Statistical Inference The Minimum Distance Approach

This book gives a comprehensive account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adju...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Basu, Ayanendranath, Shioya, Hiroyuki, Park, Chanseok
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Boca Raton Chapman and Hall/CRC 2011
CRC Press, Taylor & Francis Group
CRC Press LLC
Chapman & Hall
CRC Press
Vydání:1
Edice:Chapman & Hall/CRC Monographs on Statistics and Applied Probability
Témata:
ISBN:9781420099652, 1420099655
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This book gives a comprehensive account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, multisample methods, weighted likelihood, and multinomial goodness-of-fit tests. The book also introduces the minimum distance methodology in interdisciplinary areas, such as neural networks and image processing, as well as specialized models and problems, including regression, mixture models, survival and Bayesian analysis, and more.
Bibliografie:Includes bibliographical references (p. 373-402) and index
ISBN:9781420099652
1420099655
DOI:10.1201/b10956