Activity Descriptors Derived from Comparison of Mo and Fe as Active Metal for Methane Conversion to Aromatics

Producing aromatics directly from the smallest hydrocarbon building block, methane, is attractive because it could help satisfy increasing demand for aromatics while filling the gap created by decreased production from naphtha crackers. The system that catalyzes the direct methane dehydroaromatizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society Jg. 141; H. 47; S. 18814
Hauptverfasser: Vollmer, Ina, Ould-Chikh, Samy, Aguilar-Tapia, Antonio, Li, Guanna, Pidko, Evgeny, Hazemann, Jean-Louis, Kapteijn, Freek, Gascon, Jorge
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 27.11.2019
ISSN:1520-5126, 1520-5126
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Producing aromatics directly from the smallest hydrocarbon building block, methane, is attractive because it could help satisfy increasing demand for aromatics while filling the gap created by decreased production from naphtha crackers. The system that catalyzes the direct methane dehydroaromatization (MDA) best so far is Mo supported on zeolite. Mo has shown to outperform other transition metals (TMs). Here we attempt to explain the superiority of Mo by directly comparing Fe and Mo supported on HZSM-5 zeolite. To determine the most important parameters responsible for the superior performance of Mo, detailed characterization using X-ray absorption spectroscopy (XAS) techniques combined with catalytic testing and theoretical calculations are performed. The higher abundance of mono- and dimeric sites for the Mo system, their ease of carburization in methane, as well as intrinsically lower activation energy barriers of breaking the methane C-H bond over Mo explain the better catalytic performance. In addition, a pretreatment in CO is presented to more easily carburize Fe and thereby improve its catalytic performance.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-5126
1520-5126
DOI:10.1021/jacs.9b09710