
crossref_primary_10_1016_j_jcat_2018_07_028
crossref_primary_10_1038_s41467_020_14613_5
crossref_primary_10_1002_anie_201712847
crossref_primary_10_3390_catal12101222
crossref_primary_10_1002_ange_201806354
crossref_primary_10_1016_S1872_5813_22_60065_3
crossref_primary_10_1016_j_fuel_2021_121146
crossref_primary_10_3390_catal12040425
crossref_primary_10_1002_smll_202402952
crossref_primary_10_1016_j_fuel_2020_117707
crossref_primary_10_1002_adfm_202403848
crossref_primary_10_1016_j_catcom_2021_106284
crossref_primary_10_1016_j_apcatb_2021_121041
crossref_primary_10_1016_j_apcatb_2020_119032
crossref_primary_10_1016_j_ccr_2022_214737
crossref_primary_10_1039_C9CY01753D
crossref_primary_10_1016_j_cej_2025_164291
crossref_primary_10_1039_C8CC03107J
crossref_primary_10_1016_j_apcatb_2025_125403
crossref_primary_10_1016_j_jorganchem_2024_123029
crossref_primary_10_1002_ange_201712847
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acscatal.7b02758
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
ExternalDocumentID 29226010
Genre Journal Article
GroupedDBID .K2
55A
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
EJD
GGK
GNL
IH9
JG~
NPM
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a499t-4aceb7303f65c47104e30b76157e477c009b3242b87c1db6b0f46ea0cc1e32fd2
IEDL.DBID 7X8
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417230500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2155-5435
IngestDate Fri Jul 11 15:37:25 EDT 2025
Thu Jan 02 23:02:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-4aceb7303f65c47104e30b76157e477c009b3242b87c1db6b0f46ea0cc1e32fd2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acscatal.7b02758
PMID 29226010
PQID 1975596870
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1975596870
pubmed_primary_29226010
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2017
SSID ssj0000456870
Score 2.5513456
Snippet Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8061
Title Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis
URI https://www.ncbi.nlm.nih.gov/pubmed/29226010
https://www.proquest.com/docview/1975596870
Volume 7
WOSCitedRecordID wos000417230500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAXtYJefD_qixW8bpv3bryIBEsPthas0FvIbiaQg0ltqlB_vTNpqidB8LLkEtjMzO58O7OZYexGSy9QlgkFjlRUG5RQtp8I2wRZoA0dg7K62YQcDtVkEo6agFvVXKtc7Yn1Rp2WhmLkXTuUCL8Bmtfd9E1Q1yjKrjYtNNZZy0WUIauWE_UdYyFcUXW_OHRsvvARDZpMJXq2bmKqOkTSkZpyd-p3xqx9TW_3v7PcYzsNZfL7pVnsszUoDthWtGrudsgeB0C__ObVKy8zHlFRkLmIaJ6LT0h59MT7i3RWonXVmrvlTof38oo0LMazcopP_HlRID1WeXXEXnoP46gvmsYKIsEDzlx4iQGNS9vNAt-gNiwPXEtLhBsJnpQGuUsTaGkljZ3qQFuZF0BiGWOD62Spc8w2irKAU8Y1pCTmEAACL0WlJ2CQiUBKcAyiaJtdrwQV4ydSNiIpoHyv4h9RtdnJUtrxdFlhI3ZCh0qdWWd_ePucbTvkausrJhesleGyhUu2aT7meTW7qi0Cx-Fo8AUBqb_0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Cobalt-Catalyzed+CO+Hydrogenation%3A+2.+Fischer-Tropsch+Synthesis&rft.jtitle=ACS+catalysis&rft.au=Chen%2C+Wei&rft.au=Filot%2C+Ivo+A+W&rft.au=Pestman%2C+Robert&rft.au=Hensen%2C+Emiel+J+M&rft.date=2017-12-01&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=12&rft.spage=8061&rft_id=info:doi/10.1021%2Facscatal.7b02758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon