Plasma chemistry and catalysis in gases and liquids

Filling the gap for a book that covers not only plasma in gases but also in liquids, this is all set to become the standard reference for this topic.It provides a broad-based overview of plasma-chemical and plasmacatalytic processes generated by electrical discharges in gases, liquids and gas/liquid...

Full description

Saved in:
Bibliographic Details
Main Authors: Parvulescu, Basile I., Magureanu, Monica, Lukes, Petr
Format: eBook Book
Language:English
Published: Weinheim Wiley-VCH 2012
John Wiley & Sons, Incorporated
Edition:2
Subjects:
ISBN:9783527330065, 3527330062, 9783527649532, 9783527649556, 3527649530, 9783527649525, 3527649557, 9783527649549, 3527649522, 3527649549
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • 7.3.1.2 Substituted Aromatic Hydrocarbons
  • 6 Elementary Chemical and Physical Phenomena in Electrical Discharge Plasma in Gas-Liquid Environments and in Liquids -- 6.1 Introduction -- 6.2 Physical Mechanisms of Generation of Plasma in Gas-Liquid Environments and Liquids -- 6.2.1 Plasma Generation in Gas Phase with Water Vapor -- 6.2.2 Plasma Generation in Gas-Liquid Systems -- 6.2.2.1 Discharge over Water -- 6.2.2.2 Discharge in Bubbles -- 6.2.2.3 Discharge with Droplets and Particles -- 6.2.3 Plasma Generation Directly in Liquids -- 6.3 Formation of Primary Chemical Species by Discharge Plasma in Contact with Water -- 6.3.1 Formation of Chemical Species in Gas Phase with Water Vapor -- 6.3.1.1 Gas-Phase Chemistry with Water Molecules -- 6.3.1.2 Gas-Phase Chemistry with Water Molecules, Ozone, and Nitrogen Species -- 6.3.2 Plasma-Chemical Reactions at Gas-Liquid Interface -- 6.3.3 Plasma Chemistry Induced by Discharge Plasmas in Bubbles and Foams -- 6.3.4 Plasma Chemistry Induced by Discharge Plasmas in Water Spray and Aerosols -- 6.4 Chemical Processes Induced by Discharge Plasma Directly in Water -- 6.4.1 Reaction Mechanisms of Water Dissociation by Discharge Plasma in Water -- 6.4.2 Effect of Solution Properties and Plasma Characteristics on Plasma Chemical Processes in Water -- 6.5 Concluding Remarks -- Acknowledgments -- References -- 7 Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and in Gas-Liquid Environments -- 7.1 Introduction -- 7.2 Aqueous-Phase Plasmachemical Reactions -- 7.2.1 Acid-Base Reactions -- 7.2.2 Oxidation Reactions -- 7.2.2.1 Hydroxyl Radical -- 7.2.2.2 Ozone -- 7.2.2.3 Hydrogen Peroxide -- 7.2.2.4 Peroxynitrite -- 7.2.3 Reduction Reactions -- 7.2.3.1 Hydrogen Radical -- 7.2.3.2 Perhydroxyl/Superoxide Radical -- 7.2.4 Photochemical Reactions -- 7.3 Plasmachemical Decontamination of Water -- 7.3.1 Aromatic Hydrocarbons -- 7.3.1.1 Phenol
  • 2.4.4.1 Intimate Mixed Oxides -- 2.4.4.2 Perovskites -- 2.4.5 Supported Oxides -- 2.4.5.1 Metal Oxides on Metal Foams and Metal Textiles -- 2.4.6 Metal Catalysts -- 2.4.6.1 Embedded Nanoparticles -- 2.4.6.2 Catalysts Prepared via Electroplating -- 2.4.6.3 Catalysts Prepared via Chemical Vapor Infiltration -- 2.4.6.4 Metal Wires -- 2.4.6.5 Supported Metals -- 2.4.6.6 Supported Noble Metals -- 2.5 Catalysts Forming -- 2.5.1 Tableting -- 2.5.2 Spherudizing -- 2.5.3 Pelletization -- 2.5.4 Extrusion -- 2.5.5 Foams -- 2.5.6 Metal Textile Catalysts -- 2.6 Regeneration of the Catalysts Used in Plasma Assisted Reactions -- 2.7 Plasma Produced Catalysts and Supports -- 2.7.1 Sputtering -- 2.8 Conclusions -- References -- 3 NOx Abatement by Plasma Catalysis -- 3.1 Introduction -- 3.1.1 Why Nonthermal Plasma-Assisted Catalytic NOx Remediation? -- 3.2 General deNOx Model over Supported Metal Cations and Role of NTP Reactor: ''Plasma-Assisted Catalytic deNOx Reaction'' -- 3.3 About the Nonthermal Plasma for NOx Remediation -- 3.3.1 The Nanosecond Pulsed DBD Reactor Coupled with a Catalytic deNOx Reactor: a Laboratory Scale Device Easily Scaled Up at Pilot Level -- 3.3.2 Nonthermal Plasma Chemistry and Kinetics -- 3.3.3 Plasma Energy Deposition and Energy Cost -- 3.4 Special Application of NTP to Catalytic Oxidation of Methane on Alumina-Supported Noble Metal Catalysts -- 3.4.1 Effect of DBD on the Methane Oxidation in Combined Heat Power (CHP) Conditions -- 3.4.1.1 Effect of Dielectric Material on Methane Oxidation -- 3.4.1.2 Effect of Water on Methane Conversion as a Function of Energy Deposition -- 3.4.2 Effect of Catalyst Composition on Methane Conversion as a Function of Energy Deposition -- 3.4.2.1 Effect of the Support on Plasma-Catalytic Oxidation of Methane
  • 4.1.2 Environmental and Health Problems Related to VOCs -- 4.1.3 Techniques for VOC Removal -- 4.1.3.1 Thermal Oxidation -- 4.1.3.2 Catalytic Oxidation -- 4.1.3.3 Photocatalysis -- 4.1.3.4 Adsorption -- 4.1.3.5 Absorption -- 4.1.3.6 Biofiltration -- 4.1.3.7 Condensation -- 4.1.3.8 Membrane Separation -- 4.1.3.9 Plasma and Plasma Catalysis -- 4.2 Plasma-Catalytic Hybrid Systems for VOC Decomposition -- 4.2.1 Nonthermal Plasma Reactors -- 4.2.2 Considerations on Process Selectivity -- 4.2.3 Types of Catalysts -- 4.2.4 Single-Stage Plasma-Catalytic Systems -- 4.2.5 Two-Stage Plasma-Catalytic Systems -- 4.3 VOC Decomposition in Plasma-Catalytic Systems -- 4.3.1 Results Obtained in Single-Stage Plasma-Catalytic Systems -- 4.3.2 Results Obtained in Two-Stage Plasma-Catalytic Systems -- 4.3.3 Effect of VOC Chemical Structure -- 4.3.4 Effect of Experimental Conditions -- 4.3.4.1 Effect of VOC Initial Concentration -- 4.3.4.2 Effect of Humidity -- 4.3.4.3 Effect of Oxygen Partial Pressure -- 4.3.4.4 Effect of Catalyst Loading -- 4.3.5 Combination of Plasma Catalysis and Adsorption -- 4.3.6 Comparison between Catalysis and Plasma Catalysis -- 4.3.7 Comparison between Single-Stage and Two-Stage Plasma Catalysis -- 4.3.8 Reaction By-Products -- 4.3.8.1 Organic By-Products -- 4.3.8.2 Inorganic By-Products -- 4.4 Concluding Remarks -- References -- 5 VOC Removal from Air by Plasma-Assisted Catalysis: Mechanisms, Interactions between Plasma and Catalysts -- 5.1 Introduction -- 5.2 Influence of the Catalyst in the Plasma Processes -- 5.2.1 Physical Properties of the Discharge -- 5.2.2 Reactive Species Production -- 5.3 Influence of the Plasma on the Catalytic Processes -- 5.3.1 Catalyst Properties -- 5.3.2 Adsorption -- 5.4 Thermal Activation -- 5.5 Plasma-Mediated Activation of Photocatalysts -- 5.6 Plasma-Catalytic Mechanisms -- References
  • 3.4.2.2 Effect of the Noble Metals on Plasma-Catalytic Oxidation of Methane in the Absence of Water in the Feed -- 3.4.2.3 Influence of Water on the Plasma-Assisted Catalytic Methane Oxidation in CHP Conditions -- 3.4.3 Conclusions -- 3.5 NTP-Assisted Catalytic NOx Remediation from Lean Model Exhausts Gases -- 3.5.1 Consumption of Oxygenates and RNOx from Plasma during the Reduction of NOx According to the Function F3: Plasma-Assisted Propene-deNOx in the Presence of Ce0.68Zr0.32O2 -- 3.5.1.1 Conversion of NOx and Total HC versus Temperature (Light-Off Plot) -- 3.5.1.2 GC/MS Analysis -- 3.5.2 The NTP is Able to Significantly Increase the deNOx Activity, Extend the Operating Temperature Window while Decreasing the Reaction Temperature -- 3.5.2.1 TPD of NO for Prediction of the deNOx Temperature over Alumina without Plasma -- 3.5.2.2 Coupling of a NTP Reactor with a Catalyst (Alumina) Reactor for Catalytic-Assisted deNOx -- 3.5.3 Concept of a ''Composite'' Catalyst Able to Extend the deNOx Operating Temperature Window -- 3.5.4 Propene-deNOx on the ''Al2O3 /// Rh-Pd/Ce0.68Zr0.32O2 /// Ag/Ce0.68Zr0.32O2'' Composite Catalyst -- 3.5.4.1 NOx and C3H6 Global Conversion versus Temperature -- 3.5.4.2 GC/MS Analysis of Gas Compounds at the Outlet of the Catalyst Reactor -- 3.5.5 NTP Assisted Catalytic deNOx Reaction in the Presence of a Multireductant Feed: NO (500 ppm), Decane (1100 ppmC), Toluene (450 ppmC), Propene (400 ppmC), and Propane (150 ppmC), O2 (8% vol), Ar (Balance) -- 3.5.5.1 Conversion of NOx and Global HC versus Temperature -- 3.5.5.2 GC/MS Analysis of Products at the Outlet of Associated Reactors -- 3.6 Conclusions -- Acknowledgments -- References -- 4 VOC Removal from Air by Plasma-Assisted Catalysis-Experimental Work -- 4.1 Introduction -- 4.1.1 Sources of VOC Emission in the Atmosphere
  • Intro -- Plasma Chemistry and Catalysis in Gases and Liquids -- Contents -- Preface -- List of Contributors -- 1 An Introduction to Nonequilibrium Plasmas at Atmospheric Pressure -- 1.1 Introduction -- 1.1.1 Nonthermal Plasmas and Electron Energy Distributions -- 1.1.2 Barrier and Corona Streamer Discharges - Discharges at Atmospheric Pressure -- 1.1.3 Other Nonthermal Discharge Types -- 1.1.3.1 Transition to Sparks, Arcs, or Leaders -- 1.1.4 Microscopic Discharge Mechanisms -- 1.1.4.1 Bulk Ionization Mechanisms -- 1.1.4.2 Surface Ionization Mechanisms -- 1.1.5 Chemical Activity -- 1.1.6 Diagnostics -- 1.2 Coronas and Streamers -- 1.2.1 Occurrence and Applications -- 1.2.2 Main Properties of Streamers -- 1.2.3 Streamer Initiation or Homogeneous Breakdown -- 1.2.4 Streamer Propagation -- 1.2.4.1 Electron Sources for Positive Streamers -- 1.2.5 Initiation Cloud, Primary, Secondary, and Late Streamers -- 1.2.6 Streamer Branching and Interaction -- 1.3 Glow Discharges at Higher Pressures -- 1.3.1 Introduction -- 1.3.2 Properties -- 1.3.3 Studies -- 1.3.4 Instabilities -- 1.4 Dielectric Barrier and Surface Discharges -- 1.4.1 Basic Geometries -- 1.4.2 Main Properties -- 1.4.3 Surface Discharges and Packed Beds -- 1.4.4 Applications of Barrier Discharges -- 1.5 Gliding Arcs -- 1.6 Concluding Remarks -- References -- 2 Catalysts Used in Plasma-Assisted Catalytic Processes: Preparation, Activation, and Regeneration -- 2.1 Introduction -- 2.2 Specific Features Generated by Plasma-Assisted Catalytic Applications -- 2.3 Chemical Composition and Texture -- 2.4 Methodologies Used for the Preparation of Catalysts for Plasma-Assisted Catalytic Reactions -- 2.4.1 Oxides and Oxide Supports -- 2.4.1.1 Al2O3 -- 2.4.1.2 SiO2 -- 2.4.1.3 TiO2 -- 2.4.1.4 ZrO2 -- 2.4.2 Zeolites -- 2.4.2.1 Metal-Containing Molecular Sieves -- 2.4.3 Active Oxides -- 2.4.4 Mixed Oxides