Spatial‐Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan‐Guizhou Plateau
Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanizat...
Gespeichert in:
| Veröffentlicht in: | Water resources research Jg. 55; H. 6; S. 4688 - 4703 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington
John Wiley & Sons, Inc
01.06.2019
Wiley |
| Schlagworte: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau.
Key Points
Lakes are divided into Natural Lake, Semi‐urban Lake, and Urban Lake by K‐Means clustering algorithm
LSWT warming rate is dependent on combinations of NSAT and human activities; the average rate of LSWT increased is faster than the rate at which air temperatures increased
Human activity will become the main driving factor of LSWT increasing in the research area |
|---|---|
| AbstractList | Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation ( R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau.
Lakes are divided into Natural Lake, Semi‐urban Lake, and Urban Lake by K‐Means clustering algorithm LSWT warming rate is dependent on combinations of NSAT and human activities; the average rate of LSWT increased is faster than the rate at which air temperatures increased Human activity will become the main driving factor of LSWT increasing in the research area Abstract Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau. Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau. Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes generally reveals an upward trend. With a continuous intensification of human activities and a rapid expansion of the impervious surface, urbanization has exerted an increasing impact on the environment, so the impact of human activities on LSWT cannot be ignored. Because of the special geographical location, the change of LSWT in plateau lakes has important impacts on climate diversity, biodiversity, and cultural diversity. As a result, it is critical to monitor and model the variation characteristics of LSWT in the plateau area. Based on the data set of natural factors representing climate change and human factors representing human activities, this study proposes a classification of lake types by K‐Means clustering method. At watershed scale, 11 lakes in the study area are divided into three types: Natural Lake, Semi‐urban Lake, and Urban Lake (UL). Based on this classification, the variation characteristics of LSWT for the eleven lakes from 2001 to 2017 are analyzed. The causal relationship and contribution of climate change and human activities to the rise of LSWT are discussed. Results show that (1) from 2001 to 2017, the annual mean of LSWT‐day/night and near‐surface air temperature in the 11 lakes show a warming trend, a significant correlation (R = 0.82, α = 0.0164 < 0.5) and a same periodicity, which indicates that near‐surface air temperature is one of the main influencing factors of LSWT warming in Yunnan‐Guizhou Plateau. (2) LSWT warming trend of UL is more obvious than those of Semi‐urban Lake and Natural Lake, indicating that human activities have more significant impact on LSWT of UL. The main driving factors are the impervious surface expansion and population increase. (3) The influence of human activities on the LSWT in Yunnan‐Guizhou Plateau is becoming more and more significant, and it is also the main factor in causing the deterioration of lake water environment in Yunnan‐Guizhou Plateau. Key Points Lakes are divided into Natural Lake, Semi‐urban Lake, and Urban Lake by K‐Means clustering algorithm LSWT warming rate is dependent on combinations of NSAT and human activities; the average rate of LSWT increased is faster than the rate at which air temperatures increased Human activity will become the main driving factor of LSWT increasing in the research area |
| Author | Luo, Yi Shang, Chunxue Yu, Zhenyu Zhou, Xiaolu Yang, Kun |
| Author_xml | – sequence: 1 givenname: Kun surname: Yang fullname: Yang, Kun organization: Yunnan Normal University – sequence: 2 givenname: Zhenyu orcidid: 0000-0002-9985-0165 surname: Yu fullname: Yu, Zhenyu organization: Yunnan Normal University – sequence: 3 givenname: Yi orcidid: 0000-0002-6256-4595 surname: Luo fullname: Luo, Yi email: luoyi861030@163.com organization: Yunnan Normal University – sequence: 4 givenname: Xiaolu surname: Zhou fullname: Zhou, Xiaolu organization: Yunnan Normal University – sequence: 5 givenname: Chunxue surname: Shang fullname: Shang, Chunxue organization: Ministry of Education, Yunnan Normal University |
| BookMark | eNp9kc1qFEEUhQuJ4CS68wEK3Liwtf67aimjiQMDyiQ6uCqu9RNr7Kkaq7uVuPIR8ox5EnsyChLQ1YXDdw6ce47RUS45IPSYkueUMPOCEWrWK8Ikp-oemlEjRNOalh-hGSGCN5Sb9gE67vsNIVRI1c5QPd_BkKC7-Xl9Eba7UqHDH6CmSSwZl4iX8CXg87FGcAGvYQgV78FQYRhrwJA9Xgw9flXTt5Qv8Sm4odQep4w_jjlDnoLPxvTjcxnxu26yw_gQ3Y_Q9eHR73uC3p--vpi_aZZvzxbzl8sGhJGy8UQpKkzwWghDiOZEg9fAWeDRS6ZdpNG5qLloeeDeE9c6JkHDJxKckpSfoMUh1xfY2F1NW6hXtkCyt0KplxbqkFwXbGDccAZKEM2E8kEzGb1iXBIZwVMzZT09ZO1q-TqGfrDb1LvQdZBDGXvLWqoZV1Tt0Sd30E0Za56aWsaUELJlXEwUO1Culr6vIVqXhtunDxVSZymx-0nt35NOpmd3TH9a_QPnB_x76sLVf1m7Xs1X0xO05L8AhtGzVw |
| CitedBy_id | crossref_primary_10_3389_fenvs_2022_995862 crossref_primary_10_1016_j_scs_2021_103247 crossref_primary_10_1007_s11356_021_12826_9 crossref_primary_10_3390_agriculture10050150 crossref_primary_10_3390_rs15112719 crossref_primary_10_1016_j_ejrh_2025_102789 crossref_primary_10_1016_j_jhazmat_2025_138622 crossref_primary_10_1016_j_measurement_2019_05_100 crossref_primary_10_1016_j_scitotenv_2024_173181 crossref_primary_10_3390_s22020464 crossref_primary_10_1016_j_ecoinf_2024_102779 crossref_primary_10_1016_j_envpol_2022_120210 crossref_primary_10_3390_w17111652 crossref_primary_10_1109_JSEN_2019_2941531 crossref_primary_10_1007_s11356_021_15621_8 crossref_primary_10_1007_s11356_020_12093_0 crossref_primary_10_1016_j_indcrop_2023_116285 crossref_primary_10_1007_s11356_024_34212_x crossref_primary_10_1016_j_jenvman_2024_122075 crossref_primary_10_3390_agriculture12050612 crossref_primary_10_1016_j_ecolind_2022_109651 crossref_primary_10_1007_s11356_022_23608_2 crossref_primary_10_1016_j_jclepro_2024_142054 crossref_primary_10_3390_rs13224535 crossref_primary_10_1016_j_jenvman_2024_121926 crossref_primary_10_1016_j_scitotenv_2023_162686 crossref_primary_10_1016_j_envres_2021_111458 crossref_primary_10_1016_j_jenvman_2024_121494 crossref_primary_10_1007_s10661_019_7993_z crossref_primary_10_1016_j_ecolind_2025_113802 crossref_primary_10_1016_j_jag_2021_102372 crossref_primary_10_3390_w14162554 crossref_primary_10_1016_j_jhydrol_2019_124488 crossref_primary_10_3390_su17041696 crossref_primary_10_3390_w14213398 crossref_primary_10_1016_j_jenvman_2022_115873 crossref_primary_10_1016_j_jenvman_2024_120627 crossref_primary_10_1007_s11356_021_13444_1 crossref_primary_10_3390_ijerph16224442 crossref_primary_10_1007_s00027_024_01091_w crossref_primary_10_1007_s11356_021_13676_1 crossref_primary_10_1007_s11356_021_18126_6 crossref_primary_10_3390_ijerph16193602 crossref_primary_10_1016_j_envpol_2021_118633 crossref_primary_10_3390_land12020267 crossref_primary_10_1016_j_ecolind_2022_108582 crossref_primary_10_1016_j_envpol_2020_114878 crossref_primary_10_1016_j_jag_2022_103073 crossref_primary_10_1016_j_jclepro_2020_122689 crossref_primary_10_1007_s11356_021_14831_4 crossref_primary_10_1016_j_ejrh_2025_102475 crossref_primary_10_1080_10106049_2021_2009043 crossref_primary_10_4081_jlimnol_2020_1951 crossref_primary_10_1007_s12517_020_5087_4 crossref_primary_10_1016_j_scitotenv_2020_141366 crossref_primary_10_1002_ldr_3543 crossref_primary_10_3389_fenvs_2022_903046 crossref_primary_10_3389_fevo_2023_1291462 crossref_primary_10_3390_rs16173220 crossref_primary_10_1016_j_jhydrol_2025_134094 crossref_primary_10_1016_j_ecolind_2025_113307 crossref_primary_10_1080_10402381_2024_2432876 crossref_primary_10_1088_1755_1315_658_1_012005 crossref_primary_10_3390_su15031763 crossref_primary_10_1007_s11356_024_34932_0 crossref_primary_10_3390_ijerph191912142 crossref_primary_10_3390_rs12172706 crossref_primary_10_1109_ACCESS_2019_2935767 crossref_primary_10_1016_j_jhydrol_2025_132789 crossref_primary_10_1016_j_ejrh_2025_102584 crossref_primary_10_3390_su11247242 crossref_primary_10_1016_j_uclim_2022_101347 crossref_primary_10_1016_j_scs_2024_105345 crossref_primary_10_1088_2515_7620_acfd20 crossref_primary_10_1016_j_ecolind_2023_111005 crossref_primary_10_1007_s12517_020_05808_7 crossref_primary_10_1016_j_catena_2024_108090 crossref_primary_10_1016_j_jclepro_2020_120760 crossref_primary_10_3390_w12123557 crossref_primary_10_1016_j_ecolind_2024_112343 crossref_primary_10_1016_j_scitotenv_2023_168982 crossref_primary_10_3390_land11050688 crossref_primary_10_1007_s10661_021_08895_5 crossref_primary_10_3390_w15173096 crossref_primary_10_1007_s11769_020_1166_4 crossref_primary_10_1111_grow_12571 crossref_primary_10_1016_j_jag_2021_102344 crossref_primary_10_1016_j_scs_2020_102180 crossref_primary_10_1016_j_ecoinf_2024_102903 crossref_primary_10_3390_w14172611 crossref_primary_10_1016_j_scitotenv_2025_178695 crossref_primary_10_1029_2024WR038855 crossref_primary_10_1109_JSTARS_2021_3079357 crossref_primary_10_3390_ijerph16203952 crossref_primary_10_3390_w14101640 crossref_primary_10_1016_j_jhydrol_2021_127253 crossref_primary_10_1016_j_ecolind_2021_108491 crossref_primary_10_1111_geoj_12478 crossref_primary_10_3390_land12010033 crossref_primary_10_1016_j_scitotenv_2019_133612 crossref_primary_10_1080_17538947_2025_2506491 crossref_primary_10_1007_s11356_020_11302_0 crossref_primary_10_1007_s11356_024_33878_7 crossref_primary_10_3390_su11113047 crossref_primary_10_1016_j_ecoinf_2022_101692 crossref_primary_10_1016_j_scitotenv_2020_141174 crossref_primary_10_1016_j_jhydrol_2024_131672 crossref_primary_10_3390_ani12030240 crossref_primary_10_1007_s10661_019_7547_4 crossref_primary_10_1016_j_ecolind_2024_112834 crossref_primary_10_1109_JSTARS_2021_3106038 crossref_primary_10_3390_land12030547 crossref_primary_10_1016_j_ecolind_2024_112165 crossref_primary_10_3390_w12123491 crossref_primary_10_1016_j_ecolind_2022_108705 crossref_primary_10_1016_j_scitotenv_2023_166303 crossref_primary_10_3390_rs13193972 crossref_primary_10_1016_j_scitotenv_2019_133983 crossref_primary_10_1016_j_scitotenv_2020_140191 |
| Cites_doi | 10.1007/s00382‐014‐2449‐1 10.1002/joc.4646 10.1038/sdata.2015.8 10.1016/j.scitotenv.2017.12.119 10.1016/j.rse.2010.01.027 10.1002/2013WR014975 10.1016/j.watres.2015.02.052 10.1016/j.watres.2012.05.011 10.1007/s00382‐014‐2168‐7 10.1016/j.rse.2012.08.004 10.1007/s10750‐013‐1550‐5 10.1007/s00382‐015‐2611‐4 10.1016/0043‐1354(95)00286‐3 10.1007/s00382‐017‐4052‐8 10.1007/s10584‐017‐1966‐4 10.1002/joc.4299 10.1002/2017JD027661 10.1007/s10584‐005‐9076‐0 10.1007/s00382‐013‐2029‐9 10.1002/joc.1805 10.1080/01431161.2018.1471545 10.1038/sdata.2017.95 10.1002/2015GL066235 10.1007/s00382‐012‐1384‐2 10.1038/nature19798 10.1126/science.289.5477.284 10.1080/10807039.2016.1278518 10.1126/science.287.5459.1770 10.1126/science.aaa5632 10.1038/s41598‐017‐04058‐0 10.1038/nature.2015.19034 10.1002/joc.3554 10.1038/nature09186 10.1016/j.scs.2018.10.049 10.1080/01431161.2018.1516312 10.1371/journal.pone.0152466 10.1016/j.rse.2017.02.007 10.1016/j.watres.2012.02.014 10.1007/s11356‐018‐2967‐1 10.1071/MF16042 10.18307/2018.0421 10.1016/j.rse.2013.05.014 10.1007/s00382-017-3755-1 10.1007/s10584‐014‐1087‐2 10.1016/j.enbuild.2017.09.046 10.1002/2015GL064097 10.1002/hyp.7063 10.1071/MF16252 |
| ContentType | Journal Article |
| Copyright | 2019. American Geophysical Union. All Rights Reserved. Copyright John Wiley & Sons, Inc. 2019 |
| Copyright_xml | – notice: 2019. American Geophysical Union. All Rights Reserved. – notice: Copyright John Wiley & Sons, Inc. 2019 |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
| DOI | 10.1029/2019WR025316 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 4703 |
| ExternalDocumentID | oai_doaj_org_article_e23932a6408246de825fd623505fad19 10_1029_2019WR025316 WRCR23985 |
| Genre | article |
| GeographicLocations | China Yunnan China |
| GeographicLocations_xml | – name: Yunnan China – name: China |
| GrantInformation_xml | – fundername: China High Technology Research and Development Program 863 funderid: 2012AA121402 – fundername: National Natural Science Foundation of China (NSFC) funderid: 41761084 – fundername: National Natural Science Foundation of China funderid: 41761084 – fundername: National Natural Science Foundation of China-Yunnan Joint Fund funderid: 2016FD020 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4955-d066149ed8449008308ad8a32e3fd528cf1fccf83473e3dd0c7c25a8ab0ec6513 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 141 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477616900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Tue Oct 07 09:26:44 EDT 2025 Fri Sep 05 17:28:40 EDT 2025 Sat Oct 18 23:52:12 EDT 2025 Sat Nov 29 07:16:54 EST 2025 Tue Nov 18 22:41:04 EST 2025 Wed Jan 22 17:23:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4955-d066149ed8449008308ad8a32e3fd528cf1fccf83473e3dd0c7c25a8ab0ec6513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6256-4595 0000-0002-9985-0165 |
| OpenAccessLink | https://doaj.org/article/e23932a6408246de825fd623505fad19 |
| PQID | 2264457234 |
| PQPubID | 105507 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e23932a6408246de825fd623505fad19 proquest_miscellaneous_2718236169 proquest_journals_2264457234 crossref_citationtrail_10_1029_2019WR025316 crossref_primary_10_1029_2019WR025316 wiley_primary_10_1029_2019WR025316_WRCR23985 |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 2019-06-00 20190601 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2015; 35 2015; 2 2017; 7 2017; 4 2010; 466 2013; 40 2015; 75 2018; 123 2017; 68 2017; 192 1996; 30 2018; 40 2002 2015; 348 2018; 23 2017; 155 2012; 126 2016; 36 2014; 731 2005; 68 2018; 25 2009; 29 2014; 43 1999 2016; 11 2015; 45 2010; 22 2018; 39 2000; 289 2013; 33 2016; 538 2019; 44 2015; 42 2013; 136 2018; 30 2018; 51 2015 2018; 50 2000; 287 2017; 142 2012; 46 2012; 116 2014; 50 2016; 48 2016; 46 2014; 124 2017; 624 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Dong B. (e_1_2_7_7_1) 2016; 48 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 42 start-page: 4981 year: 2015 end-page: 4988 article-title: Morphometry and average temperature affect lake stratification responses to climate change publication-title: Geophysical Research Letters – volume: 289 start-page: 284 issue: 5477 year: 2000 end-page: 288 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science – volume: 123 start-page: 3087 year: 2018 end-page: 3098 article-title: Intralake heterogeneity of thermal responses to climate change: a study of large northern hemisphere lakes publication-title: Journal of Geophysical Research: Atmospheres – volume: 39 start-page: 7789 issue: 22 year: 2018 end-page: 7805 article-title: An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries publication-title: International Journal of Remote Sensing – volume: 50 start-page: 2513 issue: 7‐8 year: 2018 end-page: 2536 article-title: A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900 publication-title: Climate Dynamics – volume: 126 start-page: 1 year: 2012 end-page: 11 article-title: Using the NOAA Advanced Very High Resolution Radiometer to characterise temporal and spatial trends in water temperature of large European lakes publication-title: Remote Sensing of Environment – volume: 136 start-page: 374 year: 2013 end-page: 385 article-title: Mapping surface temperature in a hyper‐saline lake and investigating the effect of temperature distribution on the lake evaporation publication-title: Remote Sensing of Environment – volume: 25 start-page: 29643 issue: 29 year: 2018 end-page: 29653 article-title: Dianchi lake watershed impervious surface area dynamics and their impact on lake water quality from 1988 to 2017 publication-title: Environmental Science and Pollution Research – volume: 30 start-page: 2835 issue: 12 year: 1996 end-page: 2852 article-title: Long‐term lake water quality predictors publication-title: Water Research – volume: 48 start-page: 1 issue: 5‐6 year: 2016 end-page: 18 article-title: Understanding the rapid summer warming and changes in temperature extremes since the mid‐1990s over western Europe publication-title: Climate Dynamics – volume: 4 year: 2017 article-title: A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015 publication-title: Scientific Data – volume: 22 start-page: 4587 issue: 23 year: 2010 end-page: 4599 article-title: Monotonic trend and abrupt changes for major climate variables in the headwater catchment of the yellow river basin publication-title: Hydrological Processes – volume: 68 start-page: 331 issue: 3 year: 2005 end-page: 353 article-title: Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, Lower Madison River, MT. publication-title: Climatic Change – volume: 731 start-page: 19 issue: 1 year: 2014 end-page: 29 article-title: Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios publication-title: Hydrobiologia – volume: 29 start-page: 1430 issue: 10 year: 2009 end-page: 1438 article-title: Dry spell trend analysis of Isfahan province, Iran publication-title: International Journal of Climatology – volume: 50 start-page: 5131 year: 2014 end-page: 5140 article-title: A novel method for estimating the onset of thermal stratification in lakes from surface water measurements publication-title: Water Resources Research – volume: 116 start-page: 211 issue: 2 year: 2012 end-page: 225 article-title: Long‐term accuracy assessment of land surface temperatures derived from the Advanced Along‐Track Scanning Radiometer publication-title: Remote Sensing of Environment – volume: 42 start-page: 10,773 year: 2015 end-page: 10,781 article-title: Rapid and highly variable warming of lake surface waters around the globe publication-title: Geophysical Research Letters – volume: 44 start-page: 416 year: 2019 end-page: 427 article-title: An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on Landsat 8 image publication-title: Sustainable Cities and Society – volume: 40 start-page: 573 issue: 2 year: 2018 end-page: 592 article-title: A time‐series analysis of urbanization‐induced impervious surface area extent in the Dianchi Lakewatershed from 1988–2017 publication-title: International Journal of Remote Sensing – volume: 75 start-page: 249 year: 2015 end-page: 258 article-title: Dissolved oxygen stratification and response to thermal structure and long‐term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China) publication-title: Water Research – volume: 51 start-page: 2841 issue: 7‐8 year: 2018 end-page: 2855 article-title: Sensitivity of the atmospheric water cycle to corrections of the sea surface temperature bias over southern Africa in a regional climate model publication-title: Climate Dynamics – volume: 40 start-page: 443 issue: 1‐2 year: 2013 end-page: 464 article-title: Potential for added value in temperature simulated by high‐resolution nested rcms in present climate and in the climate change signal publication-title: Climate Dynamics – volume: 45 start-page: 1965 issue: 7‐8 year: 2015 end-page: 1982 article-title: Estimating the regional climate responses over river basins to changes in tropical sea surface temperature patterns publication-title: Climate Dynamics – volume: 46 start-page: 2591 issue: 8 year: 2012 end-page: 2604 article-title: Effects of local climate and hydrological conditions on the thermal regime of a reservoir at tropic of cancer, in southern China publication-title: Water Research – volume: 466 start-page: 478 issue: 7305 year: 2010 end-page: 481 article-title: Temperature‐controlled organic carbon mineralization in lake sediments publication-title: Nature – year: 2015 – volume: 142 start-page: 505 issue: 3‐4 year: 2017 end-page: 520 article-title: Warming of central European lakes and their response to the 1980s climate regime shift publication-title: Climatic Change – volume: 624 start-page: 859 year: 2017 end-page: 871 article-title: Spatial and temporal variations in the relationship between lake water surface temperatures and water quality ‐ a case study of Dianchi lake publication-title: Science of the Total Environment – volume: 30 start-page: 1083 issue: 4 year: 2018 end-page: 1096 article-title: Remote sensing monitoring and temporal‐spatial analysis of surface water body area changes of lakes on the Yunnan‐Guizhou Plateau over the past 30 years[J] publication-title: Journal of Lake Sciences – volume: 2 start-page: 150008 year: 2015 article-title: A global database of lake surface temperatures collected by in situ and satellite methods from 1985‐2009 publication-title: Scientific Data – volume: 7 start-page: 4130 issue: 1 year: 2017 article-title: Amplified surface temperature response of cold, deep lakes to inter‐annual air temperature variability publication-title: Scientific Reports – volume: 46 start-page: 4235 issue: 13 year: 2012 end-page: 4245 article-title: Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration publication-title: Water research – volume: 68 start-page: 1752 issue: 9 year: 2017 end-page: 1763 article-title: Determination of the physical drivers of Zostera seagrass distribution using a spatial autoregressive lag model publication-title: Marine and Freshwater Research – volume: 23 start-page: 751 issue: 4 year: 2018 end-page: 766 article-title: Study on ecological protection and rehabilitation technology of a reservoir‐type water source in the northeastern region of China publication-title: Human and Ecological Risk Assessment: An International Journal – volume: 33 start-page: 1873 issue: 8 year: 2013 end-page: 1883 article-title: The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China publication-title: International Journal of Climatology – volume: 11 issue: 3 year: 2016 article-title: Diel surface temperature range scales with lake size publication-title: PLOS ONE – volume: 155 start-page: 282 year: 2017 end-page: 295 article-title: Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: case study of Shenyang, China publication-title: Energy and Buildings – volume: 46 start-page: 765 issue: 3‐4 year: 2016 end-page: 778 article-title: Using multi‐model ensembles to improve the simulated effects of land use/cover change on temperature: a case study over northeast China publication-title: Climate Dynamics – volume: 43 start-page: 3071 issue: 11 year: 2014 end-page: 3089 article-title: Recent climatic trends in the tropical Atlantic publication-title: Climate Dynamics – volume: 192 start-page: 98 year: 2017 end-page: 113 article-title: Climate‐ and human‐induced changes in suspended particulate matter over Lake Hongze on short and long timescales publication-title: Remote Sensing of Environment – volume: 43 start-page: 2043 issue: 7‐8 year: 2014 end-page: 2059 article-title: A dissection of the surface temperature biases in the community earth system model publication-title: Climate Dynamics – volume: 124 start-page: 301 issue: 1‐2 year: 2014 end-page: 315 article-title: Lake surface temperatures in a changing climate: a global sensitivity analysis publication-title: Climatic Change – year: 2002 – volume: 538 start-page: 226 issue: 7624 year: 2016 end-page: 228 article-title: Evolution of global temperature over the past two million years publication-title: Nature – volume: 35 start-page: 4464 issue: 15 year: 2015 end-page: 4479 article-title: Global climatology of surface water temperatures of large lakes by remote sensing publication-title: International Journal of Climatology – volume: 348 start-page: 1469 issue: 6242 year: 2015 end-page: 1472 article-title: Climate change. Possible artifacts of data biases in the recent global surface warming hiatus publication-title: Science – volume: 36 start-page: 4497 issue: 14 year: 2016 end-page: 4511 article-title: Spatial distribution and temporal variation of reference evapotranspiration in the three gorges reservoir area during 1960‐2013 publication-title: International Journal of Climatology – volume: 287 start-page: 1770 issue: 5459 year: 2000 end-page: 1774 article-title: Global biodiversity scenarios for the year 2100 publication-title: Science – volume: 68 start-page: 1830 issue: 10 year: 2017 end-page: 1844 article-title: Land use, soil properties and weather conditions influence nutrient fluxes into a deep oligotrophic lake publication-title: Marine Freshwater Research – year: 1999 – ident: e_1_2_7_33_1 doi: 10.1007/s00382‐014‐2449‐1 – ident: e_1_2_7_21_1 doi: 10.1002/joc.4646 – ident: e_1_2_7_30_1 doi: 10.1038/sdata.2015.8 – ident: e_1_2_7_48_1 doi: 10.1016/j.scitotenv.2017.12.119 – ident: e_1_2_7_5_1 doi: 10.1016/j.rse.2010.01.027 – ident: e_1_2_7_42_1 doi: 10.1002/2013WR014975 – ident: e_1_2_7_3_1 – ident: e_1_2_7_50_1 doi: 10.1016/j.watres.2015.02.052 – ident: e_1_2_7_13_1 doi: 10.1016/j.watres.2012.05.011 – ident: e_1_2_7_29_1 doi: 10.1007/s00382‐014‐2168‐7 – ident: e_1_2_7_25_1 doi: 10.1016/j.rse.2012.08.004 – ident: e_1_2_7_4_1 – ident: e_1_2_7_6_1 doi: 10.1007/s10750‐013‐1550‐5 – ident: e_1_2_7_49_1 doi: 10.1007/s00382‐015‐2611‐4 – ident: e_1_2_7_12_1 doi: 10.1016/0043‐1354(95)00286‐3 – ident: e_1_2_7_38_1 doi: 10.1007/s00382‐017‐4052‐8 – ident: e_1_2_7_40_1 doi: 10.1007/s10584‐017‐1966‐4 – ident: e_1_2_7_16_1 doi: 10.1002/joc.4299 – ident: e_1_2_7_44_1 doi: 10.1002/2017JD027661 – ident: e_1_2_7_8_1 doi: 10.1007/s10584‐005‐9076‐0 – ident: e_1_2_7_24_1 doi: 10.1007/s00382‐013‐2029‐9 – ident: e_1_2_7_22_1 doi: 10.1002/joc.1805 – ident: e_1_2_7_27_1 doi: 10.1080/01431161.2018.1471545 – ident: e_1_2_7_35_1 doi: 10.1038/sdata.2017.95 – ident: e_1_2_7_23_1 doi: 10.1002/2015GL066235 – ident: e_1_2_7_18_1 doi: 10.1007/s00382‐012‐1384‐2 – ident: e_1_2_7_32_1 doi: 10.1038/nature19798 – ident: e_1_2_7_34_1 doi: 10.1126/science.289.5477.284 – ident: e_1_2_7_20_1 doi: 10.1080/10807039.2016.1278518 – ident: e_1_2_7_26_1 doi: 10.1126/science.287.5459.1770 – ident: e_1_2_7_14_1 doi: 10.1126/science.aaa5632 – ident: e_1_2_7_43_1 doi: 10.1038/s41598‐017‐04058‐0 – ident: e_1_2_7_39_1 doi: 10.1038/nature.2015.19034 – ident: e_1_2_7_46_1 doi: 10.1002/joc.3554 – ident: e_1_2_7_9_1 doi: 10.1038/nature09186 – ident: e_1_2_7_10_1 doi: 10.1016/j.scs.2018.10.049 – ident: e_1_2_7_47_1 doi: 10.1080/01431161.2018.1516312 – ident: e_1_2_7_41_1 doi: 10.1371/journal.pone.0152466 – ident: e_1_2_7_2_1 doi: 10.1016/j.rse.2017.02.007 – ident: e_1_2_7_36_1 doi: 10.1016/j.watres.2012.02.014 – ident: e_1_2_7_19_1 doi: 10.1007/s11356‐018‐2967‐1 – ident: e_1_2_7_37_1 doi: 10.1071/MF16042 – ident: e_1_2_7_45_1 doi: 10.18307/2018.0421 – ident: e_1_2_7_31_1 doi: 10.1016/j.rse.2013.05.014 – volume: 48 start-page: 1 issue: 5 year: 2016 ident: e_1_2_7_7_1 article-title: Understanding the rapid summer warming and changes in temperature extremes since the mid‐1990s over western Europe publication-title: Climate Dynamics – ident: e_1_2_7_17_1 doi: 10.1007/s00382-017-3755-1 – ident: e_1_2_7_28_1 doi: 10.1007/s10584‐014‐1087‐2 – ident: e_1_2_7_52_1 doi: 10.1016/j.enbuild.2017.09.046 – ident: e_1_2_7_15_1 doi: 10.1002/2015GL064097 – ident: e_1_2_7_51_1 doi: 10.1002/hyp.7063 – ident: e_1_2_7_11_1 doi: 10.1071/MF16252 |
| SSID | ssj0014567 |
| Score | 2.6144543 |
| Snippet | Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global lakes... Abstract Lake surface water temperature (LSWT) is an important factor of water ecological environment. In the context of global warming, the LSWT of global... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4688 |
| SubjectTerms | Air temperature Biodiversity Classification climate Climate and human activity Climate change climate warming Clustering data collection Environmental impact Geographical distribution Geographical locations Global warming Human factors Human influences humans K‐Means clustering method lake surface water temperature lake type Lake water Lakes Marine environment multicultural diversity Multiculturalism & pluralism Periodic variations Periodicity plateau lake Plateaus population growth Surface temperature Surface water surface water temperature Surface-air temperature relationships Temperature effects Temporal variations Urbanization water Water temperature Watersheds |
| SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: WIN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQhQQXylNsW5CR4AQRiZ2Xj6WwUAmtqqWw5RT5SVeskirZINETP4HfyC9hxvFG2wNIiFsUjy0rnsl847G_IeSpKTMjM2sjpjiLEEFHIrcqUiw2BgCIy430xSaK2aw8OxMnYcMN78IM_BDjhhtahv9fo4FL1QWyAeTIBM8lFnNw2TxBxu0kTbCAweJ4NiYRABsUmwQzAp1w7h26v9zufMUjeeL-K2hzG7N6pzPd_d_p3ia3Atykh4N-3CHXbH2X3NjcRu7gOVRBP_9-j7RYnxj08dePn6cDY9WKfoJY2i8ebRx9L79a-qFvndSWLgClthQFAy8zlbWhx-uOvm6XuE1Bp0MtH7qs6WfAybKGgd_2y8vzpqcnK-gu-_vk4_TN6dG7KNRkiCSEUllkYnTowpoyTQXit7iUppScWe5MxkrtEqe1K3lacMuNiXWhWSZLqWKr8yzhD8hO3dT2IaFK5AUDtCY4xmRaKVUoCb1kahUEUW5Cnm_WpdKBsBzrZqwqnzhnotr-phPybJS-GIg6_iD3Cpd4lEF6bf-iab9UwVori8RwTOZYjTvNjYUw2hkAigAXnTSJmJCDjYJUwea7Cq8kp1nBeDohT8ZmsFZMwcjaNj3IABRAupschnjh1eWvk60W86M5MjRme_8mvk9uYsNwpu2A7Kzb3j4i1_W39bJrH3sz-Q0DAxGO priority: 102 providerName: Wiley-Blackwell |
| Title | Spatial‐Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan‐Guizhou Plateau |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR025316 https://www.proquest.com/docview/2264457234 https://www.proquest.com/docview/2718236169 https://doaj.org/article/e23932a6408246de825fd623505fad19 |
| Volume | 55 |
| WOSCitedRecordID | wos000477616900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-7973 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yCnoRnzi6LhH0pI09Sb9y1F1HF5ZhGXed9dRUXuzg0CM904Ke_An-Rn-JVen0MB7Ui7d-VIeQVKivupLvY-yprXILuXOJ0FIkhKATVTidaJFaiwDEFxaC2EQ5nVYXF-p0R-qL9oT19MD9wL10xNEloCBh5KywDjMabzFmY-T2YAPhp0DUMyRTsX6AsKAcasuEceKW91QozPbHaj7DUC9J43wnGAXO_t-A5i5cDfFmcovdjECRv-o7eJtdcc0ddn04R7zG66hffvn1LmtJWRg96ef3H2c919SSf8AsOAw7X3l-Ap8cf9-1Hozjc8SXLSfDyKjMobH8eLPmR-2CfjDwSa_CwxcN_4gIFxps-G23-Ha56vjpEj-H7h47n7w5O3yXRDWFBDAJyhObUihWzlZZpgh5pRXYCqRw0ttcVMaPvTG-klkpnbQ2NaUROVSgU2eKfCzvs71m1bgHjGtVlAJxlpKUTRmtdakBv4LMaUx__Ig9H4a1NpFqnBQvlnUoeQtV707CiD3bWn_uKTb-YPeaZmhrQ8TY4QG6Sx3dpf6Xu4zY_jC_dVyt65oOE2d5KWQ2Yk-2r3GdUfEEGrfq0AaDOBHVFNjEi-AXf-1sPZ8dzohbMX_4P7r9iN2g1vs9avtsb9N27jG7Zr5sFuv2IPj-Abt6NJucn-Dd_Hj6CxRwBsE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgQVouvBGFBYwEJ4hI7bx8hIWyFaValUKXk-UnW1ElKG2Q4MRP4DfyS5hJ3Kh7AAlxi5KxFcWezDce-_sIeWSL1KrUuYhpziJE0JHInI40i60FAOIzq1qxiXw6LU5OxHHQOcWzMB0_RL_ghp7R_q_RwXFBOrANIEkmhC6xmEHM5sPsPLmQANZA7YbFeNqXEQAd5NsSM0KdsPMd2j_bbX0mJrXU_Wfw5i5qbcPO6Mp_v_BVcjkgTvq8myLXyDlXXif72wPJa7gOQuin326QGiWKYUr--vFz3pFWregHSKfb8aOVpxP12dF3Te2VcXQBQLWmaBiomakqLR1v1vRlvcSVCjrq5HzosqQfASqrEjp-3Sy_n1YNPV5Bc9XcJO9Hr-aHR1GQZYgUZFNpZGOM6cLZIkkEQri4ULZQnDnubcoK44feGF_wJOeOWxub3LBUFUrHzmTpkN8ie2VVutuEapHlDACb4JiWGa11rhW0UonTkEf5AXmyHRhpAmc5SmesZFs7Z0LuftMBedxbf-m4Ov5g9wLHuLdBhu32RlV_ksFhpUNuOKYyFOROMusgk_YWsCIgRq_sUAzIwXaGyOD2a4mnkpM0ZzwZkIf9Y3BYrMKo0lUN2AAaQMabDLp42s6Xv76sXMwOZ0jSmN75N_MHZP9o_nYiJ-Ppm7vkEhp1W9wOyN6mbtw9ctF83SzX9f3WZ34DHb4VrA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagi4ALb0RhASPBCSJSOy8fYUtgRVVVZZcup8hPtqJKVmmDBCd-Ar-RX8JM4kbdA0iIW5SMrSieyXzjx_cR8tRksZGxtQFTnAWIoAORWBUoFhoDAMQlRrZiE-l0mp2ciJnXOcWzMB0_RD_hhpHR_q8xwO2ZcZ5tAEkyIXWJxRxyNh8lF8lehDoyA7I3nufHk34hAfBBul1kRrDj975DDy9325_LSi15_znEuYtb28STX__vV75BrnnMSV91TnKTXLDlLXJleyR5DddeCv30221So0gxOOWvHz-POtqqFf0IBXU7grRydCK_WPqhqZ3Uli4AqtYUDT05M5WloYebNR3XS5yroHkn6EOXJf0EYFmW0PHbZvn9tGrobAXNZXOHHOdvjg7eBV6YIZBQT8WBCTGrC2uyKBII4sJMmkxyZrkzMcu0GzmtXcajlFtuTKhTzWKZSRVancQjfpcMyqq09whVIkkZQDbBsTDTSqlUSWglI6ugknJD8nw7MIX2rOUonrEq2tVzJordbzokz3rrs46t4w92r3GMexvk2G5vVPXnwodsYZEdjskEJbmjxFiopZ0BtAiY0UkzEkOyv_WQwgf-usBzyVGcMh4NyZP-MYQsrsPI0lYN2AAeQM6bBLp40frLX1-2WMwP5kjTGN__N_PH5PJsnBeTw-n7B-Qq2nR73PbJYFM39iG5pL9uluv6kQ-a3_F4FlU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%90Temporal+Variation+of+Lake+Surface+Water+Temperature+and+Its+Driving+Factors+in+Yunnan%E2%80%90Guizhou+Plateau&rft.jtitle=Water+resources+research&rft.au=Yang%2C+Kun&rft.au=Yu%2C+Zhenyu&rft.au=Luo%2C+Yi&rft.au=Zhou%2C+Xiaolu&rft.date=2019-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=55&rft.issue=6&rft.spage=4688&rft.epage=4703&rft_id=info:doi/10.1029%2F2019WR025316&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |