Spatial‐Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan‐Guizhou Plateau

Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 55; H. 6; S. 4688 - 4703
Hauptverfasser: Yang, Kun, Yu, Zhenyu, Luo, Yi, Zhou, Xiaolu, Shang, Chunxue
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington John Wiley & Sons, Inc 01.06.2019
Wiley
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau. Key Points Lakes are divided into Natural Lake, Semi‐urban Lake, and Urban Lake by K‐Means clustering algorithm LSWT warming rate is dependent on combinations of NSAT and human activities; the average rate of LSWT increased is faster than the rate at which air temperatures increased Human activity will become the main driving factor of LSWT increasing in the research area
AbstractList Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation ( R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau. Lakes are divided into Natural Lake, Semi‐urban Lake, and Urban Lake by K‐Means clustering algorithm LSWT warming rate is dependent on combinations of NSAT and human activities; the average rate of LSWT increased is faster than the rate at which air temperatures increased Human activity will become the main driving factor of LSWT increasing in the research area
Abstract Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau.
Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau.
Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau. Key Points Lakes are divided into Natural Lake, Semi‐urban Lake, and Urban Lake by K‐Means clustering algorithm LSWT warming rate is dependent on combinations of NSAT and human activities; the average rate of LSWT increased is faster than the rate at which air temperatures increased Human activity will become the main driving factor of LSWT increasing in the research area
Author Luo, Yi
Shang, Chunxue
Yu, Zhenyu
Zhou, Xiaolu
Yang, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Yang
  fullname: Yang, Kun
  organization: Yunnan Normal University
– sequence: 2
  givenname: Zhenyu
  orcidid: 0000-0002-9985-0165
  surname: Yu
  fullname: Yu, Zhenyu
  organization: Yunnan Normal University
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-6256-4595
  surname: Luo
  fullname: Luo, Yi
  email: luoyi861030@163.com
  organization: Yunnan Normal University
– sequence: 4
  givenname: Xiaolu
  surname: Zhou
  fullname: Zhou, Xiaolu
  organization: Yunnan Normal University
– sequence: 5
  givenname: Chunxue
  surname: Shang
  fullname: Shang, Chunxue
  organization: Ministry of Education, Yunnan Normal University
BookMark eNp9kc1qFEEUhQuJ4CS68wEK3Liwtf67aimjiQMDyiQ6uCqu9RNr7Kkaq7uVuPIR8ox5EnsyChLQ1YXDdw6ce47RUS45IPSYkueUMPOCEWrWK8Ikp-oemlEjRNOalh-hGSGCN5Sb9gE67vsNIVRI1c5QPd_BkKC7-Xl9Eba7UqHDH6CmSSwZl4iX8CXg87FGcAGvYQgV78FQYRhrwJA9Xgw9flXTt5Qv8Sm4odQep4w_jjlDnoLPxvTjcxnxu26yw_gQ3Y_Q9eHR73uC3p--vpi_aZZvzxbzl8sGhJGy8UQpKkzwWghDiOZEg9fAWeDRS6ZdpNG5qLloeeDeE9c6JkHDJxKckpSfoMUh1xfY2F1NW6hXtkCyt0KplxbqkFwXbGDccAZKEM2E8kEzGb1iXBIZwVMzZT09ZO1q-TqGfrDb1LvQdZBDGXvLWqoZV1Tt0Sd30E0Za56aWsaUELJlXEwUO1Culr6vIVqXhtunDxVSZymx-0nt35NOpmd3TH9a_QPnB_x76sLVf1m7Xs1X0xO05L8AhtGzVw
CitedBy_id crossref_primary_10_3389_fenvs_2022_995862
crossref_primary_10_1016_j_scs_2021_103247
crossref_primary_10_1007_s11356_021_12826_9
crossref_primary_10_3390_agriculture10050150
crossref_primary_10_3390_rs15112719
crossref_primary_10_1016_j_ejrh_2025_102789
crossref_primary_10_1016_j_jhazmat_2025_138622
crossref_primary_10_1016_j_measurement_2019_05_100
crossref_primary_10_1016_j_scitotenv_2024_173181
crossref_primary_10_3390_s22020464
crossref_primary_10_1016_j_ecoinf_2024_102779
crossref_primary_10_1016_j_envpol_2022_120210
crossref_primary_10_3390_w17111652
crossref_primary_10_1109_JSEN_2019_2941531
crossref_primary_10_1007_s11356_021_15621_8
crossref_primary_10_1007_s11356_020_12093_0
crossref_primary_10_1016_j_indcrop_2023_116285
crossref_primary_10_1007_s11356_024_34212_x
crossref_primary_10_1016_j_jenvman_2024_122075
crossref_primary_10_3390_agriculture12050612
crossref_primary_10_1016_j_ecolind_2022_109651
crossref_primary_10_1007_s11356_022_23608_2
crossref_primary_10_1016_j_jclepro_2024_142054
crossref_primary_10_3390_rs13224535
crossref_primary_10_1016_j_jenvman_2024_121926
crossref_primary_10_1016_j_scitotenv_2023_162686
crossref_primary_10_1016_j_envres_2021_111458
crossref_primary_10_1016_j_jenvman_2024_121494
crossref_primary_10_1007_s10661_019_7993_z
crossref_primary_10_1016_j_ecolind_2025_113802
crossref_primary_10_1016_j_jag_2021_102372
crossref_primary_10_3390_w14162554
crossref_primary_10_1016_j_jhydrol_2019_124488
crossref_primary_10_3390_su17041696
crossref_primary_10_3390_w14213398
crossref_primary_10_1016_j_jenvman_2022_115873
crossref_primary_10_1016_j_jenvman_2024_120627
crossref_primary_10_1007_s11356_021_13444_1
crossref_primary_10_3390_ijerph16224442
crossref_primary_10_1007_s00027_024_01091_w
crossref_primary_10_1007_s11356_021_13676_1
crossref_primary_10_1007_s11356_021_18126_6
crossref_primary_10_3390_ijerph16193602
crossref_primary_10_1016_j_envpol_2021_118633
crossref_primary_10_3390_land12020267
crossref_primary_10_1016_j_ecolind_2022_108582
crossref_primary_10_1016_j_envpol_2020_114878
crossref_primary_10_1016_j_jag_2022_103073
crossref_primary_10_1016_j_jclepro_2020_122689
crossref_primary_10_1007_s11356_021_14831_4
crossref_primary_10_1016_j_ejrh_2025_102475
crossref_primary_10_1080_10106049_2021_2009043
crossref_primary_10_4081_jlimnol_2020_1951
crossref_primary_10_1007_s12517_020_5087_4
crossref_primary_10_1016_j_scitotenv_2020_141366
crossref_primary_10_1002_ldr_3543
crossref_primary_10_3389_fenvs_2022_903046
crossref_primary_10_3389_fevo_2023_1291462
crossref_primary_10_3390_rs16173220
crossref_primary_10_1016_j_jhydrol_2025_134094
crossref_primary_10_1016_j_ecolind_2025_113307
crossref_primary_10_1080_10402381_2024_2432876
crossref_primary_10_1088_1755_1315_658_1_012005
crossref_primary_10_3390_su15031763
crossref_primary_10_1007_s11356_024_34932_0
crossref_primary_10_3390_ijerph191912142
crossref_primary_10_3390_rs12172706
crossref_primary_10_1109_ACCESS_2019_2935767
crossref_primary_10_1016_j_jhydrol_2025_132789
crossref_primary_10_1016_j_ejrh_2025_102584
crossref_primary_10_3390_su11247242
crossref_primary_10_1016_j_uclim_2022_101347
crossref_primary_10_1016_j_scs_2024_105345
crossref_primary_10_1088_2515_7620_acfd20
crossref_primary_10_1016_j_ecolind_2023_111005
crossref_primary_10_1007_s12517_020_05808_7
crossref_primary_10_1016_j_catena_2024_108090
crossref_primary_10_1016_j_jclepro_2020_120760
crossref_primary_10_3390_w12123557
crossref_primary_10_1016_j_ecolind_2024_112343
crossref_primary_10_1016_j_scitotenv_2023_168982
crossref_primary_10_3390_land11050688
crossref_primary_10_1007_s10661_021_08895_5
crossref_primary_10_3390_w15173096
crossref_primary_10_1007_s11769_020_1166_4
crossref_primary_10_1111_grow_12571
crossref_primary_10_1016_j_jag_2021_102344
crossref_primary_10_1016_j_scs_2020_102180
crossref_primary_10_1016_j_ecoinf_2024_102903
crossref_primary_10_3390_w14172611
crossref_primary_10_1016_j_scitotenv_2025_178695
crossref_primary_10_1029_2024WR038855
crossref_primary_10_1109_JSTARS_2021_3079357
crossref_primary_10_3390_ijerph16203952
crossref_primary_10_3390_w14101640
crossref_primary_10_1016_j_jhydrol_2021_127253
crossref_primary_10_1016_j_ecolind_2021_108491
crossref_primary_10_1111_geoj_12478
crossref_primary_10_3390_land12010033
crossref_primary_10_1016_j_scitotenv_2019_133612
crossref_primary_10_1080_17538947_2025_2506491
crossref_primary_10_1007_s11356_020_11302_0
crossref_primary_10_1007_s11356_024_33878_7
crossref_primary_10_3390_su11113047
crossref_primary_10_1016_j_ecoinf_2022_101692
crossref_primary_10_1016_j_scitotenv_2020_141174
crossref_primary_10_1016_j_jhydrol_2024_131672
crossref_primary_10_3390_ani12030240
crossref_primary_10_1007_s10661_019_7547_4
crossref_primary_10_1016_j_ecolind_2024_112834
crossref_primary_10_1109_JSTARS_2021_3106038
crossref_primary_10_3390_land12030547
crossref_primary_10_1016_j_ecolind_2024_112165
crossref_primary_10_3390_w12123491
crossref_primary_10_1016_j_ecolind_2022_108705
crossref_primary_10_1016_j_scitotenv_2023_166303
crossref_primary_10_3390_rs13193972
crossref_primary_10_1016_j_scitotenv_2019_133983
crossref_primary_10_1016_j_scitotenv_2020_140191
Cites_doi 10.1007/s00382‐014‐2449‐1
10.1002/joc.4646
10.1038/sdata.2015.8
10.1016/j.scitotenv.2017.12.119
10.1016/j.rse.2010.01.027
10.1002/2013WR014975
10.1016/j.watres.2015.02.052
10.1016/j.watres.2012.05.011
10.1007/s00382‐014‐2168‐7
10.1016/j.rse.2012.08.004
10.1007/s10750‐013‐1550‐5
10.1007/s00382‐015‐2611‐4
10.1016/0043‐1354(95)00286‐3
10.1007/s00382‐017‐4052‐8
10.1007/s10584‐017‐1966‐4
10.1002/joc.4299
10.1002/2017JD027661
10.1007/s10584‐005‐9076‐0
10.1007/s00382‐013‐2029‐9
10.1002/joc.1805
10.1080/01431161.2018.1471545
10.1038/sdata.2017.95
10.1002/2015GL066235
10.1007/s00382‐012‐1384‐2
10.1038/nature19798
10.1126/science.289.5477.284
10.1080/10807039.2016.1278518
10.1126/science.287.5459.1770
10.1126/science.aaa5632
10.1038/s41598‐017‐04058‐0
10.1038/nature.2015.19034
10.1002/joc.3554
10.1038/nature09186
10.1016/j.scs.2018.10.049
10.1080/01431161.2018.1516312
10.1371/journal.pone.0152466
10.1016/j.rse.2017.02.007
10.1016/j.watres.2012.02.014
10.1007/s11356‐018‐2967‐1
10.1071/MF16042
10.18307/2018.0421
10.1016/j.rse.2013.05.014
10.1007/s00382-017-3755-1
10.1007/s10584‐014‐1087‐2
10.1016/j.enbuild.2017.09.046
10.1002/2015GL064097
10.1002/hyp.7063
10.1071/MF16252
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright John Wiley & Sons, Inc. 2019
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
– notice: Copyright John Wiley & Sons, Inc. 2019
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2019WR025316
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 4703
ExternalDocumentID oai_doaj_org_article_e23932a6408246de825fd623505fad19
10_1029_2019WR025316
WRCR23985
Genre article
GeographicLocations China
Yunnan China
GeographicLocations_xml – name: Yunnan China
– name: China
GrantInformation_xml – fundername: China High Technology Research and Development Program 863
  funderid: 2012AA121402
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 41761084
– fundername: National Natural Science Foundation of China
  funderid: 41761084
– fundername: National Natural Science Foundation of China-Yunnan Joint Fund
  funderid: 2016FD020
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4955-d066149ed8449008308ad8a32e3fd528cf1fccf83473e3dd0c7c25a8ab0ec6513
IEDL.DBID DOA
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477616900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Tue Oct 07 09:26:44 EDT 2025
Fri Sep 05 17:28:40 EDT 2025
Sat Oct 18 23:52:12 EDT 2025
Sat Nov 29 07:16:54 EST 2025
Tue Nov 18 22:41:04 EST 2025
Wed Jan 22 17:23:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4955-d066149ed8449008308ad8a32e3fd528cf1fccf83473e3dd0c7c25a8ab0ec6513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6256-4595
0000-0002-9985-0165
OpenAccessLink https://doaj.org/article/e23932a6408246de825fd623505fad19
PQID 2264457234
PQPubID 105507
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e23932a6408246de825fd623505fad19
proquest_miscellaneous_2718236169
proquest_journals_2264457234
crossref_citationtrail_10_1029_2019WR025316
crossref_primary_10_1029_2019WR025316
wiley_primary_10_1029_2019WR025316_WRCR23985
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 35
2015; 2
2017; 7
2017; 4
2010; 466
2013; 40
2015; 75
2018; 123
2017; 68
2017; 192
1996; 30
2018; 40
2002
2015; 348
2018; 23
2017; 155
2012; 126
2016; 36
2014; 731
2005; 68
2018; 25
2009; 29
2014; 43
1999
2016; 11
2015; 45
2010; 22
2018; 39
2000; 289
2013; 33
2016; 538
2019; 44
2015; 42
2013; 136
2018; 30
2018; 51
2015
2018; 50
2000; 287
2017; 142
2012; 46
2012; 116
2014; 50
2016; 48
2016; 46
2014; 124
2017; 624
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Dong B. (e_1_2_7_7_1) 2016; 48
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 42
  start-page: 4981
  year: 2015
  end-page: 4988
  article-title: Morphometry and average temperature affect lake stratification responses to climate change
  publication-title: Geophysical Research Letters
– volume: 289
  start-page: 284
  issue: 5477
  year: 2000
  end-page: 288
  article-title: Global water resources: vulnerability from climate change and population growth
  publication-title: Science
– volume: 123
  start-page: 3087
  year: 2018
  end-page: 3098
  article-title: Intralake heterogeneity of thermal responses to climate change: a study of large northern hemisphere lakes
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 39
  start-page: 7789
  issue: 22
  year: 2018
  end-page: 7805
  article-title: An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries
  publication-title: International Journal of Remote Sensing
– volume: 50
  start-page: 2513
  issue: 7‐8
  year: 2018
  end-page: 2536
  article-title: A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900
  publication-title: Climate Dynamics
– volume: 126
  start-page: 1
  year: 2012
  end-page: 11
  article-title: Using the NOAA Advanced Very High Resolution Radiometer to characterise temporal and spatial trends in water temperature of large European lakes
  publication-title: Remote Sensing of Environment
– volume: 136
  start-page: 374
  year: 2013
  end-page: 385
  article-title: Mapping surface temperature in a hyper‐saline lake and investigating the effect of temperature distribution on the lake evaporation
  publication-title: Remote Sensing of Environment
– volume: 25
  start-page: 29643
  issue: 29
  year: 2018
  end-page: 29653
  article-title: Dianchi lake watershed impervious surface area dynamics and their impact on lake water quality from 1988 to 2017
  publication-title: Environmental Science and Pollution Research
– volume: 30
  start-page: 2835
  issue: 12
  year: 1996
  end-page: 2852
  article-title: Long‐term lake water quality predictors
  publication-title: Water Research
– volume: 48
  start-page: 1
  issue: 5‐6
  year: 2016
  end-page: 18
  article-title: Understanding the rapid summer warming and changes in temperature extremes since the mid‐1990s over western Europe
  publication-title: Climate Dynamics
– volume: 4
  year: 2017
  article-title: A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015
  publication-title: Scientific Data
– volume: 22
  start-page: 4587
  issue: 23
  year: 2010
  end-page: 4599
  article-title: Monotonic trend and abrupt changes for major climate variables in the headwater catchment of the yellow river basin
  publication-title: Hydrological Processes
– volume: 68
  start-page: 331
  issue: 3
  year: 2005
  end-page: 353
  article-title: Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, Lower Madison River, MT.
  publication-title: Climatic Change
– volume: 731
  start-page: 19
  issue: 1
  year: 2014
  end-page: 29
  article-title: Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios
  publication-title: Hydrobiologia
– volume: 29
  start-page: 1430
  issue: 10
  year: 2009
  end-page: 1438
  article-title: Dry spell trend analysis of Isfahan province, Iran
  publication-title: International Journal of Climatology
– volume: 50
  start-page: 5131
  year: 2014
  end-page: 5140
  article-title: A novel method for estimating the onset of thermal stratification in lakes from surface water measurements
  publication-title: Water Resources Research
– volume: 116
  start-page: 211
  issue: 2
  year: 2012
  end-page: 225
  article-title: Long‐term accuracy assessment of land surface temperatures derived from the Advanced Along‐Track Scanning Radiometer
  publication-title: Remote Sensing of Environment
– volume: 42
  start-page: 10,773
  year: 2015
  end-page: 10,781
  article-title: Rapid and highly variable warming of lake surface waters around the globe
  publication-title: Geophysical Research Letters
– volume: 44
  start-page: 416
  year: 2019
  end-page: 427
  article-title: An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on Landsat 8 image
  publication-title: Sustainable Cities and Society
– volume: 40
  start-page: 573
  issue: 2
  year: 2018
  end-page: 592
  article-title: A time‐series analysis of urbanization‐induced impervious surface area extent in the Dianchi Lakewatershed from 1988–2017
  publication-title: International Journal of Remote Sensing
– volume: 75
  start-page: 249
  year: 2015
  end-page: 258
  article-title: Dissolved oxygen stratification and response to thermal structure and long‐term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China)
  publication-title: Water Research
– volume: 51
  start-page: 2841
  issue: 7‐8
  year: 2018
  end-page: 2855
  article-title: Sensitivity of the atmospheric water cycle to corrections of the sea surface temperature bias over southern Africa in a regional climate model
  publication-title: Climate Dynamics
– volume: 40
  start-page: 443
  issue: 1‐2
  year: 2013
  end-page: 464
  article-title: Potential for added value in temperature simulated by high‐resolution nested rcms in present climate and in the climate change signal
  publication-title: Climate Dynamics
– volume: 45
  start-page: 1965
  issue: 7‐8
  year: 2015
  end-page: 1982
  article-title: Estimating the regional climate responses over river basins to changes in tropical sea surface temperature patterns
  publication-title: Climate Dynamics
– volume: 46
  start-page: 2591
  issue: 8
  year: 2012
  end-page: 2604
  article-title: Effects of local climate and hydrological conditions on the thermal regime of a reservoir at tropic of cancer, in southern China
  publication-title: Water Research
– volume: 466
  start-page: 478
  issue: 7305
  year: 2010
  end-page: 481
  article-title: Temperature‐controlled organic carbon mineralization in lake sediments
  publication-title: Nature
– year: 2015
– volume: 142
  start-page: 505
  issue: 3‐4
  year: 2017
  end-page: 520
  article-title: Warming of central European lakes and their response to the 1980s climate regime shift
  publication-title: Climatic Change
– volume: 624
  start-page: 859
  year: 2017
  end-page: 871
  article-title: Spatial and temporal variations in the relationship between lake water surface temperatures and water quality ‐ a case study of Dianchi lake
  publication-title: Science of the Total Environment
– volume: 30
  start-page: 1083
  issue: 4
  year: 2018
  end-page: 1096
  article-title: Remote sensing monitoring and temporal‐spatial analysis of surface water body area changes of lakes on the Yunnan‐Guizhou Plateau over the past 30 years[J]
  publication-title: Journal of Lake Sciences
– volume: 2
  start-page: 150008
  year: 2015
  article-title: A global database of lake surface temperatures collected by in situ and satellite methods from 1985‐2009
  publication-title: Scientific Data
– volume: 7
  start-page: 4130
  issue: 1
  year: 2017
  article-title: Amplified surface temperature response of cold, deep lakes to inter‐annual air temperature variability
  publication-title: Scientific Reports
– volume: 46
  start-page: 4235
  issue: 13
  year: 2012
  end-page: 4245
  article-title: Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration
  publication-title: Water research
– volume: 68
  start-page: 1752
  issue: 9
  year: 2017
  end-page: 1763
  article-title: Determination of the physical drivers of Zostera seagrass distribution using a spatial autoregressive lag model
  publication-title: Marine and Freshwater Research
– volume: 23
  start-page: 751
  issue: 4
  year: 2018
  end-page: 766
  article-title: Study on ecological protection and rehabilitation technology of a reservoir‐type water source in the northeastern region of China
  publication-title: Human and Ecological Risk Assessment: An International Journal
– volume: 33
  start-page: 1873
  issue: 8
  year: 2013
  end-page: 1883
  article-title: The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China
  publication-title: International Journal of Climatology
– volume: 11
  issue: 3
  year: 2016
  article-title: Diel surface temperature range scales with lake size
  publication-title: PLOS ONE
– volume: 155
  start-page: 282
  year: 2017
  end-page: 295
  article-title: Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: case study of Shenyang, China
  publication-title: Energy and Buildings
– volume: 46
  start-page: 765
  issue: 3‐4
  year: 2016
  end-page: 778
  article-title: Using multi‐model ensembles to improve the simulated effects of land use/cover change on temperature: a case study over northeast China
  publication-title: Climate Dynamics
– volume: 43
  start-page: 3071
  issue: 11
  year: 2014
  end-page: 3089
  article-title: Recent climatic trends in the tropical Atlantic
  publication-title: Climate Dynamics
– volume: 192
  start-page: 98
  year: 2017
  end-page: 113
  article-title: Climate‐ and human‐induced changes in suspended particulate matter over Lake Hongze on short and long timescales
  publication-title: Remote Sensing of Environment
– volume: 43
  start-page: 2043
  issue: 7‐8
  year: 2014
  end-page: 2059
  article-title: A dissection of the surface temperature biases in the community earth system model
  publication-title: Climate Dynamics
– volume: 124
  start-page: 301
  issue: 1‐2
  year: 2014
  end-page: 315
  article-title: Lake surface temperatures in a changing climate: a global sensitivity analysis
  publication-title: Climatic Change
– year: 2002
– volume: 538
  start-page: 226
  issue: 7624
  year: 2016
  end-page: 228
  article-title: Evolution of global temperature over the past two million years
  publication-title: Nature
– volume: 35
  start-page: 4464
  issue: 15
  year: 2015
  end-page: 4479
  article-title: Global climatology of surface water temperatures of large lakes by remote sensing
  publication-title: International Journal of Climatology
– volume: 348
  start-page: 1469
  issue: 6242
  year: 2015
  end-page: 1472
  article-title: Climate change. Possible artifacts of data biases in the recent global surface warming hiatus
  publication-title: Science
– volume: 36
  start-page: 4497
  issue: 14
  year: 2016
  end-page: 4511
  article-title: Spatial distribution and temporal variation of reference evapotranspiration in the three gorges reservoir area during 1960‐2013
  publication-title: International Journal of Climatology
– volume: 287
  start-page: 1770
  issue: 5459
  year: 2000
  end-page: 1774
  article-title: Global biodiversity scenarios for the year 2100
  publication-title: Science
– volume: 68
  start-page: 1830
  issue: 10
  year: 2017
  end-page: 1844
  article-title: Land use, soil properties and weather conditions influence nutrient fluxes into a deep oligotrophic lake
  publication-title: Marine Freshwater Research
– year: 1999
– ident: e_1_2_7_33_1
  doi: 10.1007/s00382‐014‐2449‐1
– ident: e_1_2_7_21_1
  doi: 10.1002/joc.4646
– ident: e_1_2_7_30_1
  doi: 10.1038/sdata.2015.8
– ident: e_1_2_7_48_1
  doi: 10.1016/j.scitotenv.2017.12.119
– ident: e_1_2_7_5_1
  doi: 10.1016/j.rse.2010.01.027
– ident: e_1_2_7_42_1
  doi: 10.1002/2013WR014975
– ident: e_1_2_7_3_1
– ident: e_1_2_7_50_1
  doi: 10.1016/j.watres.2015.02.052
– ident: e_1_2_7_13_1
  doi: 10.1016/j.watres.2012.05.011
– ident: e_1_2_7_29_1
  doi: 10.1007/s00382‐014‐2168‐7
– ident: e_1_2_7_25_1
  doi: 10.1016/j.rse.2012.08.004
– ident: e_1_2_7_4_1
– ident: e_1_2_7_6_1
  doi: 10.1007/s10750‐013‐1550‐5
– ident: e_1_2_7_49_1
  doi: 10.1007/s00382‐015‐2611‐4
– ident: e_1_2_7_12_1
  doi: 10.1016/0043‐1354(95)00286‐3
– ident: e_1_2_7_38_1
  doi: 10.1007/s00382‐017‐4052‐8
– ident: e_1_2_7_40_1
  doi: 10.1007/s10584‐017‐1966‐4
– ident: e_1_2_7_16_1
  doi: 10.1002/joc.4299
– ident: e_1_2_7_44_1
  doi: 10.1002/2017JD027661
– ident: e_1_2_7_8_1
  doi: 10.1007/s10584‐005‐9076‐0
– ident: e_1_2_7_24_1
  doi: 10.1007/s00382‐013‐2029‐9
– ident: e_1_2_7_22_1
  doi: 10.1002/joc.1805
– ident: e_1_2_7_27_1
  doi: 10.1080/01431161.2018.1471545
– ident: e_1_2_7_35_1
  doi: 10.1038/sdata.2017.95
– ident: e_1_2_7_23_1
  doi: 10.1002/2015GL066235
– ident: e_1_2_7_18_1
  doi: 10.1007/s00382‐012‐1384‐2
– ident: e_1_2_7_32_1
  doi: 10.1038/nature19798
– ident: e_1_2_7_34_1
  doi: 10.1126/science.289.5477.284
– ident: e_1_2_7_20_1
  doi: 10.1080/10807039.2016.1278518
– ident: e_1_2_7_26_1
  doi: 10.1126/science.287.5459.1770
– ident: e_1_2_7_14_1
  doi: 10.1126/science.aaa5632
– ident: e_1_2_7_43_1
  doi: 10.1038/s41598‐017‐04058‐0
– ident: e_1_2_7_39_1
  doi: 10.1038/nature.2015.19034
– ident: e_1_2_7_46_1
  doi: 10.1002/joc.3554
– ident: e_1_2_7_9_1
  doi: 10.1038/nature09186
– ident: e_1_2_7_10_1
  doi: 10.1016/j.scs.2018.10.049
– ident: e_1_2_7_47_1
  doi: 10.1080/01431161.2018.1516312
– ident: e_1_2_7_41_1
  doi: 10.1371/journal.pone.0152466
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rse.2017.02.007
– ident: e_1_2_7_36_1
  doi: 10.1016/j.watres.2012.02.014
– ident: e_1_2_7_19_1
  doi: 10.1007/s11356‐018‐2967‐1
– ident: e_1_2_7_37_1
  doi: 10.1071/MF16042
– ident: e_1_2_7_45_1
  doi: 10.18307/2018.0421
– ident: e_1_2_7_31_1
  doi: 10.1016/j.rse.2013.05.014
– volume: 48
  start-page: 1
  issue: 5
  year: 2016
  ident: e_1_2_7_7_1
  article-title: Understanding the rapid summer warming and changes in temperature extremes since the mid‐1990s over western Europe
  publication-title: Climate Dynamics
– ident: e_1_2_7_17_1
  doi: 10.1007/s00382-017-3755-1
– ident: e_1_2_7_28_1
  doi: 10.1007/s10584‐014‐1087‐2
– ident: e_1_2_7_52_1
  doi: 10.1016/j.enbuild.2017.09.046
– ident: e_1_2_7_15_1
  doi: 10.1002/2015GL064097
– ident: e_1_2_7_51_1
  doi: 10.1002/hyp.7063
– ident: e_1_2_7_11_1
  doi: 10.1071/MF16252
SSID ssj0014567
Score 2.6144543
Snippet Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes...
Abstract Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4688
SubjectTerms Air temperature
Biodiversity
Classification
climate
Climate and human activity
Climate change
climate warming
Clustering
data collection
Environmental impact
Geographical distribution
Geographical locations
Global warming
Human factors
Human influences
humans
K‐Means clustering method
lake surface water temperature
lake type
Lake water
Lakes
Marine environment
multicultural diversity
Multiculturalism & pluralism
Periodic variations
Periodicity
plateau lake
Plateaus
population growth
Surface temperature
Surface water
surface water temperature
Surface-air temperature relationships
Temperature effects
Temporal variations
Urbanization
water
Water temperature
Watersheds
SummonAdditionalLinks – databaseName: Wiley Online Library
  dbid: WIN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQhQQXylNsW5CR4AQRiZ2Xj6WwUAmtqqWw5RT5SVeskirZINETP4HfyC9hxvFG2wNIiFsUjy0rnsl847G_IeSpKTMjM2sjpjiLEEFHIrcqUiw2BgCIy430xSaK2aw8OxMnYcMN78IM_BDjhhtahv9fo4FL1QWyAeTIBM8lFnNw2TxBxu0kTbCAweJ4NiYRABsUmwQzAp1w7h26v9zufMUjeeL-K2hzG7N6pzPd_d_p3ia3Atykh4N-3CHXbH2X3NjcRu7gOVRBP_9-j7RYnxj08dePn6cDY9WKfoJY2i8ebRx9L79a-qFvndSWLgClthQFAy8zlbWhx-uOvm6XuE1Bp0MtH7qs6WfAybKGgd_2y8vzpqcnK-gu-_vk4_TN6dG7KNRkiCSEUllkYnTowpoyTQXit7iUppScWe5MxkrtEqe1K3lacMuNiXWhWSZLqWKr8yzhD8hO3dT2IaFK5AUDtCY4xmRaKVUoCb1kahUEUW5Cnm_WpdKBsBzrZqwqnzhnotr-phPybJS-GIg6_iD3Cpd4lEF6bf-iab9UwVori8RwTOZYjTvNjYUw2hkAigAXnTSJmJCDjYJUwea7Cq8kp1nBeDohT8ZmsFZMwcjaNj3IABRAupschnjh1eWvk60W86M5MjRme_8mvk9uYsNwpu2A7Kzb3j4i1_W39bJrH3sz-Q0DAxGO
  priority: 102
  providerName: Wiley-Blackwell
Title Spatial‐Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan‐Guizhou Plateau
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR025316
https://www.proquest.com/docview/2264457234
https://www.proquest.com/docview/2718236169
https://doaj.org/article/e23932a6408246de825fd623505fad19
Volume 55
WOSCitedRecordID wos000477616900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yCnoRnzi6LhH0pI09Sb9y1F1HF5ZhGXed9dRUXuzg0CM904Ke_An-Rn-JVen0MB7Ui7d-VIeQVKivupLvY-yprXILuXOJ0FIkhKATVTidaJFaiwDEFxaC2EQ5nVYXF-p0R-qL9oT19MD9wL10xNEloCBh5KywDjMabzFmY-T2YAPhp0DUMyRTsX6AsKAcasuEceKW91QozPbHaj7DUC9J43wnGAXO_t-A5i5cDfFmcovdjECRv-o7eJtdcc0ddn04R7zG66hffvn1LmtJWRg96ef3H2c919SSf8AsOAw7X3l-Ap8cf9-1Hozjc8SXLSfDyKjMobH8eLPmR-2CfjDwSa_CwxcN_4gIFxps-G23-Ha56vjpEj-H7h47n7w5O3yXRDWFBDAJyhObUihWzlZZpgh5pRXYCqRw0ttcVMaPvTG-klkpnbQ2NaUROVSgU2eKfCzvs71m1bgHjGtVlAJxlpKUTRmtdakBv4LMaUx__Ig9H4a1NpFqnBQvlnUoeQtV707CiD3bWn_uKTb-YPeaZmhrQ8TY4QG6Sx3dpf6Xu4zY_jC_dVyt65oOE2d5KWQ2Yk-2r3GdUfEEGrfq0AaDOBHVFNjEi-AXf-1sPZ8dzohbMX_4P7r9iN2g1vs9avtsb9N27jG7Zr5sFuv2IPj-Abt6NJucn-Dd_Hj6CxRwBsE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgQVouvBGFBYwEJ4hI7bx8hIWyFaValUKXk-UnW1ElKG2Q4MRP4DfyS5hJ3Kh7AAlxi5KxFcWezDce-_sIeWSL1KrUuYhpziJE0JHInI40i60FAOIzq1qxiXw6LU5OxHHQOcWzMB0_RL_ghp7R_q_RwXFBOrANIEkmhC6xmEHM5sPsPLmQANZA7YbFeNqXEQAd5NsSM0KdsPMd2j_bbX0mJrXU_Wfw5i5qbcPO6Mp_v_BVcjkgTvq8myLXyDlXXif72wPJa7gOQuin326QGiWKYUr--vFz3pFWregHSKfb8aOVpxP12dF3Te2VcXQBQLWmaBiomakqLR1v1vRlvcSVCjrq5HzosqQfASqrEjp-3Sy_n1YNPV5Bc9XcJO9Hr-aHR1GQZYgUZFNpZGOM6cLZIkkEQri4ULZQnDnubcoK44feGF_wJOeOWxub3LBUFUrHzmTpkN8ie2VVutuEapHlDACb4JiWGa11rhW0UonTkEf5AXmyHRhpAmc5SmesZFs7Z0LuftMBedxbf-m4Ov5g9wLHuLdBhu32RlV_ksFhpUNuOKYyFOROMusgk_YWsCIgRq_sUAzIwXaGyOD2a4mnkpM0ZzwZkIf9Y3BYrMKo0lUN2AAaQMabDLp42s6Xv76sXMwOZ0jSmN75N_MHZP9o_nYiJ-Ppm7vkEhp1W9wOyN6mbtw9ctF83SzX9f3WZ34DHb4VrA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagi4ALb0RhASPBCSJSOy8fYUtgRVVVZZcup8hPtqJKVmmDBCd-Ar-RX8JM4kbdA0iIW5SMrSieyXzjx_cR8tRksZGxtQFTnAWIoAORWBUoFhoDAMQlRrZiE-l0mp2ciJnXOcWzMB0_RD_hhpHR_q8xwO2ZcZ5tAEkyIXWJxRxyNh8lF8lehDoyA7I3nufHk34hAfBBul1kRrDj975DDy9325_LSi15_znEuYtb28STX__vV75BrnnMSV91TnKTXLDlLXJleyR5DddeCv30221So0gxOOWvHz-POtqqFf0IBXU7grRydCK_WPqhqZ3Uli4AqtYUDT05M5WloYebNR3XS5yroHkn6EOXJf0EYFmW0PHbZvn9tGrobAXNZXOHHOdvjg7eBV6YIZBQT8WBCTGrC2uyKBII4sJMmkxyZrkzMcu0GzmtXcajlFtuTKhTzWKZSRVancQjfpcMyqq09whVIkkZQDbBsTDTSqlUSWglI6ugknJD8nw7MIX2rOUonrEq2tVzJordbzokz3rrs46t4w92r3GMexvk2G5vVPXnwodsYZEdjskEJbmjxFiopZ0BtAiY0UkzEkOyv_WQwgf-usBzyVGcMh4NyZP-MYQsrsPI0lYN2AAeQM6bBLp40frLX1-2WMwP5kjTGN__N_PH5PJsnBeTw-n7B-Qq2nR73PbJYFM39iG5pL9uluv6kQ-a3_F4FlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%90Temporal+Variation+of+Lake+Surface+Water+Temperature+and+Its+Driving+Factors+in+Yunnan%E2%80%90Guizhou+Plateau&rft.jtitle=Water+resources+research&rft.au=Yang%2C+Kun&rft.au=Yu%2C+Zhenyu&rft.au=Luo%2C+Yi&rft.au=Zhou%2C+Xiaolu&rft.date=2019-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=55&rft.issue=6&rft.spage=4688&rft.epage=4703&rft_id=info:doi/10.1029%2F2019WR025316&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon