Sparse Non-rigid Registration of 3D Shapes

Non‐rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non‐rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a s...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 34; no. 5; pp. 89 - 99
Main Authors: Yang, Jingyu, Li, Ke, Li, Kun, Lai, Yu-Kun
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.08.2015
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Non‐rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non‐rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an ℓ2‐norm regularization on the local transformation differences. However, the ℓ2‐norm regularization tends to bias the solution towards outliers and noise with heavy‐tailed distribution, which is verified by the poor goodness‐of‐fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non‐rigid registration (SNR) method with an ℓ1‐norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi‐resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large‐scale deformations as well as outliers and noise.
AbstractList Non‐rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non‐rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an ℓ 2 ‐norm regularization on the local transformation differences. However, the ℓ 2 ‐norm regularization tends to bias the solution towards outliers and noise with heavy‐tailed distribution, which is verified by the poor goodness‐of‐fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non‐rigid registration (SNR) method with an ℓ 1 ‐norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi‐resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large‐scale deformations as well as outliers and noise.
Non-rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non-rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an 2-norm regularization on the local transformation differences. However, the 2-norm regularization tends to bias the solution towards outliers and noise with heavy-tailed distribution, which is verified by the poor goodness-of-fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non-rigid registration (SNR) method with an 1-norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi-resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large-scale deformations as well as outliers and noise.
Non-rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non-rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an sub(2)-norm regularization on the local transformation differences. However, the sub(2)-norm regularization tends to bias the solution towards outliers and noise with heavy-tailed distribution, which is verified by the poor goodness-of-fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non-rigid registration (SNR) method with an sub(1)-norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi-resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large-scale deformations as well as outliers and noise.
Non‐rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non‐rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an ℓ2‐norm regularization on the local transformation differences. However, the ℓ2‐norm regularization tends to bias the solution towards outliers and noise with heavy‐tailed distribution, which is verified by the poor goodness‐of‐fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non‐rigid registration (SNR) method with an ℓ1‐norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi‐resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large‐scale deformations as well as outliers and noise.
Author Lai, Yu-Kun
Li, Kun
Yang, Jingyu
Li, Ke
Author_xml – sequence: 1
  givenname: Jingyu
  surname: Yang
  fullname: Yang, Jingyu
  organization: School of Electronic Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  organization: School of Electronic Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Kun
  surname: Li
  fullname: Li, Kun
  email: lik@tju.edu.cn
  organization: School of Computer Science and Technology, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Yu-Kun
  surname: Lai
  fullname: Lai, Yu-Kun
  organization: School of Computer Science and Informatics, Cardiff University, Wales, UK
BookMark eNp1kMtOwzAQRS1UJNrCgj-IxAaQ0tqJY8dLFGhBKgVRXjvLSezikibBTgX9e9wHLCqYzczinNHM7YBWWZUSgGMEe8hVP5uqHgoIY3ugjTChfkwi1gJtiNxMYRQdgI61MwghpiRqg_NJLYyV3rgqfaOnOvce5FTbxohGV6VXKS-89CZvopb2EOwrUVh5tO1d8DS4ekyu_dHd8Ca5GPkCs5j5KshJShQKcL5qOI3ilJAsFBLTNJYszjEOVRowKkWIoxQRBDOMA8ZUQGgEwy443eytTfWxkLbhc20zWRSilNXCckRpDAOCGHboyQ46qxamdNc5yjGE0oA6qr-hMlNZa6TimW7W_7k3dcER5KvsuMuOr7NzxtmOURs9F2b5J7vd_qkLufwf5Mlw8GP4G8PlLL9-DWHeOaEhjfjLeMjvJ-FrcpuM-HP4DR2Ni90
CitedBy_id crossref_primary_10_1007_s00138_018_0985_0
crossref_primary_10_1186_s40494_020_00450_8
crossref_primary_10_1109_TIP_2022_3148822
crossref_primary_10_1109_TPAMI_2023_3247603
crossref_primary_10_1007_s11042_020_08965_9
crossref_primary_10_1007_s00530_024_01657_6
crossref_primary_10_1016_j_cagd_2019_04_014
crossref_primary_10_1016_j_isprsjprs_2018_06_012
crossref_primary_10_1109_TVCG_2018_2832136
crossref_primary_10_1111_cgf_14502
crossref_primary_10_1109_TIP_2019_2909197
crossref_primary_10_1145_3009905
crossref_primary_10_1145_3072959_3054740
crossref_primary_10_1109_TVCG_2023_3283990
crossref_primary_10_1145_3054740
crossref_primary_10_1007_s00371_019_01670_1
crossref_primary_10_1016_j_cag_2016_05_007
crossref_primary_10_1109_TCSVT_2016_2556419
crossref_primary_10_1109_TIP_2017_2779277
Cites_doi 10.1145/258734.258849
10.1111/j.1467-8659.2011.02023.x
10.1109/TIP.2013.2262292
10.1109/ICCV.2009.5459161
10.1111/cgf.12178
10.1145/882262.882311
10.1145/1618452.1618521
10.1109/CVPR.2012.6247673
10.1109/ICRA.2012.6225077
10.1111/j.1467-8659.2008.01282.x
10.1109/TVCG.2012.310
10.1111/j.1467-8659.2008.01287.x
10.1111/j.1467-8659.2008.01137.x
10.1016/S1077-3142(03)00009-2
10.1145/566654.566626
10.1109/3DV.2014.80
10.1109/ISMAR.2011.6092378
10.1016/j.media.2014.03.002
10.1007/s11432-009-0045-5
10.1109/JPROC.2009.2037655
10.1109/CVPR.2007.383165
10.1145/1360612.1360696
10.1145/2517967
10.1561/2200000016
10.1109/TPAMI.2010.46
10.1016/j.cagd.2009.09.001
10.1016/j.cviu.2014.04.011
10.1145/2601097.2601165
10.1145/1276377.1276478
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12699
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 99
ExternalDocumentID 3772907511
10_1111_cgf_12699
CGF12699
ark_67375_WNG_PS3XCMCL_V
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-a4989-f2d6b6f124db6f14b58b66c3ae47b8e98d443fb297ea345b1610c44299f267503
IEDL.DBID DRFUL
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362293300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Sep 05 06:13:58 EDT 2025
Sun Sep 07 03:48:32 EDT 2025
Sat Nov 29 07:51:27 EST 2025
Tue Nov 18 22:23:48 EST 2025
Sun Sep 21 06:26:22 EDT 2025
Sun Sep 21 06:18:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4989-f2d6b6f124db6f14b58b66c3ae47b8e98d443fb297ea345b1610c44299f267503
Notes ark:/67375/WNG-PS3XCMCL-V
ArticleID:CGF12699
Supporting Information
istex:CC5C87FDA893285290F43067ECDDCE9F0AF43BDF
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1702667727
PQPubID 30877
PageCount 11
ParticipantIDs proquest_miscellaneous_1778026194
proquest_journals_1702667727
crossref_citationtrail_10_1111_cgf_12699
crossref_primary_10_1111_cgf_12699
wiley_primary_10_1111_cgf_12699_CGF12699
istex_primary_ark_67375_WNG_PS3XCMCL_V
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Flöry S., Hofer M.: Surface fitting and registration of point clouds using approximations of the unsigned distance function. Comput. Aided Geom. Des. 27, 1 (2010), 60-77. 2
Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. Computer Graphics Forum 27, 2 (2008), 399-408. 2
Sumner R.W., Schmid J., Pauly M.: Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3 (2007), 80. 1, 3
Yang J., Peng Y., Xu W., Dai Q.: Ways to sparse representation: an overview. Science in China series F: information sciences 52, 4 (2009), 695-703. 5
Bronstein A.M., Bronstein M.M., Kimmel R.: Numerical geometry of non-rigid shapes. Springer Science & Business Media, 2008. 2, 7
Li H., Sumner R.W., Pauly M.: Global correspondence optimization for non-rigid registration of depth scans. Computer graphics forum 27, 5 (2008), 1421-1430. 1, 2, 3, 8, 10
Allen B., Curless B., Popović Z.: Articulated body deformation from range scan data. ACM Trans. Graph. 21, 3 (2002), 612-619. 2
Elad M., Figueiredo M.A., Ma Y.: On the role of sparse and redundant representations in image processing. Proceedings of the IEEE 98, 6 (2010), 972-982. 3
Süssmuth J., Winter M., Greiner G.: Reconstructing animated meshes from time-varying point clouds. Computer Graphics Forum 27, 5 (2008), 1469-1476. 2
Tam G.K., Cheng Z.-Q., Lai Y.-K., Langbein F.C., Liu Y., Marshall D., Martin R.R., Sun X.-F., Rosin P.L.: Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comp. Graph. 19, 7 (2013), 1199-1217. 2
Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 3 (2008), 97. 2, 7
Papazov C., Burschka D.: Deformable 3D shape registration based on local similarity transforms. In Computer Graphics Forum (2011), vol. 30, pp. 1493-1502. 2
Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 2 (2003), 114-141. 2
Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 2, 6
Wand M., Adams B., Ovsjanikov M., Berner A., Bokeloh M., Jenke P., Guibas L., Seidel H.-P., Schilling A.: Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. 28, 2 (2009), 15. 2
Tam G.K., Martin R.R., Rosin P.L., Lai Y-K.: Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry. ACM Trans. Graph. 33, 1 (2014), 4. 4, 9
Allen B., Curless B., Popović Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3 (2003), 587-594. 2
Myronenko A., Song X.: Point set registration: Coherent point drift. IEEE Trans. Pattern Analy. Mach. Intell. 32, 12 (2010), 2262-2275. 2
Yu Y., Zhang S., Li K., Metaxas D., Axel L.: Deformable models with sparsity constraints for cardiac motion analysis. Medical Image Analysis 18, 6 (2014), 927-937. 3
Yang A. Y, Zhou Z., Balasubramanian A.G., Sastry S.S., Ma Y: Fast ℓ1-minimization algorithms for robust face recognition. IEEE Trans. Image Processing 22, 8 (2013), 3234-3246. 5
Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. 5
Salti S., Tombari F., Di Stefano L.: SHOT: unique signatures of histograms for surface and texture description. Computer Vision and Image Understanding 125 (2014), 251-264. 4, 9
Zollhöfer M., Niessner M., Izadi S., Rhemann C., Zach C., Fisher M., Wu C., Fitzgibbon A., Loop C., Theobalt C., Stamminger M.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33, 4 (2014). 1
Bertsekas D.P.: Constrained optimization and lagrange multiplier methods. Computer Science and Applied Mathematics, Boston: Academic Press 1 (1982). 5
Bouaziz S., Tagliasacchi A., Pauly M.: Sparse iterative closest point. Computer Graphics Forum 32, 5 (2013), 113-123. 1, 3, 10
2010; 98
2010; 32
2012
2013; 22
2011
2009
2008
1997
2011; 30
2007
2006
1992
2003
2002
2011; 3
2009; 28
2013; 19
2010; 27
2009; 52
1982; 1
2013; 32
2002; 21
2008; 27
2014
2014; 18
2009; 2
2014; 125
2014; 33
2003; 22
2007; 26
2003; 89
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
Bertsekas D.P. (e_1_2_7_6_2) 1982; 1
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
Bishop C.M. (e_1_2_7_7_2) 2006
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
Wand M. (e_1_2_7_34_2) 2009; 2
Bronstein A.M. (e_1_2_7_5_2) 2008
References_xml – reference: Wand M., Adams B., Ovsjanikov M., Berner A., Bokeloh M., Jenke P., Guibas L., Seidel H.-P., Schilling A.: Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. 28, 2 (2009), 15. 2
– reference: Allen B., Curless B., Popović Z.: Articulated body deformation from range scan data. ACM Trans. Graph. 21, 3 (2002), 612-619. 2
– reference: Yu Y., Zhang S., Li K., Metaxas D., Axel L.: Deformable models with sparsity constraints for cardiac motion analysis. Medical Image Analysis 18, 6 (2014), 927-937. 3
– reference: Bronstein A.M., Bronstein M.M., Kimmel R.: Numerical geometry of non-rigid shapes. Springer Science & Business Media, 2008. 2, 7
– reference: Flöry S., Hofer M.: Surface fitting and registration of point clouds using approximations of the unsigned distance function. Comput. Aided Geom. Des. 27, 1 (2010), 60-77. 2
– reference: Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 2 (2003), 114-141. 2
– reference: Bertsekas D.P.: Constrained optimization and lagrange multiplier methods. Computer Science and Applied Mathematics, Boston: Academic Press 1 (1982). 5
– reference: Elad M., Figueiredo M.A., Ma Y.: On the role of sparse and redundant representations in image processing. Proceedings of the IEEE 98, 6 (2010), 972-982. 3
– reference: Tam G.K., Martin R.R., Rosin P.L., Lai Y-K.: Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry. ACM Trans. Graph. 33, 1 (2014), 4. 4, 9
– reference: Sumner R.W., Schmid J., Pauly M.: Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3 (2007), 80. 1, 3
– reference: Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. Computer Graphics Forum 27, 2 (2008), 399-408. 2
– reference: Yang J., Peng Y., Xu W., Dai Q.: Ways to sparse representation: an overview. Science in China series F: information sciences 52, 4 (2009), 695-703. 5
– reference: Süssmuth J., Winter M., Greiner G.: Reconstructing animated meshes from time-varying point clouds. Computer Graphics Forum 27, 5 (2008), 1469-1476. 2
– reference: Myronenko A., Song X.: Point set registration: Coherent point drift. IEEE Trans. Pattern Analy. Mach. Intell. 32, 12 (2010), 2262-2275. 2
– reference: Papazov C., Burschka D.: Deformable 3D shape registration based on local similarity transforms. In Computer Graphics Forum (2011), vol. 30, pp. 1493-1502. 2
– reference: Li H., Sumner R.W., Pauly M.: Global correspondence optimization for non-rigid registration of depth scans. Computer graphics forum 27, 5 (2008), 1421-1430. 1, 2, 3, 8, 10
– reference: Salti S., Tombari F., Di Stefano L.: SHOT: unique signatures of histograms for surface and texture description. Computer Vision and Image Understanding 125 (2014), 251-264. 4, 9
– reference: Allen B., Curless B., Popović Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3 (2003), 587-594. 2
– reference: Tam G.K., Cheng Z.-Q., Lai Y.-K., Langbein F.C., Liu Y., Marshall D., Martin R.R., Sun X.-F., Rosin P.L.: Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comp. Graph. 19, 7 (2013), 1199-1217. 2
– reference: Bouaziz S., Tagliasacchi A., Pauly M.: Sparse iterative closest point. Computer Graphics Forum 32, 5 (2013), 113-123. 1, 3, 10
– reference: Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 3 (2008), 97. 2, 7
– reference: Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 2, 6
– reference: Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. 5
– reference: Yang A. Y, Zhou Z., Balasubramanian A.G., Sastry S.S., Ma Y: Fast ℓ1-minimization algorithms for robust face recognition. IEEE Trans. Image Processing 22, 8 (2013), 3234-3246. 5
– reference: Zollhöfer M., Niessner M., Izadi S., Rhemann C., Zach C., Fisher M., Wu C., Fitzgibbon A., Loop C., Theobalt C., Stamminger M.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33, 4 (2014). 1
– volume: 89
  start-page: 114
  issue: 2
  year: 2003
  end-page: 141
  article-title: A new point matching algorithm for non‐rigid registration
  publication-title: Computer Vision and Image Understanding
– start-page: 1
  year: 2007
  end-page: 8
– volume: 27
  start-page: 1469
  issue: 5
  year: 2008
  end-page: 1476
  article-title: Reconstructing animated meshes from time‐varying point clouds
  publication-title: Computer Graphics Forum
– volume: 30
  start-page: 1493
  year: 2011
  end-page: 1502
  article-title: Deformable 3D shape registration based on local similarity transforms
  publication-title: Computer Graphics Forum
– volume: 125
  start-page: 251
  year: 2014
  end-page: 264
  article-title: SHOT: unique signatures of histograms for surface and texture description
  publication-title: Computer Vision and Image Understanding
– volume: 33
  issue: 4
  year: 2014
  article-title: Real‐time non‐rigid reconstruction using an RGB‐D camera
  publication-title: ACM Trans. Graph
– year: 2003
– start-page: 209
  year: 1997
  end-page: 216
– volume: 27
  start-page: 97
  issue: 3
  year: 2008
  article-title: Articulated mesh animation from multi‐view silhouettes
  publication-title: ACM Trans. Graph
– volume: 2
  start-page: 15
  year: 2009
  article-title: Efficient reconstruction of nonrigid shape and motion from real‐time 3D scanner data
  publication-title: ACM Trans. Graph. 28
– volume: 22
  start-page: 587
  issue: 3
  year: 2003
  end-page: 594
  article-title: The space of human body shapes: reconstruction and parameterization from range scans
  publication-title: ACM Trans. Graph
– volume: 52
  start-page: 695
  issue: 4
  year: 2009
  end-page: 703
  article-title: Ways to sparse representation: an overview
  publication-title: Science in China series F: information sciences
– year: 2014
– volume: 32
  start-page: 113
  issue: 5
  year: 2013
  end-page: 123
  article-title: Sparse iterative closest point
  publication-title: Computer Graphics Forum
– volume: 26
  start-page: 80
  issue: 3
  year: 2007
  article-title: Embedded deformation for shape manipulation
  publication-title: ACM Trans. Graph
– volume: 27
  start-page: 399
  issue: 2
  year: 2008
  end-page: 408
  article-title: Articulated object reconstruction and markerless motion capture from depth video
  publication-title: Computer Graphics Forum
– start-page: 751
  year: 2012
  end-page: 757
– volume: 98
  start-page: 972
  issue: 6
  year: 2010
  end-page: 982
  article-title: On the role of sparse and redundant representations in image processing
  publication-title: Proceedings of the IEEE
– start-page: 127
  year: 2011
  end-page: 136
– volume: 32
  start-page: 2262
  issue: 12
  year: 2010
  end-page: 2275
  article-title: Point set registration: Coherent point drift
  publication-title: IEEE Trans. Pattern Analy. Mach. Intell
– volume: 19
  start-page: 1199
  issue: 7
  year: 2013
  end-page: 1217
  article-title: Registration of 3D point clouds and meshes: a survey from rigid to nonrigid
  publication-title: IEEE Trans. Vis. Comp. Graph
– volume: 27
  start-page: 60
  issue: 1
  year: 2010
  end-page: 77
  article-title: Surface fitting and registration of point clouds using approximations of the unsigned distance function
  publication-title: Comput. Aided Geom. Des
– volume: 1
  year: 1982
  article-title: Constrained optimization and lagrange multiplier methods
  publication-title: Computer Science and Applied Mathematics, Boston: Academic Press
– volume: 21
  start-page: 612
  issue: 3
  year: 2002
  end-page: 619
  article-title: Articulated body deformation from range scan data
  publication-title: ACM Trans. Graph
– year: 2008
– year: 2006
– start-page: 586
  year: 1992
  end-page: 606
– start-page: 174
  year: 2012
  end-page: 181
– start-page: 163
  year: 2002
  end-page: 170
– start-page: 109
  year: 2007
  end-page: 116
– volume: 33
  start-page: 4
  issue: 1
  year: 2014
  article-title: Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry
  publication-title: ACM Trans. Graph
– volume: 22
  start-page: 3234
  issue: 8
  year: 2013
  end-page: 3246
  article-title: Fast ℓ ‐minimization algorithms for robust face recognition
  publication-title: IEEE Trans. Image Processing
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
– volume: 28
  start-page: 175
  issue: 5
  year: 2009
  article-title: Robust single‐view geometry and motion reconstruction
  publication-title: ACM Trans. Graph
– start-page: 167
  year: 2009
  end-page: 174
– volume: 27
  start-page: 1421
  issue: 5
  year: 2008
  end-page: 1430
  article-title: Global correspondence optimization for non‐rigid registration of depth scans
  publication-title: Computer graphics forum
– volume: 18
  start-page: 927
  issue: 6
  year: 2014
  end-page: 937
  article-title: Deformable models with sparsity constraints for cardiac motion analysis
  publication-title: Medical Image Analysis
– ident: e_1_2_7_16_2
– ident: e_1_2_7_14_2
  doi: 10.1145/258734.258849
– ident: e_1_2_7_22_2
  doi: 10.1111/j.1467-8659.2011.02023.x
– ident: e_1_2_7_36_2
  doi: 10.1109/TIP.2013.2262292
– ident: e_1_2_7_19_2
  doi: 10.1109/ICCV.2009.5459161
– ident: e_1_2_7_10_2
  doi: 10.1111/cgf.12178
– volume: 2
  start-page: 15
  year: 2009
  ident: e_1_2_7_34_2
  article-title: Efficient reconstruction of nonrigid shape and motion from real‐time 3D scanner data
  publication-title: ACM Trans. Graph. 28
– ident: e_1_2_7_24_2
– ident: e_1_2_7_27_2
– ident: e_1_2_7_3_2
  doi: 10.1145/882262.882311
– ident: e_1_2_7_8_2
– ident: e_1_2_7_17_2
  doi: 10.1145/1618452.1618521
– ident: e_1_2_7_15_2
  doi: 10.1109/CVPR.2012.6247673
– volume-title: Numerical geometry of non‐rigid shapes
  year: 2008
  ident: e_1_2_7_5_2
– ident: e_1_2_7_26_2
  doi: 10.1109/ICRA.2012.6225077
– ident: e_1_2_7_18_2
  doi: 10.1111/j.1467-8659.2008.01282.x
– ident: e_1_2_7_31_2
  doi: 10.1109/TVCG.2012.310
– volume: 1
  year: 1982
  ident: e_1_2_7_6_2
  article-title: Constrained optimization and lagrange multiplier methods
  publication-title: Computer Science and Applied Mathematics, Boston: Academic Press
– ident: e_1_2_7_30_2
  doi: 10.1111/j.1467-8659.2008.01287.x
– ident: e_1_2_7_23_2
  doi: 10.1111/j.1467-8659.2008.01137.x
– ident: e_1_2_7_11_2
  doi: 10.1016/S1077-3142(03)00009-2
– ident: e_1_2_7_2_2
  doi: 10.1145/566654.566626
– ident: e_1_2_7_25_2
  doi: 10.1109/3DV.2014.80
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: e_1_2_7_7_2
– ident: e_1_2_7_21_2
  doi: 10.1109/ISMAR.2011.6092378
– ident: e_1_2_7_37_2
  doi: 10.1016/j.media.2014.03.002
– ident: e_1_2_7_35_2
  doi: 10.1007/s11432-009-0045-5
– ident: e_1_2_7_12_2
  doi: 10.1109/JPROC.2009.2037655
– ident: e_1_2_7_4_2
  doi: 10.1109/CVPR.2007.383165
– ident: e_1_2_7_33_2
  doi: 10.1145/1360612.1360696
– ident: e_1_2_7_32_2
  doi: 10.1145/2517967
– ident: e_1_2_7_9_2
  doi: 10.1561/2200000016
– ident: e_1_2_7_20_2
  doi: 10.1109/TPAMI.2010.46
– ident: e_1_2_7_13_2
  doi: 10.1016/j.cagd.2009.09.001
– ident: e_1_2_7_29_2
  doi: 10.1016/j.cviu.2014.04.011
– ident: e_1_2_7_38_2
  doi: 10.1145/2601097.2601165
– ident: e_1_2_7_28_2
  doi: 10.1145/1276377.1276478
SSID ssj0004765
Score 2.2662134
Snippet Non‐rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic...
Non-rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms 3-D graphics
Analysis
Categories and Subject Descriptors (according to ACM CCS)
Estimates
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Hierarchy and geometric transformations
Image processing systems
Noise
Outliers (statistics)
Registration
Regularization
Scanning
Sensors
Studies
Tasks
Three dimensional
Transformations
Title Sparse Non-rigid Registration of 3D Shapes
URI https://api.istex.fr/ark:/67375/WNG-PS3XCMCL-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12699
https://www.proquest.com/docview/1702667727
https://www.proquest.com/docview/1778026194
Volume 34
WOSCitedRecordID wos000362293300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsX6IoqIByNtdrOb4ElaWw-1iLXa27K72VVR0tKqePQn-Bv9Je6mSaygIHgLZBaGeWRmsjPfAOxJGhBJFXcpF9TFpCLdECvkRpiLgGMkJE803aLtdtDrhRcFOM5mYcb4EPkPN-sZyffaOjgXowknl7f6qOqRMJyCkmfs1i9CqX7Z6La-xiIp8TNobwsakwIL2Uae_PC3cFSykn39lmtOZqxJyGnM_4vZBZhLM03nZGwai1BQ8RLMTuAPLsNhZ2DqWuW0-_HH27tdkRU5l-o2x9J1-tpBdadzxwdqtALdxulV7cxN1ye4HNtGKO1FRBBtArgdtati4QeCEIm4wlQEKgwijJEWXmhUhbAvTO5XkdjGJ-0Re725CsW4H6s1cAIU4Yoh4EaFWHMtIqIx4jxCoRSej8pwkEmRyRRb3K64eGRZjWEEwBIBlGE3Jx2MATV-ItpPVJFT8OGD7UCjPrtpN9lFB_Vq57UWuy7DZqYrljrfiFWpKSyJKRtoGXby18Zt7F0Ij1X_2dLQICk_seE90dzv3LBas5E8rP-ddANmTGrlj1sFN6H4NHxWWzAtX57uR8Pt1FI_AX2V6pY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED917aTBA-wDRKBAmKZpDwtqY8dOJF5QSzdEGlXtxvpm2Y69TaC06gfa4_4E_kb-Euw0Ca0EEtLeIuUine4jd2ff_Q7gSNKQSKq4R7mgHiYt6UVYIS_FXIQcIyF5rumYJkk4HkeDGnwoZ2FW-BDVgZv1jPx_bR3cHkivebm81u_bPomiLWhgY0bGvhvdYe8y_jMXSUlQYntb1JgCWch28lQfb8SjhhXt3UayuZ6y5jGn9_Rh3O7CkyLXdD-ujGMPairbh8drCIQHcDqamspWuckk-3X_0y7JSt2huq7QdN2JdlHXHd3wqZo_g8vep4vOuVcsUPA4tq1Q2k-JINqEcDts18YiCAUhEnGFqQhVFKYYIy38yCgL4UCY7K8lsY1Q2if2gvM51LNJpl6AG6IUtwwBN0rEmmuREo0R5ymKpPAD5MBJKUYmC3Rxu-TiOyurDCMAlgvAgcOKdLqC1Pgb0XGui4qCz77ZHjQasKvkjA1GaNzpd2L21YFmqSxWuN-ctakpLYkpHKgD76rXxnHsbQjP1GRpaWiYF6DY8J6r7t_csM5ZL394-f-kb2Hn_KIfs_hz8uUVPDKJVrBqHGxCfTFbqtewLX8sbuezN4XZ_gaQB-6G
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BiyZ4gLENUSgsQ2jiYUFt7NiJtJepJYBWooqO0TfLdmxAoLRqKeKRn8Bv5Jdgp0ko0pAm8RYpnyXrzpe7i---A9iVNCCSKu5SLqiLSUO6IVbITTAXAcdISJ5pukPjOOj3w-4c_Cx6Yab8EOUPN2sZ2ffaGrgaJnrGyuWF3m96JAznoYrtEJkKVNun0VnnpS-SEr_g9rasMTmzkK3kKRe_8kdVK9r7V8HmbMia-Zxo5X27_QjLeazp_JoejlWYU-knWJphIPwMP3pDk9kqJx6kTw-PdkhW4pyqi5JN1xloB7Wd3iUfqvEXOIsO_rSO3HyAgsuxLYXSXkIE0caF22a7JhZ-IAiRiCtMRaDCIMEYaeGFRlkI-8JEfw2JrYfSHrEXnGtQSQepWgcnQAluGAA3SsSaa5EQjRHnCQql8HxUg71CjEzm7OJ2yMUNK7IMIwCWCaAGOyV0OKXU-Bfoe6aLEsFH17YGjfrsPD5k3R7qt05aHfa3BvVCWSw3vzFrUpNaEpM40Bp8K18bw7G3ITxVg4nF0CBLQLHZe6a6t3fDWodR9rDx_9Cv8KHbjljnOP69CYsmzvKndYN1qNyOJmoLFuTd7dV4tJ2f2mc0oO4B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Non-rigid+Registration+of+3D+Shapes&rft.jtitle=Computer+graphics+forum&rft.au=Yang%2C+Jingyu&rft.au=Li%2C+Ke&rft.au=Li%2C+Kun&rft.au=Lai%2C+Yu-Kun&rft.date=2015-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=5&rft.spage=89&rft.epage=99&rft_id=info:doi/10.1111%2Fcgf.12699&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_PS3XCMCL_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon