Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel: Model calibration and validation

•Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils simulation.•Boundary conditions were found to impact surface water and energy balance.•Salts transport was underestimated by the model. Soil freez...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydrology (Amsterdam) Ročník 596; s. 125693
Hlavní autori: Wu, Mousong, Zhao, Qiang, Jansson, Per-Erik, Wu, Jingwei, Tan, Xiao, Duan, Zheng, Wang, Kang, Chen, Peng, Zheng, Minjie, Huang, Jiesheng, Zhang, Wenxin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.05.2021
Predmet:
ISSN:0022-1694, 1879-2707, 1879-2707
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils simulation.•Boundary conditions were found to impact surface water and energy balance.•Salts transport was underestimated by the model. Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management.
AbstractList Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management.
•Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils simulation.•Boundary conditions were found to impact surface water and energy balance.•Salts transport was underestimated by the model. Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management.
ArticleNumber 125693
Author Zheng, Minjie
Tan, Xiao
Zhao, Qiang
Zhang, Wenxin
Wu, Mousong
Wang, Kang
Huang, Jiesheng
Chen, Peng
Wu, Jingwei
Jansson, Per-Erik
Duan, Zheng
Author_xml – sequence: 1
  givenname: Mousong
  surname: Wu
  fullname: Wu, Mousong
  organization: International Institute for Earth System Science, Nanjing University, 210023 Nanjing, Jiangsu, China
– sequence: 2
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China
– sequence: 3
  givenname: Per-Erik
  surname: Jansson
  fullname: Jansson, Per-Erik
  organization: Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
– sequence: 4
  givenname: Jingwei
  surname: Wu
  fullname: Wu, Jingwei
  email: jingwei.wu@whu.edu.cn
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China
– sequence: 5
  givenname: Xiao
  surname: Tan
  fullname: Tan, Xiao
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
– sequence: 6
  givenname: Zheng
  surname: Duan
  fullname: Duan, Zheng
  organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
– sequence: 7
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China
– sequence: 8
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, 210098 Nanjing, Jiangsu, China
– sequence: 9
  givenname: Minjie
  surname: Zheng
  fullname: Zheng, Minjie
  organization: Department of Geology, Lund University, 22362 Lund, Sweden
– sequence: 10
  givenname: Jiesheng
  surname: Huang
  fullname: Huang, Jiesheng
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China
– sequence: 11
  givenname: Wenxin
  surname: Zhang
  fullname: Zhang, Wenxin
  email: wenxin.zhang@nateko.lu.se
  organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290623$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNqFUk1v1DAQjVCR2BZ-ApKPXLI4tpNs4ICqLR-VirgA15Fjj3e9OHGwvVuV38EPxmkqDkiovozGeu-Nx--dF2ejH7EoXlZ0XdGqeX1YH_Z3Oni3ZpTlO1Y3HX9SrKpN25Wspe1ZsaKUsbJqOvGsOI_xQPPhXKyK39fDFPwJNYneOrLo-J1V0pHBa3R23JFbm_Yk7ZHYYXI44Jhksn4k3pAoXSrtqI8qS5iA-GsmTN6OiWicAsY4I-1Itv44fZ4V35D7QvII24dFSY6anHKv79vnxVMjXcQXD_Wi-Pbh_dftp_Lmy8fr7eVNKUXHU6lky6jp-sq0glVca4Z13-bFjFKd6CuqlaRMCq6F4UwrzipVG2ZM3deyozW_KOSiG29xOvYwBTvIcAdeWph8SNJBXgBlUHtwR4gIGeXy38yPjNBSoVotWzAbKkBspAHZNByqrjed5puGG8wzyv_OuLLfL8GHHfxIe2AdbRjP-FcLPtvy84gxwWCjQufkiP4YgdVMsIZuWpGh9QJVwccY0PwVryjMyYADPCQD5mTAkozMe_sPT9nF0RSkdY-y3y1szM6cLAaIyuKY_bcBVQLt7SMKfwDpaeCG
CitedBy_id crossref_primary_10_3390_en15041308
crossref_primary_10_1016_j_jhydrol_2021_127036
crossref_primary_10_1029_2023JG007674
crossref_primary_10_1016_j_agrformet_2022_109145
crossref_primary_10_1016_j_jhydrol_2025_133259
crossref_primary_10_1016_j_jhydrol_2025_133402
crossref_primary_10_1016_j_ejrh_2025_102544
crossref_primary_10_1016_j_jhydrol_2024_131378
crossref_primary_10_1016_j_eja_2022_126715
crossref_primary_10_1016_j_agrformet_2023_109789
crossref_primary_10_1016_j_scitotenv_2023_164845
crossref_primary_10_5194_hess_25_4585_2021
crossref_primary_10_3390_agronomy14010153
crossref_primary_10_3390_su15086872
crossref_primary_10_1016_j_compgeo_2024_106209
crossref_primary_10_1029_2025GB008518
crossref_primary_10_1016_j_catena_2025_109288
crossref_primary_10_1002_hyp_15110
crossref_primary_10_3390_w15091692
Cites_doi 10.1007/BF02892316
10.1007/s007040170007
10.2136/vzj2011.0188
10.2113/3.2.693
10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F
10.1146/annurev.fluid.37.061903.175758
10.1139/t90-086
10.1111/j.1365-2389.2011.01397.x
10.5194/bg-12-125-2015
10.1016/j.jhydrol.2016.01.050
10.1029/2018JD028502
10.1016/j.coldregions.2015.07.008
10.1111/gwat.12841
10.13031/2013.42245
10.1097/SS.0000000000000148
10.1002/jgrf.20069
10.1016/j.agrformet.2019.02.021
10.1002/hyp.6224
10.2136/sssaj1972.03615995003600040019x
10.1002/2014WR015640
10.1016/S0165-232X(01)00064-7
10.1016/j.jhydrol.2011.09.038
10.13031/2013.31040
10.1139/s05-007
10.1016/j.geoderma.2012.01.009
10.1029/WR025i010p02205
10.1016/j.ecolmodel.2013.03.015
10.1016/j.coldregions.2017.10.011
10.1016/j.coldregions.2015.03.007
10.2136/vzj2018.04.0084
10.1029/2019JD031529
10.1029/WR010i001p00124
10.3390/w8020064
10.1016/j.jhydrol.2004.03.020
10.1029/WR012i003p00513
10.1029/WR025i008p01825
10.2136/sssaj1979.03615995004300010001x
10.1016/0022-1694(92)90214-G
10.2136/sssaj1996.03615995006000010005x
10.1016/j.agrformet.2019.03.007
10.1002/hyp.10939
10.1016/S0022-1694(01)00421-8
10.1016/S0022-1694(96)03227-1
10.1201/9781420037432.ch10
10.1016/j.coldregions.2012.07.002
10.1175/JAM2163.1
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
CorporateAuthor Kvartärgeologi
Quaternary Sciences
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Institutionen för naturgeografi och ekosystemvetenskap
MERGE: ModElling the Regional and Global Earth system
Strategiska forskningsområden (SFO)
Dept of Physical Geography and Ecosystem Science
Department of Geology
Strategic research areas (SRA)
Geologiska institutionen
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: MERGE: ModElling the Regional and Global Earth system
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Institutionen för naturgeografi och ekosystemvetenskap
– name: Geologiska institutionen
– name: Strategic research areas (SRA)
– name: Quaternary Sciences
– name: Department of Geology
– name: Faculty of Science
– name: Lunds universitet
– name: Kvartärgeologi
– name: Dept of Physical Geography and Ecosystem Science
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
DBID AAYXX
CITATION
7S9
L.6
ADTPV
AOWAS
D8V
D95
DOI 10.1016/j.jhydrol.2020.125693
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Lunds universitet
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 1879-2707
ExternalDocumentID oai_portal_research_lu_se_publications_704c7da7_f804_48af_a663_19bf9d3863fe
oai_DiVA_org_kth_290623
10_1016_j_jhydrol_2020_125693
S0022169420311549
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADTPV
AOWAS
D8V
D95
ID FETCH-LOGICAL-a493t-ca720f9b1f74213dd2e5b7003fcc94b10dca02a43d4f32dc321c5f2ff5b5a9053
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642334400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
1879-2707
IngestDate Sun Oct 19 03:13:10 EDT 2025
Tue Nov 04 16:56:11 EST 2025
Thu Oct 02 09:52:46 EDT 2025
Tue Nov 18 22:25:24 EST 2025
Sat Nov 29 07:29:18 EST 2025
Fri Feb 23 02:43:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Freezing point depression
Sensitivity analysis
Seasonal frost
Soil hydrology
Saline soil
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a493t-ca720f9b1f74213dd2e5b7003fcc94b10dca02a43d4f32dc321c5f2ff5b5a9053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524260874
PQPubID 24069
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_704c7da7_f804_48af_a663_19bf9d3863fe
swepub_primary_oai_DiVA_org_kth_290623
proquest_miscellaneous_2524260874
crossref_primary_10_1016_j_jhydrol_2020_125693
crossref_citationtrail_10_1016_j_jhydrol_2020_125693
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125693
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Watanabe, Kugisaki (b0210) 2017; 31
Wu, Jansson, Zhang (b0245) 2011; 62
Balland, Arp (b0020) 2005; 4
Banin, Anderson (b0025) 1974; 10
Flerchinger, Saxton (b0065) 1989; 32
Beven, Freer (b0030) 2001; 249
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrology papers (Colorado State University); no. 3, 1964.
Espeby (b0060) 1992; 131
Lopez, Brouchkov, Nakayama, Takakai, Fedorov, Fukuda (b0130) 2007; 21
Voss, C.I. SUTRA. 2003. A model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport, US Geological Survey Water-Resources Investigations, 250.
Wu, Jansson, van der Linden, Pilegaard, Beier, Ibrom (b0220) 2013; 260
Stähli, Stadler (b0190) 1997; 195
Azmatch, Sego, Arenson, Biggar (b0005) 2012; 83–84
Jansson (b0095) 2012; 55
Wettlaufer, Worster (b0215) 2006; 38
Rasmussen, Zhang, Hollesen, Cable, Christiansen, Jansson, Elberling (b0165) 2018; 146
McCauley, White, Lilly, Nyman (b0135) 2002; 34
Lindeman, R., Merenda, P., Gold, R., 1980. Introduction to Bivariate and Multivariate Analysis (London, Foresman and Co.).
Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S. and Johanson, R. C.: Hydrological simulation program—FORTRAN user’s manual for version 11, Environmental Protection Agency Report No. EPA/600/R-97/080. US Environmental Protection Agency, Athens, Ga, 1997.
Wu, M., Huang, J., Wu, J., Tan, X. and Jansson, P.-E., 2016. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China, 535.
Watanabe, Kito, Dun, Wu, Greer, Flury (b0205) 2013; 12
Mohammed, Kurylyk, Cey, Hayashi (b0145) 2018; 17
Okkonen, Kløve (b0160) 2011; 411
Scherler, Hauck, Hoelzle, Salzmann (b0170) 2013; 118
Baker, Osterkamp (b0010) 1989; 25
Graham, D. N., Butts, M. B. 2005. Flexible, integrated watershed modelling with MIKE SHE, Watershed models, 849336090, 245-272.
Zhang (b0255) 2019; 272
Yu, Zeng, Wen, Su (b0250) 2018; 123
Wang, Wu, Zhang (b0200) 2016; 181
Wu, Jansson, Tan, Wu, Huang (b0230) 2016; 8
Spaans, Baker (b0180) 1996; 60
Mwangi, Zeng, Montzka, Yu, Su (b0155) 2020; 125
Li, Shi, Flerchinger, Akae, Wang (b0115) 2012; 173
Gustafsson, Stähli, Jansson (b0080) 2001; 70
Baker, J. M., Spaans, E. J. A. 1997. Mechanics of meltwater movement above and within frozen soil, In: N.H. Hanover (Ed.), International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, U.S. Army Cold Reg. Res. and Eng. Lab., Fairbanks, Alaska, pp. 31-36.
Gustafsson, Lewan, Jansson (b0075) 2004; 43
Cary, Papendick, Campbell (b0055) 1979; 43
Zhou, Zhou, Kinzelbach, Stauffer (b0265) 2014; 50
Black, Tice (b0040) 1989; 25
Hansson, K., Simunek, J., Mizoguchi, M. and Genuchten, M. T. v. 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone J. 3, 693-704.
Mualem (b0150) 1976; 12
Khoshkhoo, Jansson, Irannejad, Khalili, Rahimi (b0105) 2015; 119
Metzger (b0140) 2015; 12
Stähli, Jansson, Lundin (b0185) 1996; 10
Jordan, R. 1991. A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89, COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH.
Liu, Xu, Wu (b0125) 2001; 11
Zhang, Wang, Zhou, Liu, Wang (b0260) 2012; 34
Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.-E. 2015. Solute and water effects on soil freezing characteristics based on laboratory experiments, Cold Regions Science and Technology, Accepted.
Hayashi, Quinton, Pietroniro, Gibson (b0090) 2004; 296
Konrad, McCammon (b0110) 1990; 27
Schilling, Park, Therrien, Nagare (b0175) 2019; 57
Cary, Mayland (b0050) 1972; 36
Wu, Ran, Jansson, Chen, Tan, Zhang (b0235) 2019; 271
Zhou (10.1016/j.jhydrol.2020.125693_b0265) 2014; 50
Hayashi (10.1016/j.jhydrol.2020.125693_b0090) 2004; 296
Liu (10.1016/j.jhydrol.2020.125693_b0125) 2001; 11
Wang (10.1016/j.jhydrol.2020.125693_b0200) 2016; 181
McCauley (10.1016/j.jhydrol.2020.125693_b0135) 2002; 34
Mohammed (10.1016/j.jhydrol.2020.125693_b0145) 2018; 17
Konrad (10.1016/j.jhydrol.2020.125693_b0110) 1990; 27
10.1016/j.jhydrol.2020.125693_b0120
10.1016/j.jhydrol.2020.125693_b0045
Banin (10.1016/j.jhydrol.2020.125693_b0025) 1974; 10
Scherler (10.1016/j.jhydrol.2020.125693_b0170) 2013; 118
Azmatch (10.1016/j.jhydrol.2020.125693_b0005) 2012; 83–84
10.1016/j.jhydrol.2020.125693_b0085
10.1016/j.jhydrol.2020.125693_b0240
Zhang (10.1016/j.jhydrol.2020.125693_b0260) 2012; 34
Wu (10.1016/j.jhydrol.2020.125693_b0245) 2011; 62
Metzger (10.1016/j.jhydrol.2020.125693_b0140) 2015; 12
Li (10.1016/j.jhydrol.2020.125693_b0115) 2012; 173
Okkonen (10.1016/j.jhydrol.2020.125693_b0160) 2011; 411
Stähli (10.1016/j.jhydrol.2020.125693_b0185) 1996; 10
Jansson (10.1016/j.jhydrol.2020.125693_b0095) 2012; 55
10.1016/j.jhydrol.2020.125693_b0015
Flerchinger (10.1016/j.jhydrol.2020.125693_b0065) 1989; 32
Watanabe (10.1016/j.jhydrol.2020.125693_b0205) 2013; 12
Lopez (10.1016/j.jhydrol.2020.125693_b0130) 2007; 21
Gustafsson (10.1016/j.jhydrol.2020.125693_b0080) 2001; 70
Gustafsson (10.1016/j.jhydrol.2020.125693_b0075) 2004; 43
Zhang (10.1016/j.jhydrol.2020.125693_b0255) 2019; 272
Mwangi (10.1016/j.jhydrol.2020.125693_b0155) 2020; 125
Wettlaufer (10.1016/j.jhydrol.2020.125693_b0215) 2006; 38
Mualem (10.1016/j.jhydrol.2020.125693_b0150) 1976; 12
Cary (10.1016/j.jhydrol.2020.125693_b0050) 1972; 36
Wu (10.1016/j.jhydrol.2020.125693_b0230) 2016; 8
10.1016/j.jhydrol.2020.125693_b0100
Khoshkhoo (10.1016/j.jhydrol.2020.125693_b0105) 2015; 119
Wu (10.1016/j.jhydrol.2020.125693_b0220) 2013; 260
Wu (10.1016/j.jhydrol.2020.125693_b0235) 2019; 271
Black (10.1016/j.jhydrol.2020.125693_b0040) 1989; 25
10.1016/j.jhydrol.2020.125693_b0225
Schilling (10.1016/j.jhydrol.2020.125693_b0175) 2019; 57
Stähli (10.1016/j.jhydrol.2020.125693_b0190) 1997; 195
Watanabe (10.1016/j.jhydrol.2020.125693_b0210) 2017; 31
Espeby (10.1016/j.jhydrol.2020.125693_b0060) 1992; 131
Rasmussen (10.1016/j.jhydrol.2020.125693_b0165) 2018; 146
Beven (10.1016/j.jhydrol.2020.125693_b0030) 2001; 249
Cary (10.1016/j.jhydrol.2020.125693_b0055) 1979; 43
Spaans (10.1016/j.jhydrol.2020.125693_b0180) 1996; 60
Yu (10.1016/j.jhydrol.2020.125693_b0250) 2018; 123
Baker (10.1016/j.jhydrol.2020.125693_b0010) 1989; 25
10.1016/j.jhydrol.2020.125693_b0035
Balland (10.1016/j.jhydrol.2020.125693_b0020) 2005; 4
10.1016/j.jhydrol.2020.125693_b0070
10.1016/j.jhydrol.2020.125693_b0195
References_xml – reference: Wu, M., Huang, J., Wu, J., Tan, X. and Jansson, P.-E., 2016. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China, 535.
– volume: 36
  start-page: 549
  year: 1972
  end-page: 555
  ident: b0050
  article-title: Salt and water movement in unsaturated frozen soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 3
  year: 1979
  end-page: 8
  ident: b0055
  article-title: Water and salt movement in unsaturated frozen soil: Principles and field observations
  publication-title: Soil Sci. Soc. Am. J.
– reference: Voss, C.I. SUTRA. 2003. A model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport, US Geological Survey Water-Resources Investigations, 250.
– reference: Hansson, K., Simunek, J., Mizoguchi, M. and Genuchten, M. T. v. 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone J. 3, 693-704.
– volume: 146
  start-page: 199
  year: 2018
  end-page: 213
  ident: b0165
  article-title: Modelling present and future permafrost thermal regimes in Northeast Greenland
  publication-title: Cold Reg. Sci. Technol.
– volume: 34
  start-page: 117
  year: 2002
  end-page: 125
  ident: b0135
  article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 83–84
  start-page: 103
  year: 2012
  end-page: 109
  ident: b0005
  article-title: Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 34
  start-page: 1099
  year: 2012
  end-page: 1109
  ident: b0260
  article-title: Simulating the Water-Heat Processes in Permafrost Regions in the Tibetan Plateau Based on CoupModel
  publication-title: J. Glaciol. Geocryol.
– volume: 195
  start-page: 352
  year: 1997
  end-page: 369
  ident: b0190
  article-title: Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry
  publication-title: J. Hydrol.
– volume: 38
  start-page: 427
  year: 2006
  end-page: 452
  ident: b0215
  article-title: Premelting dynamics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 70
  start-page: 81
  year: 2001
  end-page: 96
  ident: b0080
  article-title: The surface energy balance of a snow cover: comparing measurements to two differentsimulation models
  publication-title: Theor. Appl. Climatol.
– volume: 125
  year: 2020
  ident: b0155
  article-title: Assimilation of cosmic-ray neutron counts for the estimation of soil ice content on the eastern Tibetan Plateau
  publication-title: J. Geophys. Res. Atmosph.
– volume: 50
  start-page: 9630
  year: 2014
  end-page: 9655
  ident: b0265
  article-title: Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR
  publication-title: Water Resour. Res.
– reference: Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrology papers (Colorado State University); no. 3, 1964.
– volume: 60
  start-page: 205
  year: 1996
  end-page: 210
  ident: b0180
  article-title: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic
  publication-title: Soil Sci. Soc. Am. J.
– volume: 131
  start-page: 105
  year: 1992
  end-page: 132
  ident: b0060
  article-title: Coupled simulations of water flow from a field-investigated glacial till slope using a quasi-two-dimensional water and heat model with bypass flow
  publication-title: J. Hydrol.
– volume: 173
  start-page: 28
  year: 2012
  end-page: 33
  ident: b0115
  article-title: Simulation of freezing and thawing soils in inner Mongolia Hetao Irrigation District
  publication-title: China, Geoderma
– volume: 271
  start-page: 295
  year: 2019
  end-page: 306
  ident: b0235
  article-title: Global parameters sensitivity analysis of modeling water, energy and carbon exchange of an arid agricultural ecosystem
  publication-title: Agric. For. Meteorol.
– volume: 119
  start-page: 47
  year: 2015
  end-page: 60
  ident: b0105
  article-title: Calibration of an energy balance model to simulate wintertime soil temperature, soil frost depth, and snow depth for a 14year period in a highland area of Iran
  publication-title: Cold Reg. Sci. Technol.
– volume: 10
  start-page: 1305
  year: 1996
  end-page: 1316
  ident: b0185
  article-title: Preferential water flow in a frozen soil-A two-domain model approach
  publication-title: Hydrol. Process.
– volume: 296
  start-page: 81
  year: 2004
  end-page: 97
  ident: b0090
  article-title: Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures
  publication-title: J. Hydrol.
– volume: 55
  start-page: 1337
  year: 2012
  end-page: 1344
  ident: b0095
  article-title: CoupModel: model use, calibration, and validation
  publication-title: Trans. ASABE
– volume: 12
  year: 2013
  ident: b0205
  article-title: Water Infiltration into a Frozen Soil with Simultaneous Melting of the Frozen Layer
  publication-title: Vadose Zone J.
– volume: 57
  start-page: 63
  year: 2019
  end-page: 74
  ident: b0175
  article-title: Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw
  publication-title: Groundwater
– volume: 25
  start-page: 1825
  year: 1989
  end-page: 1831
  ident: b0010
  article-title: Salt redistribution during freezing of saline sand columns at constant rates
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 726
  year: 1990
  end-page: 736
  ident: b0110
  article-title: Solute partitioning in freezing soils
  publication-title: Can. Geotech. J.
– volume: 12
  start-page: 125
  year: 2015
  end-page: 146
  ident: b0140
  article-title: CO
  publication-title: Biogeosciences
– reference: Baker, J. M., Spaans, E. J. A. 1997. Mechanics of meltwater movement above and within frozen soil, In: N.H. Hanover (Ed.), International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, U.S. Army Cold Reg. Res. and Eng. Lab., Fairbanks, Alaska, pp. 31-36.
– volume: 62
  start-page: 780
  year: 2011
  end-page: 796
  ident: b0245
  article-title: Modelling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China
  publication-title: Eur. J. Soil Sci.
– volume: 249
  start-page: 11
  year: 2001
  end-page: 29
  ident: b0030
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: J. Hydrol.
– volume: 11
  start-page: 321
  year: 2001
  ident: b0125
  article-title: Present situation and tendency of saline-alkali soil in west Jilin Province
  publication-title: J. Geog. Sci.
– volume: 43
  start-page: 1750
  year: 2004
  end-page: 1767
  ident: b0075
  article-title: Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia
  publication-title: J. Appl. Meteorol.
– volume: 10
  start-page: 124
  year: 1974
  end-page: 128
  ident: b0025
  article-title: Effects of salt concentration changes during freezing on the unfrozen water content of porous materials
  publication-title: Water Resour. Res.
– reference: Graham, D. N., Butts, M. B. 2005. Flexible, integrated watershed modelling with MIKE SHE, Watershed models, 849336090, 245-272.
– volume: 181
  start-page: 193
  year: 2016
  end-page: 201
  ident: b0200
  article-title: Water and solute fluxes in soils undergoing freezing and thawing
  publication-title: Soil Sci.
– reference: Lindeman, R., Merenda, P., Gold, R., 1980. Introduction to Bivariate and Multivariate Analysis (London, Foresman and Co.).
– volume: 21
  start-page: 103
  year: 2007
  end-page: 109
  ident: b0130
  article-title: Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia
  publication-title: Hydrol. Process.
– reference: Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S. and Johanson, R. C.: Hydrological simulation program—FORTRAN user’s manual for version 11, Environmental Protection Agency Report No. EPA/600/R-97/080. US Environmental Protection Agency, Athens, Ga, 1997.
– volume: 260
  start-page: 50
  year: 2013
  end-page: 61
  ident: b0220
  article-title: Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest
  publication-title: Ecol. Model.
– volume: 8
  start-page: 64
  year: 2016
  ident: b0230
  article-title: Constraining parameter uncertainty in simulations of water and heat dynamics in seasonally frozen soil using limited observed data
  publication-title: Water
– volume: 25
  start-page: 2205
  year: 1989
  end-page: 2210
  ident: b0040
  article-title: Comparison of soil freezing curve and soil-water curve for Windsor sandy loam
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 565
  year: 1989
  end-page: 0571
  ident: b0065
  article-title: Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development
  publication-title: Trans. ASAE
– volume: 31
  start-page: 270
  year: 2017
  end-page: 278
  ident: b0210
  article-title: Effect of macropores on soil freezing and thawing with infiltration
  publication-title: Hydrol. Process.
– volume: 272
  start-page: 176
  year: 2019
  end-page: 186
  ident: b0255
  article-title: Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69° N)
  publication-title: Agric. For. Meteorol.
– volume: 118
  start-page: 780
  year: 2013
  end-page: 794
  ident: b0170
  article-title: Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 4
  start-page: 549
  year: 2005
  end-page: 558
  ident: b0020
  article-title: Modeling soil thermal conductivities over a wide range of conditions
  publication-title: J. Environ. Eng. Sci.
– reference: Jordan, R. 1991. A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89, COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH.
– volume: 123
  start-page: 7393
  year: 2018
  end-page: 7415
  ident: b0250
  article-title: Liquid-vapor-air flow in the frozen soil
  publication-title: J. Geophys. Res. Atmosph.
– volume: 17
  year: 2018
  ident: b0145
  article-title: Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework
  publication-title: Vadose Zone J.
– volume: 12
  start-page: 513
  year: 1976
  end-page: 522
  ident: b0150
  article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media
  publication-title: Water Resour. Res.
– reference: Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.-E. 2015. Solute and water effects on soil freezing characteristics based on laboratory experiments, Cold Regions Science and Technology, Accepted.
– volume: 411
  start-page: 91
  year: 2011
  end-page: 107
  ident: b0160
  article-title: A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland
  publication-title: J. Hydrol.
– ident: 10.1016/j.jhydrol.2020.125693_b0100
– volume: 11
  start-page: 321
  year: 2001
  ident: 10.1016/j.jhydrol.2020.125693_b0125
  article-title: Present situation and tendency of saline-alkali soil in west Jilin Province
  publication-title: J. Geog. Sci.
  doi: 10.1007/BF02892316
– volume: 70
  start-page: 81
  year: 2001
  ident: 10.1016/j.jhydrol.2020.125693_b0080
  article-title: The surface energy balance of a snow cover: comparing measurements to two differentsimulation models
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s007040170007
– volume: 12
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125693_b0205
  article-title: Water Infiltration into a Frozen Soil with Simultaneous Melting of the Frozen Layer
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2011.0188
– ident: 10.1016/j.jhydrol.2020.125693_b0085
  doi: 10.2113/3.2.693
– volume: 10
  start-page: 1305
  year: 1996
  ident: 10.1016/j.jhydrol.2020.125693_b0185
  article-title: Preferential water flow in a frozen soil-A two-domain model approach
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F
– volume: 38
  start-page: 427
  year: 2006
  ident: 10.1016/j.jhydrol.2020.125693_b0215
  article-title: Premelting dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175758
– volume: 27
  start-page: 726
  year: 1990
  ident: 10.1016/j.jhydrol.2020.125693_b0110
  article-title: Solute partitioning in freezing soils
  publication-title: Can. Geotech. J.
  doi: 10.1139/t90-086
– volume: 62
  start-page: 780
  year: 2011
  ident: 10.1016/j.jhydrol.2020.125693_b0245
  article-title: Modelling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01397.x
– volume: 12
  start-page: 125
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125693_b0140
  article-title: CO2 fluxes and ecosystem dynamics at five European treeless peatlands–merging data and process oriented modeling
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-125-2015
– ident: 10.1016/j.jhydrol.2020.125693_b0225
  doi: 10.1016/j.jhydrol.2016.01.050
– volume: 123
  start-page: 7393
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125693_b0250
  article-title: Liquid-vapor-air flow in the frozen soil
  publication-title: J. Geophys. Res. Atmosph.
  doi: 10.1029/2018JD028502
– volume: 119
  start-page: 47
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125693_b0105
  article-title: Calibration of an energy balance model to simulate wintertime soil temperature, soil frost depth, and snow depth for a 14year period in a highland area of Iran
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2015.07.008
– volume: 57
  start-page: 63
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125693_b0175
  article-title: Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw
  publication-title: Groundwater
  doi: 10.1111/gwat.12841
– ident: 10.1016/j.jhydrol.2020.125693_b0195
– volume: 55
  start-page: 1337
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125693_b0095
  article-title: CoupModel: model use, calibration, and validation
  publication-title: Trans. ASABE
  doi: 10.13031/2013.42245
– volume: 181
  start-page: 193
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125693_b0200
  article-title: Water and solute fluxes in soils undergoing freezing and thawing
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000148
– volume: 118
  start-page: 780
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125693_b0170
  article-title: Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/jgrf.20069
– volume: 272
  start-page: 176
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125693_b0255
  article-title: Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69° N)
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.02.021
– volume: 21
  start-page: 103
  year: 2007
  ident: 10.1016/j.jhydrol.2020.125693_b0130
  article-title: Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6224
– volume: 36
  start-page: 549
  year: 1972
  ident: 10.1016/j.jhydrol.2020.125693_b0050
  article-title: Salt and water movement in unsaturated frozen soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1972.03615995003600040019x
– volume: 50
  start-page: 9630
  year: 2014
  ident: 10.1016/j.jhydrol.2020.125693_b0265
  article-title: Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015640
– volume: 34
  start-page: 117
  year: 2002
  ident: 10.1016/j.jhydrol.2020.125693_b0135
  article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/S0165-232X(01)00064-7
– volume: 411
  start-page: 91
  year: 2011
  ident: 10.1016/j.jhydrol.2020.125693_b0160
  article-title: A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.09.038
– volume: 32
  start-page: 565
  year: 1989
  ident: 10.1016/j.jhydrol.2020.125693_b0065
  article-title: Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development
  publication-title: Trans. ASAE
  doi: 10.13031/2013.31040
– volume: 4
  start-page: 549
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125693_b0020
  article-title: Modeling soil thermal conductivities over a wide range of conditions
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s05-007
– volume: 173
  start-page: 28
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125693_b0115
  article-title: Simulation of freezing and thawing soils in inner Mongolia Hetao Irrigation District
  publication-title: China, Geoderma
  doi: 10.1016/j.geoderma.2012.01.009
– ident: 10.1016/j.jhydrol.2020.125693_b0045
– volume: 25
  start-page: 2205
  year: 1989
  ident: 10.1016/j.jhydrol.2020.125693_b0040
  article-title: Comparison of soil freezing curve and soil-water curve for Windsor sandy loam
  publication-title: Water Resour. Res.
  doi: 10.1029/WR025i010p02205
– volume: 260
  start-page: 50
  year: 2013
  ident: 10.1016/j.jhydrol.2020.125693_b0220
  article-title: Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.03.015
– volume: 146
  start-page: 199
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125693_b0165
  article-title: Modelling present and future permafrost thermal regimes in Northeast Greenland
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2017.10.011
– ident: 10.1016/j.jhydrol.2020.125693_b0240
  doi: 10.1016/j.coldregions.2015.03.007
– volume: 17
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125693_b0145
  article-title: Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2018.04.0084
– volume: 125
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125693_b0155
  article-title: Assimilation of cosmic-ray neutron counts for the estimation of soil ice content on the eastern Tibetan Plateau
  publication-title: J. Geophys. Res. Atmosph.
  doi: 10.1029/2019JD031529
– volume: 10
  start-page: 124
  year: 1974
  ident: 10.1016/j.jhydrol.2020.125693_b0025
  article-title: Effects of salt concentration changes during freezing on the unfrozen water content of porous materials
  publication-title: Water Resour. Res.
  doi: 10.1029/WR010i001p00124
– volume: 8
  start-page: 64
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125693_b0230
  article-title: Constraining parameter uncertainty in simulations of water and heat dynamics in seasonally frozen soil using limited observed data
  publication-title: Water
  doi: 10.3390/w8020064
– volume: 296
  start-page: 81
  year: 2004
  ident: 10.1016/j.jhydrol.2020.125693_b0090
  article-title: Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.03.020
– volume: 12
  start-page: 513
  year: 1976
  ident: 10.1016/j.jhydrol.2020.125693_b0150
  article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/WR012i003p00513
– volume: 25
  start-page: 1825
  year: 1989
  ident: 10.1016/j.jhydrol.2020.125693_b0010
  article-title: Salt redistribution during freezing of saline sand columns at constant rates
  publication-title: Water Resour. Res.
  doi: 10.1029/WR025i008p01825
– volume: 43
  start-page: 3
  year: 1979
  ident: 10.1016/j.jhydrol.2020.125693_b0055
  article-title: Water and salt movement in unsaturated frozen soil: Principles and field observations
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1979.03615995004300010001x
– volume: 34
  start-page: 1099
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125693_b0260
  article-title: Simulating the Water-Heat Processes in Permafrost Regions in the Tibetan Plateau Based on CoupModel
  publication-title: J. Glaciol. Geocryol.
– volume: 131
  start-page: 105
  year: 1992
  ident: 10.1016/j.jhydrol.2020.125693_b0060
  article-title: Coupled simulations of water flow from a field-investigated glacial till slope using a quasi-two-dimensional water and heat model with bypass flow
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90214-G
– ident: 10.1016/j.jhydrol.2020.125693_b0120
– ident: 10.1016/j.jhydrol.2020.125693_b0015
– volume: 60
  start-page: 205
  year: 1996
  ident: 10.1016/j.jhydrol.2020.125693_b0180
  article-title: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000010005x
– volume: 271
  start-page: 295
  year: 2019
  ident: 10.1016/j.jhydrol.2020.125693_b0235
  article-title: Global parameters sensitivity analysis of modeling water, energy and carbon exchange of an arid agricultural ecosystem
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.03.007
– volume: 31
  start-page: 270
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125693_b0210
  article-title: Effect of macropores on soil freezing and thawing with infiltration
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10939
– volume: 249
  start-page: 11
  year: 2001
  ident: 10.1016/j.jhydrol.2020.125693_b0030
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00421-8
– volume: 195
  start-page: 352
  year: 1997
  ident: 10.1016/j.jhydrol.2020.125693_b0190
  article-title: Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(96)03227-1
– ident: 10.1016/j.jhydrol.2020.125693_b0035
– ident: 10.1016/j.jhydrol.2020.125693_b0070
  doi: 10.1201/9781420037432.ch10
– volume: 83–84
  start-page: 103
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125693_b0005
  article-title: Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2012.07.002
– volume: 43
  start-page: 1750
  year: 2004
  ident: 10.1016/j.jhydrol.2020.125693_b0075
  article-title: Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/JAM2163.1
SSID ssj0000334
Score 2.4530587
Snippet •Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils...
Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125693
SubjectTerms Agricultural robots
Agricultural soils
Agriculture
Calibration and validations
China
climate
Climate change
Earth and Related Environmental Sciences
Energy balance
Freezing
Freezing point depression
Geovetenskap och relaterad miljövetenskap
heat transfer
Hydrological process
Hydrology
Model calibration and validation
Model performance
model validation
Natural Sciences
Naturvetenskap
Oceanografi, hydrologi och vattenresurser
Oceanography, Hydrology and Water Resources
Saline soil
Saline water
Seasonal frost
Sensitivity analysis
Soil hydrology
Soil mechanics
Soil moisture
Soil salinization
soil temperature
soil water
spring
Systematic modeling
Temperature
Temperature measurement
Water management
winter
Title Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel: Model calibration and validation
URI https://dx.doi.org/10.1016/j.jhydrol.2020.125693
https://www.proquest.com/docview/2524260874
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290623
Volume 596
WOSCitedRecordID wos000642334400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 1879-2707
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BiwQcEBQqwkuLhLggB3u9ztrHCMqjh6pIBSouq80-EqepEzk2Kvx6Zu31oyJRy4GLFVlZe-Xv2_HMePYbhF4JIeBFopWn4lHkwUpUsOYk8QwBw0ASqmNJq2YT7OgoPj1Njl1Cf121E2BZFl9cJKv_CjWcA7Dt1tl_gLu9KJyA3wA6HAF2OF4L-DpNoG06PF28mf1SeWvfqrY3XfYVGJKeN_Xjjee4FovCg0C9tIUBJtf6d7VffZlmRVc2m9WbBcuVbaW22OLgNreu6gnG51aRQVn6tamH72WVjl2W4PNPexnsKnv7ZdgW98Db1O0LO9a5B5b77PIVDof93AUJukpBZ25jltgdcaxvj6O6xe1ftr1OM8yH83r6ENsTK44RjeoWixtks9-n38Z8mU_5WTHjVteehDfRLmFRAvZvd_z54PSwe2uHIW2U5YNR1UCznV238-vtxttv82n6MUtfh7byXU7uo3sOEzyuyfIA3dDZHro7nuZOeEXvodsftRMvf4jyhkLYUgj3KYQbCmFLIQwUwpcphJcG9ymEGwrhikK4oxBOM9xS6BH6-uHg5N0nz_Xm8ARNwsKTghHfJJPAMEqCUCmiowmDp2ikTOgk8JUUPhE0VNSERMmQBDIyxJhoEokELP8-2smWmX6McCCpiI1VSZKCGj-cMNvDjthYhCpwlwaINk-XSydcb_unLHhToTjnDhRuQeE1KAM0bIetauWWqwbEDXTcuZ-1W8mBgVcNfdlAzcE8229uItOwfDiJrA_sx4wO0OuaA-1stlB0gH5s-GMdjXMnATbji5KvNV_1cvuc-VQyJRg3sU85jYXhAgIKHiQTk6gwHoVGP7nuLJ6iO92KfYZ2irzUz9Et-bNI1_kLt3r-ADA15vU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+soil+hydrological+modeling+with+the+implementation+of+salt-induced+freezing+point+depression+in+CoupModel&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wu%2C+Mousong&rft.au=Zhao%2C+Q.&rft.au=Jansson%2C+Per-Erik&rft.au=Wu%2C+J.&rft.date=2021-05-01&rft.issn=1879-2707&rft.volume=596&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125693&rft.externalDocID=oai_DiVA_org_kth_290623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon