Crawl through Neighbors: A Simple Curve Reconstruction Algorithm

Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve reconstruction. In this paper, a novel non‐parametric curve reconstruction algorithm based on Delaunay triangulation has been proposed and it has been theoretically proved that t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 35; číslo 5; s. 177 - 186
Hlavní autori: Parakkat, Amal Dev, Muthuganapathy, Ramanathan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.08.2016
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve reconstruction. In this paper, a novel non‐parametric curve reconstruction algorithm based on Delaunay triangulation has been proposed and it has been theoretically proved that the proposed method reconstructs the original curve under ε‐sampling. Starting from an initial Delaunay seed edge, the algorithm proceeds by finding an appropriate neighbouring point and adding an edge between them. Experimental results show that the proposed algorithm is capable of reconstructing curves with different features like sharp corners, outliers, multiple objects, objects with holes, etc. The proposed method also works for open curves. Based on a study by a few users, the paper also discusses an application of the proposed algorithm for reconstructing hand drawn skip stroke sketches, which will be useful in various sketch based interfaces.
AbstractList Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve reconstruction. In this paper, a novel non-parametric curve reconstruction algorithm based on Delaunay triangulation has been proposed and it has been theoretically proved that the proposed method reconstructs the original curve under [epsi]-sampling. Starting from an initial Delaunay seed edge, the algorithm proceeds by finding an appropriate neighbouring point and adding an edge between them. Experimental results show that the proposed algorithm is capable of reconstructing curves with different features like sharp corners, outliers, multiple objects, objects with holes, etc. The proposed method also works for open curves. Based on a study by a few users, the paper also discusses an application of the proposed algorithm for reconstructing hand drawn skip stroke sketches, which will be useful in various sketch based interfaces.
Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve reconstruction. In this paper, a novel non‐parametric curve reconstruction algorithm based on Delaunay triangulation has been proposed and it has been theoretically proved that the proposed method reconstructs the original curve under ε‐sampling. Starting from an initial Delaunay seed edge, the algorithm proceeds by finding an appropriate neighbouring point and adding an edge between them. Experimental results show that the proposed algorithm is capable of reconstructing curves with different features like sharp corners, outliers, multiple objects, objects with holes, etc. The proposed method also works for open curves. Based on a study by a few users, the paper also discusses an application of the proposed algorithm for reconstructing hand drawn skip stroke sketches, which will be useful in various sketch based interfaces.
Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve reconstruction. In this paper, a novel non-parametric curve reconstruction algorithm based on Delaunay triangulation has been proposed and it has been theoretically proved that the proposed method reconstructs the original curve under epsilon -sampling. Starting from an initial Delaunay seed edge, the algorithm proceeds by finding an appropriate neighbouring point and adding an edge between them. Experimental results show that the proposed algorithm is capable of reconstructing curves with different features like sharp corners, outliers, multiple objects, objects with holes, etc. The proposed method also works for open curves. Based on a study by a few users, the paper also discusses an application of the proposed algorithm for reconstructing hand drawn skip stroke sketches, which will be useful in various sketch based interfaces.
Author Muthuganapathy, Ramanathan
Parakkat, Amal Dev
Author_xml – sequence: 1
  givenname: Amal Dev
  surname: Parakkat
  fullname: Parakkat, Amal Dev
  organization: Advanced Geometric Computing Lab, Department of Engineering Design, Indian Institute of Technology Madras, India
– sequence: 2
  givenname: Ramanathan
  surname: Muthuganapathy
  fullname: Muthuganapathy, Ramanathan
  organization: Advanced Geometric Computing Lab, Department of Engineering Design, Indian Institute of Technology Madras, India
BookMark eNp9kLFOwzAQhi0EEqUw8AaRWGBIa8dx7DBRAi0IVBAUgVgsN1xaQxoXO6Hw9hgKDEhwy93w_b9O3wZarUwFCG0T3CF-uvmk6JAo5fEKapE44aFIWLqKWpj4m2PG1tGGc48Y45gnrIUOMqsWZVBPrWkm02AIejIdG-v2g15wrWfzEoKssS8QXEFuKlfbJq-1qYJeOTFW19PZJlorVOlg62u30U3_eJSdhOcXg9Osdx6qOBVxSEQBST7GPCJciCSOFBSFSvFDShnBMAYmOIsfIMKKFqrwzwHFEFGhMFPjKKVttLvsnVvz3ICr5Uy7HMpSVWAaJ4mgjCVUpNSjO7_QR9PYyn_nKeKtxDgVntpbUrk1zlko5NzqmbJvkmD54VJ6l_LTpWe7v9hc1-pDRG2VLv9LLHQJb39Xy2zQ_06Ey4R2Nbz-JJR9kgmnnMnb4UCyw8v7s6PRtbyj7xzxlQk
CitedBy_id crossref_primary_10_1111_cgf_13395
crossref_primary_10_1111_cgf_142659
crossref_primary_10_1016_j_cag_2025_104327
crossref_primary_10_1016_j_cagd_2020_101879
crossref_primary_10_1111_cgf_15136
crossref_primary_10_1007_s00371_025_03978_7
crossref_primary_10_1111_cgf_15019
crossref_primary_10_1111_cgf_13589
crossref_primary_10_1145_3691635
crossref_primary_10_1111_cgf_14517
crossref_primary_10_1016_j_cag_2017_05_006
crossref_primary_10_1016_j_cagd_2020_101953
crossref_primary_10_1177_0954410020952922
crossref_primary_10_1016_j_cag_2018_05_015
Cites_doi 10.1007/BF01889981
10.1016/S0925-7721(99)00051-6
10.1145/2816795.2818067
10.1006/gmip.1998.0465
10.1145/2487381.2487382
10.1109/TIT.1983.1056714
10.1111/j.1467-8659.2011.02033.x
10.1007/978-3-540-77974-2
10.1145/304893.304973
10.1016/j.cag.2015.05.025
10.1049/iet-cvi.2009.0079
10.1016/j.patcog.2008.03.023
10.1016/S0925-7721(01)00015-3
10.1109/MCG.2011.84
10.1016/j.cad.2014.12.002
10.1007/BFb0054315
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12974
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 186
ExternalDocumentID 4147803311
10_1111_cgf_12974
CGF12974
ark_67375_WNG_5BPZKDTS_X
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-a4984-18fe6cb0721788642aeffa90d93510ebe58754de20a3faf476e30e238a05ab293
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383444500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Sep 05 07:47:18 EDT 2025
Sun Nov 30 04:15:47 EST 2025
Tue Nov 18 20:51:19 EST 2025
Sat Nov 29 03:41:13 EST 2025
Wed Jan 22 16:45:13 EST 2025
Tue Nov 11 03:33:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4984-18fe6cb0721788642aeffa90d93510ebe58754de20a3faf476e30e238a05ab293
Notes ark:/67375/WNG-5BPZKDTS-X
ArticleID:CGF12974
istex:59C4446F706F9F8AD25952C2E12B1E2D7569DF60
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1811464098
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1835563893
proquest_journals_1811464098
crossref_primary_10_1111_cgf_12974
crossref_citationtrail_10_1111_cgf_12974
wiley_primary_10_1111_cgf_12974_CGF12974
istex_primary_ark_67375_WNG_5BPZKDTS_X
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Liu X., Wong T.-T., Heng P.-A.: Closure-aware sketch simplification. ACM Trans. Graph. 34, 6 (Oct. 2015), 168:1-168:10. 3
Peethambaran J., Muthuganapathy R.: A non-parametric approach to shape reconstruction from planar point sets through delaunay filtering. Computer-Aided Design 62 (2015), 164-175. 2, 6
Dey T.K., Wenger R.: Reconstructing curves with sharp corners. Computational Geometry 19, 2-3 (2001), 89-99. Combinatorial Curves and Surfaces. 2
Gheibi A., Davoodi M., Javad A., Panahi F., Aghdam M.M., Asgaripour M., Mohades A.: Polygonal shape reconstruction in the plane. IET Computer Vision 5, 2 (March 2011), 97-106. 2, 5
de Goes F., Cohen-Steiner D., Alliez P., Desbrun M.: An optimal transport approach to robust reconstruction and simplification of 2d shapes. Computer Graphics Forum 30, 5 (2011), 1593-1602. 2, 5
Figueiredo L.H., Miranda Gomes J.: Computational morphology of curves. The Visual Computer 11, 2, 105-112. 1, 2
Duckham M., Kulik L., Worboys M., Galton A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition 41, 10 (2008), 3224-3236. 2, 5
Berg M. d., Cheong O., Kreveld M. v., Overmars M.: Computational Geometry: Algorithms and Applications, 3rd ed. Springer-Verlag TELOS, Santa Clara, CA, USA, 2008. 3
Methirumangalath S., Parakkat A.D., Muthuganapathy R.: A unified approach towards reconstruction of a planar point set. Computers & Graphics 51 (2015), 90-97. International Conference Shape Modeling International. 2, 5
Amenta N., Bern M., Eppstein D.: The crust and the βskeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 2 (1998), 125-135. 1, 2, 3, 4, 5, 6
Edelsbrunner H., Kirkpatrick D., Seidel R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29, 4 (Jul 1983), 551-559. 1, 2, 5
Dey T.K., Mehlhorn K., Ramos E.A.: Curve reconstruction: Connecting dots with good reason. Computational Geometry 15, 4 (2000), 229-244. 2
Olsen L., Samavati F., Jorge J.: Naturasketch: Modeling from images and natural sketches. IEEE Comput. Graph. Appl. 31, 6 (Nov. 2011), 24-34. 3
11
2015; 34
2012
2000; 15
2015; 51
2015; 62
2001; 19
1998
2011; 31
2008
2011; 30
2015
2008; 41
1998; 60
2013
1983; 29
2011; 5
1999
e_1_2_6_20_2
Grimm C. (e_1_2_6_16_2) 2012
Peethambaran J. (e_1_2_6_21_2) 2015
Dey T.K. (e_1_2_6_6_2) 1999
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_19_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_22_2
e_1_2_6_11_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
References_xml – reference: Edelsbrunner H., Kirkpatrick D., Seidel R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29, 4 (Jul 1983), 551-559. 1, 2, 5
– reference: Peethambaran J., Muthuganapathy R.: A non-parametric approach to shape reconstruction from planar point sets through delaunay filtering. Computer-Aided Design 62 (2015), 164-175. 2, 6
– reference: Liu X., Wong T.-T., Heng P.-A.: Closure-aware sketch simplification. ACM Trans. Graph. 34, 6 (Oct. 2015), 168:1-168:10. 3
– reference: Gheibi A., Davoodi M., Javad A., Panahi F., Aghdam M.M., Asgaripour M., Mohades A.: Polygonal shape reconstruction in the plane. IET Computer Vision 5, 2 (March 2011), 97-106. 2, 5
– reference: Duckham M., Kulik L., Worboys M., Galton A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition 41, 10 (2008), 3224-3236. 2, 5
– reference: Dey T.K., Mehlhorn K., Ramos E.A.: Curve reconstruction: Connecting dots with good reason. Computational Geometry 15, 4 (2000), 229-244. 2
– reference: Methirumangalath S., Parakkat A.D., Muthuganapathy R.: A unified approach towards reconstruction of a planar point set. Computers & Graphics 51 (2015), 90-97. International Conference Shape Modeling International. 2, 5
– reference: Dey T.K., Wenger R.: Reconstructing curves with sharp corners. Computational Geometry 19, 2-3 (2001), 89-99. Combinatorial Curves and Surfaces. 2
– reference: Berg M. d., Cheong O., Kreveld M. v., Overmars M.: Computational Geometry: Algorithms and Applications, 3rd ed. Springer-Verlag TELOS, Santa Clara, CA, USA, 2008. 3
– reference: de Goes F., Cohen-Steiner D., Alliez P., Desbrun M.: An optimal transport approach to robust reconstruction and simplification of 2d shapes. Computer Graphics Forum 30, 5 (2011), 1593-1602. 2, 5
– reference: Figueiredo L.H., Miranda Gomes J.: Computational morphology of curves. The Visual Computer 11, 2, 105-112. 1, 2
– reference: Amenta N., Bern M., Eppstein D.: The crust and the βskeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 2 (1998), 125-135. 1, 2, 3, 4, 5, 6
– reference: Olsen L., Samavati F., Jorge J.: Naturasketch: Modeling from images and natural sketches. IEEE Comput. Graph. Appl. 31, 6 (Nov. 2011), 24-34. 3
– volume: 30
  start-page: 1593
  issue: 5
  year: 2011
  end-page: 1602
  article-title: An optimal transport approach to robust reconstruction and simplification of 2d shapes
  publication-title: Computer Graphics Forum
– volume: 15
  start-page: 229
  issue: 4
  year: 2000
  end-page: 244
  article-title: Curve reconstruction: Connecting dots with good reason
  publication-title: Computational Geometry
– volume: 51
  start-page: 90
  year: 2015
  end-page: 97
  article-title: A unified approach towards reconstruction of a planar point set
  publication-title: Computers & Graphics
– start-page: 121
  year: 2012
  end-page: 130
– volume: 19
  start-page: 89
  issue: 2
  year: 2001
  end-page: 3 99
  article-title: Reconstructing curves with sharp corners
  publication-title: Computational Geometry
– volume: 29
  start-page: 551
  issue: 4
  year: 1983
  end-page: 559
  article-title: On the shape of a set of points in the plane
  publication-title: IEEE Transactions on Information Theory
– start-page: 61
  year: 2013
  end-page: 68
– start-page: 207
  year: 1999
  end-page: 216
– volume: 60
  start-page: 125
  issue: 2
  year: 1998
  end-page: 135
  article-title: The crust and the βskeleton: Combinatorial curve reconstruction
  publication-title: Graphical Models and Image Processing
– volume: 62
  start-page: 164
  year: 2015
  end-page: 175
  article-title: A non‐parametric approach to shape reconstruction from planar point sets through delaunay filtering
  publication-title: Computer‐Aided Design
– year: 2008
– volume: 11
  start-page: 105
  issue: 2
  end-page: 112
  article-title: Computational morphology of curves
  publication-title: The Visual Computer
– volume: 5
  start-page: 97
  issue: 2
  year: 2011
  end-page: 106
  article-title: Polygonal shape reconstruction in the plane
  publication-title: IET Computer Vision
– volume: 41
  start-page: 3224
  issue: 10
  year: 2008
  end-page: 3236
  article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane
  publication-title: Pattern Recognition
– start-page: 893
  year: 1999
  end-page: 894
– start-page: 119
  year: 1998
  end-page: 132
– volume: 31
  start-page: 24
  issue: 6
  year: 2011
  end-page: 34
  article-title: Naturasketch: Modeling from images and natural sketches
  publication-title: IEEE Comput. Graph. Appl.
– year: 2015
– volume: 34
  start-page: 168:1
  issue: 6
  year: 2015
  end-page: 168:10
  article-title: Closure‐aware sketch simplification
  publication-title: ACM Trans. Graph.
– start-page: 893
  volume-title: Proceedings of the Tenth Annual ACM‐SIAM Symposium on Discrete Algorithms
  year: 1999
  ident: e_1_2_6_6_2
– ident: e_1_2_6_13_2
  doi: 10.1007/BF01889981
– volume-title: Pacific Graphics Short Papers
  year: 2015
  ident: e_1_2_6_21_2
– ident: e_1_2_6_8_2
  doi: 10.1016/S0925-7721(99)00051-6
– ident: e_1_2_6_17_2
  doi: 10.1145/2816795.2818067
– ident: e_1_2_6_2_2
  doi: 10.1006/gmip.1998.0465
– ident: e_1_2_6_9_2
  doi: 10.1145/2487381.2487382
– ident: e_1_2_6_12_2
  doi: 10.1109/TIT.1983.1056714
– ident: e_1_2_6_5_2
  doi: 10.1111/j.1467-8659.2011.02033.x
– start-page: 121
  volume-title: Proceedings of the International Symposium on Sketch‐Based Interfaces and Modeling
  year: 2012
  ident: e_1_2_6_16_2
– ident: e_1_2_6_3_2
  doi: 10.1007/978-3-540-77974-2
– ident: e_1_2_6_15_2
  doi: 10.1145/304893.304973
– ident: e_1_2_6_18_2
  doi: 10.1016/j.cag.2015.05.025
– ident: e_1_2_6_14_2
  doi: 10.1049/iet-cvi.2009.0079
– ident: e_1_2_6_7_2
  doi: 10.1016/j.patcog.2008.03.023
– ident: e_1_2_6_10_2
  doi: 10.1016/S0925-7721(01)00015-3
– ident: e_1_2_6_22_2
– ident: e_1_2_6_19_2
  doi: 10.1109/MCG.2011.84
– ident: e_1_2_6_20_2
  doi: 10.1016/j.cad.2014.12.002
– ident: e_1_2_6_4_2
– ident: e_1_2_6_11_2
  doi: 10.1007/BFb0054315
SSID ssj0004765
Score 2.240186
Snippet Given a planar point set sampled from an object boundary, the process of approximating the original shape is called curve reconstruction. In this paper, a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Algorithms
Analysis
Approximation
Boundaries
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Corners
Delaunay triangulation
I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Image processing systems
Reconstruction
Sketches
Skips
Studies
Topological manifolds
Title Crawl through Neighbors: A Simple Curve Reconstruction Algorithm
URI https://api.istex.fr/ark:/67375/WNG-5BPZKDTS-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12974
https://www.proquest.com/docview/1811464098
https://www.proquest.com/docview/1835563893
Volume 35
WOSCitedRecordID wos000383444500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o5oM-eBfnjSgivlS69ZJGX5zTKTjGcBsOX0LWJnM4O-m8_XxPurZuoCD41tJTCOeS853k5AvAoYb0TFBlMIvZhq2EawilTIP5luvRwLWlH5O41mi97nU6rDEDZ-lZmDE_RLbgpiMjnq91gIvuaCLI_Z46wWRF7VnIl9BvnRzkL--q7dr3sUjqOim1tyaNSYiFdCNP9vNUOsprzX5OYc1JxBqnnOrSvwa7DIsJ0iTlsWuswIwMV2Fhgn9wDc4rkfgYkOSuHlLXy6ToE6NTUibNvuYNJpW36F0SXaR-U82S8qA3jPqvj8_r0K5etSo3RnKlgiFs5tlG0VPS9buaFA1rX6w9hFRKMDNgFgYnGtTB-sUOZMkUlhIKNSgtU2JaF6YjuggNNiAXDkO5CcQRyqM409NisWsHPmWBfrVKwmUqwBxYgONUs9xP-Mb1tRcDntYdqBQeK6UAB5noy5hk4yeho9g8mYSInnRXGnX4ff2aOxeNh9vLVpN3CrCT2o8nATniCGQwJ2Ax6xVgP_uMoaT3R0Qoh29axtJ0aYjgcOyxNX8fDa9cV-OHrb-LbsM8wi133D64Azm0mtyFOf_9tT-K9hLv_QK4I_Da
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xijR4gLGBKB-bh6ZpL0EpceIY8UApK0yUCI2iVXux3MSGitKilK8_n7s0CUXaJCTeEuUiWffh-519_hngG0F6qYV1pCe5w60OHG2t68jYC0KRBNzEGYlrS0RR2OnI0ynYLc7CjPkhygU3ioxsvqYApwXpiSiPL-wWZivB30GFoxuhf1cOfjfPW8_nIkXgF9zexBqTMwtRJ0_584t8VCHVPr4Am5OQNcs5zYW3jfYDzOdYk9XHzrEIU2bwEeYmGAg_wV4j1Q99lt_WwyJaKEWvGO2wOjvrEXMwa9yl94ZRmfpMNsvq_Yth2ru9vF6C8-bPduPIyS9VcDSXIXdqoTVB3CVaNKx-sfrQxlot3UR6GJ5oUh8rGJ6YbVd7VltUofFcg4ldu77uIjhYhunBcGBWgPnahgLnelGrdXkSC5nQq7etA2kTzIJV-FGoVsU54zhdfNFXReWBSlGZUqqwWYrejGk2_iX0PbNPKaHTK-pLE776Ex0qf__07_FB-0x1qrBeGFDlITlSCGUwK2A5G1bha_kZg4l2SPTADO9IxiPCNMRwOPbMnP8fjWocNrOH1deLfoH3R-2Tlmr9io7XYBbBVzBuJlyHabSg2YCZ-P62N0o_5678BCj49Mo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7aZJTtYb_H0narNsboi4dTy5ZV9rAsqdPSYMLa0rAXodhSF5YlxWmy_vm7c2wnhRUGe7PxGcSdTveddPoO4ANBeqmFdaQnucOtDhxtrevIxAtCkQbcJDmJa0_EcTgYyP4GfC7vwiz5IaoNN_KMfL0mBzfXqV3z8uTKfsJoJfgm1Dk1kalBvfMtuuit7kWKwC-5vYk1pmAWokqe6uc78ahOqr29AzbXIWsec6In_zfap_C4wJqstZwcz2DDTJ7DozUGwhfwpZ3p32NWdOthMW2U4qyYHbIWOxsRczBrz7OFYZSmrshmWWt8Nc1GNz9-vYSL6Oi8fewUTRUczWXInWZoTZAMiRYNs1_MPrSxVks3lR66J5rUxwyGp-bA1Z7VFlVoPNdgYNeur4cIDl5BbTKdmNfAfG1DgWu9aDaHPE2ETOnVO9CBtClGwQbsl6pVScE4To0vxqrMPFApKldKA95XotdLmo2_CX3M7VNJ6Own1aUJX13GXeV_7X8_7ZyfqUEDdksDqsIlZwqhDEYFTGfDBryrPqMz0QmJnpjpnGQ8IkxDDIdjz815_2hUuxvlD9v_LroHW_1OpHon8ekOPETsFSxrCXehhgY0b-BBsrgZzbK3xUz-A8QL9EU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crawl+through+Neighbors%3A+A+Simple+Curve+Reconstruction+Algorithm&rft.jtitle=Computer+graphics+forum&rft.au=Parakkat%2C+Amal+Dev&rft.au=Muthuganapathy%2C+Ramanathan&rft.date=2016-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=5&rft.spage=177&rft.epage=186&rft_id=info:doi/10.1111%2Fcgf.12974&rft.externalDBID=10.1111%252Fcgf.12974&rft.externalDocID=CGF12974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon