Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel: Model calibration and validation
•Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils simulation.•Boundary conditions were found to impact surface water and energy balance.•Salts transport was underestimated by the model. Soil freez...
Uložené v:
| Vydané v: | Journal of hydrology (Amsterdam) Ročník 596; s. 125693 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2021
|
| Predmet: | |
| ISSN: | 0022-1694, 1879-2707, 1879-2707 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils simulation.•Boundary conditions were found to impact surface water and energy balance.•Salts transport was underestimated by the model.
Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management. |
|---|---|
| AbstractList | Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management. •Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils simulation.•Boundary conditions were found to impact surface water and energy balance.•Salts transport was underestimated by the model. Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from mid-to-high latitudes can alter characteristics of soil freezing/thawing cycle and then affect soil thermal and hydrological processes in winter and finally cause salinization in spring. To quantify the impacts of soil salinization on soil water and heat transport in saline soils, we conducted field experiments on soil water and heat dynamics in two typical agricultural regions of northern China with different climate and soil conditions. The coupled soil heat and water model—CoupModel has been extended to account for the dynamic impacts of salt on freezing point depression. The newly-added module improved the representation of soil freezing point depression by significantly improving model performance between simulated and measured soil temperatures, especially around freezing point, with mean error (ME) for the soil temperature at various depths reduced by 16% to 77% for the entire winter period. With a systematic model calibration approach, processes related to energy balance and soil freezing/thawing have been well constrained for both study sites with different characteristics for soil hydrology and energy balance. The model generally showed good performance with respect to soil moisture and temperature for both the calibration and validation periods. Our study has demonstrated a new modeling approach to successfully account for the impacts of salt on soil freezing/thawing and the new module can be a useful tool to address the salinization problems in mid-to-high latitudes with respect to climate change and water management. |
| ArticleNumber | 125693 |
| Author | Zheng, Minjie Tan, Xiao Zhao, Qiang Zhang, Wenxin Wu, Mousong Wang, Kang Huang, Jiesheng Chen, Peng Wu, Jingwei Jansson, Per-Erik Duan, Zheng |
| Author_xml | – sequence: 1 givenname: Mousong surname: Wu fullname: Wu, Mousong organization: International Institute for Earth System Science, Nanjing University, 210023 Nanjing, Jiangsu, China – sequence: 2 givenname: Qiang surname: Zhao fullname: Zhao, Qiang organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China – sequence: 3 givenname: Per-Erik surname: Jansson fullname: Jansson, Per-Erik organization: Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden – sequence: 4 givenname: Jingwei surname: Wu fullname: Wu, Jingwei email: jingwei.wu@whu.edu.cn organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China – sequence: 5 givenname: Xiao surname: Tan fullname: Tan, Xiao organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China – sequence: 6 givenname: Zheng surname: Duan fullname: Duan, Zheng organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden – sequence: 7 givenname: Kang surname: Wang fullname: Wang, Kang organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China – sequence: 8 givenname: Peng surname: Chen fullname: Chen, Peng organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, 210098 Nanjing, Jiangsu, China – sequence: 9 givenname: Minjie surname: Zheng fullname: Zheng, Minjie organization: Department of Geology, Lund University, 22362 Lund, Sweden – sequence: 10 givenname: Jiesheng surname: Huang fullname: Huang, Jiesheng organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072 Wuhan, Hubei, China – sequence: 11 givenname: Wenxin surname: Zhang fullname: Zhang, Wenxin email: wenxin.zhang@nateko.lu.se organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290623$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) |
| BookMark | eNqFUk1v1DAQjVCR2BZ-ApKPXLI4tpNs4ICqLR-VirgA15Fjj3e9OHGwvVuV38EPxmkqDkiovozGeu-Nx--dF2ejH7EoXlZ0XdGqeX1YH_Z3Oni3ZpTlO1Y3HX9SrKpN25Wspe1ZsaKUsbJqOvGsOI_xQPPhXKyK39fDFPwJNYneOrLo-J1V0pHBa3R23JFbm_Yk7ZHYYXI44Jhksn4k3pAoXSrtqI8qS5iA-GsmTN6OiWicAsY4I-1Itv44fZ4V35D7QvII24dFSY6anHKv79vnxVMjXcQXD_Wi-Pbh_dftp_Lmy8fr7eVNKUXHU6lky6jp-sq0glVca4Z13-bFjFKd6CuqlaRMCq6F4UwrzipVG2ZM3deyozW_KOSiG29xOvYwBTvIcAdeWph8SNJBXgBlUHtwR4gIGeXy38yPjNBSoVotWzAbKkBspAHZNByqrjed5puGG8wzyv_OuLLfL8GHHfxIe2AdbRjP-FcLPtvy84gxwWCjQufkiP4YgdVMsIZuWpGh9QJVwccY0PwVryjMyYADPCQD5mTAkozMe_sPT9nF0RSkdY-y3y1szM6cLAaIyuKY_bcBVQLt7SMKfwDpaeCG |
| CitedBy_id | crossref_primary_10_3390_en15041308 crossref_primary_10_1016_j_jhydrol_2021_127036 crossref_primary_10_1029_2023JG007674 crossref_primary_10_1016_j_agrformet_2022_109145 crossref_primary_10_1016_j_jhydrol_2025_133259 crossref_primary_10_1016_j_jhydrol_2025_133402 crossref_primary_10_1016_j_ejrh_2025_102544 crossref_primary_10_1016_j_jhydrol_2024_131378 crossref_primary_10_1016_j_eja_2022_126715 crossref_primary_10_1016_j_agrformet_2023_109789 crossref_primary_10_1016_j_scitotenv_2023_164845 crossref_primary_10_5194_hess_25_4585_2021 crossref_primary_10_3390_agronomy14010153 crossref_primary_10_3390_su15086872 crossref_primary_10_1016_j_compgeo_2024_106209 crossref_primary_10_1029_2025GB008518 crossref_primary_10_1016_j_catena_2025_109288 crossref_primary_10_1002_hyp_15110 crossref_primary_10_3390_w15091692 |
| Cites_doi | 10.1007/BF02892316 10.1007/s007040170007 10.2136/vzj2011.0188 10.2113/3.2.693 10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F 10.1146/annurev.fluid.37.061903.175758 10.1139/t90-086 10.1111/j.1365-2389.2011.01397.x 10.5194/bg-12-125-2015 10.1016/j.jhydrol.2016.01.050 10.1029/2018JD028502 10.1016/j.coldregions.2015.07.008 10.1111/gwat.12841 10.13031/2013.42245 10.1097/SS.0000000000000148 10.1002/jgrf.20069 10.1016/j.agrformet.2019.02.021 10.1002/hyp.6224 10.2136/sssaj1972.03615995003600040019x 10.1002/2014WR015640 10.1016/S0165-232X(01)00064-7 10.1016/j.jhydrol.2011.09.038 10.13031/2013.31040 10.1139/s05-007 10.1016/j.geoderma.2012.01.009 10.1029/WR025i010p02205 10.1016/j.ecolmodel.2013.03.015 10.1016/j.coldregions.2017.10.011 10.1016/j.coldregions.2015.03.007 10.2136/vzj2018.04.0084 10.1029/2019JD031529 10.1029/WR010i001p00124 10.3390/w8020064 10.1016/j.jhydrol.2004.03.020 10.1029/WR012i003p00513 10.1029/WR025i008p01825 10.2136/sssaj1979.03615995004300010001x 10.1016/0022-1694(92)90214-G 10.2136/sssaj1996.03615995006000010005x 10.1016/j.agrformet.2019.03.007 10.1002/hyp.10939 10.1016/S0022-1694(01)00421-8 10.1016/S0022-1694(96)03227-1 10.1201/9781420037432.ch10 10.1016/j.coldregions.2012.07.002 10.1175/JAM2163.1 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| CorporateAuthor | Kvartärgeologi Quaternary Sciences Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments BECC: Biodiversity and Ecosystem services in a Changing Climate Faculty of Science Lund University Institutionen för naturgeografi och ekosystemvetenskap MERGE: ModElling the Regional and Global Earth system Strategiska forskningsområden (SFO) Dept of Physical Geography and Ecosystem Science Department of Geology Strategic research areas (SRA) Geologiska institutionen Profilområden och andra starka forskningsmiljöer |
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: MERGE: ModElling the Regional and Global Earth system – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Institutionen för naturgeografi och ekosystemvetenskap – name: Geologiska institutionen – name: Strategic research areas (SRA) – name: Quaternary Sciences – name: Department of Geology – name: Faculty of Science – name: Lunds universitet – name: Kvartärgeologi – name: Dept of Physical Geography and Ecosystem Science – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Profile areas and other strong research environments |
| DBID | AAYXX CITATION 7S9 L.6 ADTPV AOWAS D8V D95 |
| DOI | 10.1016/j.jhydrol.2020.125693 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Lunds universitet |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Agriculture |
| EISSN | 1879-2707 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_704c7da7_f804_48af_a663_19bf9d3863fe oai_DiVA_org_kth_290623 10_1016_j_jhydrol_2020_125693 S0022169420311549 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 ADTPV AOWAS D8V D95 |
| ID | FETCH-LOGICAL-a493t-ca720f9b1f74213dd2e5b7003fcc94b10dca02a43d4f32dc321c5f2ff5b5a9053 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642334400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 1879-2707 |
| IngestDate | Sun Oct 19 03:13:10 EDT 2025 Tue Nov 04 16:56:11 EST 2025 Thu Oct 02 09:52:46 EDT 2025 Tue Nov 18 22:25:24 EST 2025 Sat Nov 29 07:29:18 EST 2025 Fri Feb 23 02:43:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Freezing point depression Sensitivity analysis Seasonal frost Soil hydrology Saline soil |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a493t-ca720f9b1f74213dd2e5b7003fcc94b10dca02a43d4f32dc321c5f2ff5b5a9053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2524260874 |
| PQPubID | 24069 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_704c7da7_f804_48af_a663_19bf9d3863fe swepub_primary_oai_DiVA_org_kth_290623 proquest_miscellaneous_2524260874 crossref_primary_10_1016_j_jhydrol_2020_125693 crossref_citationtrail_10_1016_j_jhydrol_2020_125693 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125693 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Watanabe, Kugisaki (b0210) 2017; 31 Wu, Jansson, Zhang (b0245) 2011; 62 Balland, Arp (b0020) 2005; 4 Banin, Anderson (b0025) 1974; 10 Flerchinger, Saxton (b0065) 1989; 32 Beven, Freer (b0030) 2001; 249 Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrology papers (Colorado State University); no. 3, 1964. Espeby (b0060) 1992; 131 Lopez, Brouchkov, Nakayama, Takakai, Fedorov, Fukuda (b0130) 2007; 21 Voss, C.I. SUTRA. 2003. A model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport, US Geological Survey Water-Resources Investigations, 250. Wu, Jansson, van der Linden, Pilegaard, Beier, Ibrom (b0220) 2013; 260 Stähli, Stadler (b0190) 1997; 195 Azmatch, Sego, Arenson, Biggar (b0005) 2012; 83–84 Jansson (b0095) 2012; 55 Wettlaufer, Worster (b0215) 2006; 38 Rasmussen, Zhang, Hollesen, Cable, Christiansen, Jansson, Elberling (b0165) 2018; 146 McCauley, White, Lilly, Nyman (b0135) 2002; 34 Lindeman, R., Merenda, P., Gold, R., 1980. Introduction to Bivariate and Multivariate Analysis (London, Foresman and Co.). Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S. and Johanson, R. C.: Hydrological simulation program—FORTRAN user’s manual for version 11, Environmental Protection Agency Report No. EPA/600/R-97/080. US Environmental Protection Agency, Athens, Ga, 1997. Wu, M., Huang, J., Wu, J., Tan, X. and Jansson, P.-E., 2016. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China, 535. Watanabe, Kito, Dun, Wu, Greer, Flury (b0205) 2013; 12 Mohammed, Kurylyk, Cey, Hayashi (b0145) 2018; 17 Okkonen, Kløve (b0160) 2011; 411 Scherler, Hauck, Hoelzle, Salzmann (b0170) 2013; 118 Baker, Osterkamp (b0010) 1989; 25 Graham, D. N., Butts, M. B. 2005. Flexible, integrated watershed modelling with MIKE SHE, Watershed models, 849336090, 245-272. Zhang (b0255) 2019; 272 Yu, Zeng, Wen, Su (b0250) 2018; 123 Wang, Wu, Zhang (b0200) 2016; 181 Wu, Jansson, Tan, Wu, Huang (b0230) 2016; 8 Spaans, Baker (b0180) 1996; 60 Mwangi, Zeng, Montzka, Yu, Su (b0155) 2020; 125 Li, Shi, Flerchinger, Akae, Wang (b0115) 2012; 173 Gustafsson, Stähli, Jansson (b0080) 2001; 70 Baker, J. M., Spaans, E. J. A. 1997. Mechanics of meltwater movement above and within frozen soil, In: N.H. Hanover (Ed.), International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, U.S. Army Cold Reg. Res. and Eng. Lab., Fairbanks, Alaska, pp. 31-36. Gustafsson, Lewan, Jansson (b0075) 2004; 43 Cary, Papendick, Campbell (b0055) 1979; 43 Zhou, Zhou, Kinzelbach, Stauffer (b0265) 2014; 50 Black, Tice (b0040) 1989; 25 Hansson, K., Simunek, J., Mizoguchi, M. and Genuchten, M. T. v. 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone J. 3, 693-704. Mualem (b0150) 1976; 12 Khoshkhoo, Jansson, Irannejad, Khalili, Rahimi (b0105) 2015; 119 Metzger (b0140) 2015; 12 Stähli, Jansson, Lundin (b0185) 1996; 10 Jordan, R. 1991. A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89, COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH. Liu, Xu, Wu (b0125) 2001; 11 Zhang, Wang, Zhou, Liu, Wang (b0260) 2012; 34 Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.-E. 2015. Solute and water effects on soil freezing characteristics based on laboratory experiments, Cold Regions Science and Technology, Accepted. Hayashi, Quinton, Pietroniro, Gibson (b0090) 2004; 296 Konrad, McCammon (b0110) 1990; 27 Schilling, Park, Therrien, Nagare (b0175) 2019; 57 Cary, Mayland (b0050) 1972; 36 Wu, Ran, Jansson, Chen, Tan, Zhang (b0235) 2019; 271 Zhou (10.1016/j.jhydrol.2020.125693_b0265) 2014; 50 Hayashi (10.1016/j.jhydrol.2020.125693_b0090) 2004; 296 Liu (10.1016/j.jhydrol.2020.125693_b0125) 2001; 11 Wang (10.1016/j.jhydrol.2020.125693_b0200) 2016; 181 McCauley (10.1016/j.jhydrol.2020.125693_b0135) 2002; 34 Mohammed (10.1016/j.jhydrol.2020.125693_b0145) 2018; 17 Konrad (10.1016/j.jhydrol.2020.125693_b0110) 1990; 27 10.1016/j.jhydrol.2020.125693_b0120 10.1016/j.jhydrol.2020.125693_b0045 Banin (10.1016/j.jhydrol.2020.125693_b0025) 1974; 10 Scherler (10.1016/j.jhydrol.2020.125693_b0170) 2013; 118 Azmatch (10.1016/j.jhydrol.2020.125693_b0005) 2012; 83–84 10.1016/j.jhydrol.2020.125693_b0085 10.1016/j.jhydrol.2020.125693_b0240 Zhang (10.1016/j.jhydrol.2020.125693_b0260) 2012; 34 Wu (10.1016/j.jhydrol.2020.125693_b0245) 2011; 62 Metzger (10.1016/j.jhydrol.2020.125693_b0140) 2015; 12 Li (10.1016/j.jhydrol.2020.125693_b0115) 2012; 173 Okkonen (10.1016/j.jhydrol.2020.125693_b0160) 2011; 411 Stähli (10.1016/j.jhydrol.2020.125693_b0185) 1996; 10 Jansson (10.1016/j.jhydrol.2020.125693_b0095) 2012; 55 10.1016/j.jhydrol.2020.125693_b0015 Flerchinger (10.1016/j.jhydrol.2020.125693_b0065) 1989; 32 Watanabe (10.1016/j.jhydrol.2020.125693_b0205) 2013; 12 Lopez (10.1016/j.jhydrol.2020.125693_b0130) 2007; 21 Gustafsson (10.1016/j.jhydrol.2020.125693_b0080) 2001; 70 Gustafsson (10.1016/j.jhydrol.2020.125693_b0075) 2004; 43 Zhang (10.1016/j.jhydrol.2020.125693_b0255) 2019; 272 Mwangi (10.1016/j.jhydrol.2020.125693_b0155) 2020; 125 Wettlaufer (10.1016/j.jhydrol.2020.125693_b0215) 2006; 38 Mualem (10.1016/j.jhydrol.2020.125693_b0150) 1976; 12 Cary (10.1016/j.jhydrol.2020.125693_b0050) 1972; 36 Wu (10.1016/j.jhydrol.2020.125693_b0230) 2016; 8 10.1016/j.jhydrol.2020.125693_b0100 Khoshkhoo (10.1016/j.jhydrol.2020.125693_b0105) 2015; 119 Wu (10.1016/j.jhydrol.2020.125693_b0220) 2013; 260 Wu (10.1016/j.jhydrol.2020.125693_b0235) 2019; 271 Black (10.1016/j.jhydrol.2020.125693_b0040) 1989; 25 10.1016/j.jhydrol.2020.125693_b0225 Schilling (10.1016/j.jhydrol.2020.125693_b0175) 2019; 57 Stähli (10.1016/j.jhydrol.2020.125693_b0190) 1997; 195 Watanabe (10.1016/j.jhydrol.2020.125693_b0210) 2017; 31 Espeby (10.1016/j.jhydrol.2020.125693_b0060) 1992; 131 Rasmussen (10.1016/j.jhydrol.2020.125693_b0165) 2018; 146 Beven (10.1016/j.jhydrol.2020.125693_b0030) 2001; 249 Cary (10.1016/j.jhydrol.2020.125693_b0055) 1979; 43 Spaans (10.1016/j.jhydrol.2020.125693_b0180) 1996; 60 Yu (10.1016/j.jhydrol.2020.125693_b0250) 2018; 123 Baker (10.1016/j.jhydrol.2020.125693_b0010) 1989; 25 10.1016/j.jhydrol.2020.125693_b0035 Balland (10.1016/j.jhydrol.2020.125693_b0020) 2005; 4 10.1016/j.jhydrol.2020.125693_b0070 10.1016/j.jhydrol.2020.125693_b0195 |
| References_xml | – reference: Wu, M., Huang, J., Wu, J., Tan, X. and Jansson, P.-E., 2016. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China, 535. – volume: 36 start-page: 549 year: 1972 end-page: 555 ident: b0050 article-title: Salt and water movement in unsaturated frozen soil publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 3 year: 1979 end-page: 8 ident: b0055 article-title: Water and salt movement in unsaturated frozen soil: Principles and field observations publication-title: Soil Sci. Soc. Am. J. – reference: Voss, C.I. SUTRA. 2003. A model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport, US Geological Survey Water-Resources Investigations, 250. – reference: Hansson, K., Simunek, J., Mizoguchi, M. and Genuchten, M. T. v. 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone J. 3, 693-704. – volume: 146 start-page: 199 year: 2018 end-page: 213 ident: b0165 article-title: Modelling present and future permafrost thermal regimes in Northeast Greenland publication-title: Cold Reg. Sci. Technol. – volume: 34 start-page: 117 year: 2002 end-page: 125 ident: b0135 article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils publication-title: Cold Reg. Sci. Technol. – volume: 83–84 start-page: 103 year: 2012 end-page: 109 ident: b0005 article-title: Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils publication-title: Cold Reg. Sci. Technol. – volume: 34 start-page: 1099 year: 2012 end-page: 1109 ident: b0260 article-title: Simulating the Water-Heat Processes in Permafrost Regions in the Tibetan Plateau Based on CoupModel publication-title: J. Glaciol. Geocryol. – volume: 195 start-page: 352 year: 1997 end-page: 369 ident: b0190 article-title: Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry publication-title: J. Hydrol. – volume: 38 start-page: 427 year: 2006 end-page: 452 ident: b0215 article-title: Premelting dynamics publication-title: Annu. Rev. Fluid Mech. – volume: 70 start-page: 81 year: 2001 end-page: 96 ident: b0080 article-title: The surface energy balance of a snow cover: comparing measurements to two differentsimulation models publication-title: Theor. Appl. Climatol. – volume: 125 year: 2020 ident: b0155 article-title: Assimilation of cosmic-ray neutron counts for the estimation of soil ice content on the eastern Tibetan Plateau publication-title: J. Geophys. Res. Atmosph. – volume: 50 start-page: 9630 year: 2014 end-page: 9655 ident: b0265 article-title: Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR publication-title: Water Resour. Res. – reference: Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrology papers (Colorado State University); no. 3, 1964. – volume: 60 start-page: 205 year: 1996 end-page: 210 ident: b0180 article-title: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic publication-title: Soil Sci. Soc. Am. J. – volume: 131 start-page: 105 year: 1992 end-page: 132 ident: b0060 article-title: Coupled simulations of water flow from a field-investigated glacial till slope using a quasi-two-dimensional water and heat model with bypass flow publication-title: J. Hydrol. – volume: 173 start-page: 28 year: 2012 end-page: 33 ident: b0115 article-title: Simulation of freezing and thawing soils in inner Mongolia Hetao Irrigation District publication-title: China, Geoderma – volume: 271 start-page: 295 year: 2019 end-page: 306 ident: b0235 article-title: Global parameters sensitivity analysis of modeling water, energy and carbon exchange of an arid agricultural ecosystem publication-title: Agric. For. Meteorol. – volume: 119 start-page: 47 year: 2015 end-page: 60 ident: b0105 article-title: Calibration of an energy balance model to simulate wintertime soil temperature, soil frost depth, and snow depth for a 14year period in a highland area of Iran publication-title: Cold Reg. Sci. Technol. – volume: 10 start-page: 1305 year: 1996 end-page: 1316 ident: b0185 article-title: Preferential water flow in a frozen soil-A two-domain model approach publication-title: Hydrol. Process. – volume: 296 start-page: 81 year: 2004 end-page: 97 ident: b0090 article-title: Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures publication-title: J. Hydrol. – volume: 55 start-page: 1337 year: 2012 end-page: 1344 ident: b0095 article-title: CoupModel: model use, calibration, and validation publication-title: Trans. ASABE – volume: 12 year: 2013 ident: b0205 article-title: Water Infiltration into a Frozen Soil with Simultaneous Melting of the Frozen Layer publication-title: Vadose Zone J. – volume: 57 start-page: 63 year: 2019 end-page: 74 ident: b0175 article-title: Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw publication-title: Groundwater – volume: 25 start-page: 1825 year: 1989 end-page: 1831 ident: b0010 article-title: Salt redistribution during freezing of saline sand columns at constant rates publication-title: Water Resour. Res. – volume: 27 start-page: 726 year: 1990 end-page: 736 ident: b0110 article-title: Solute partitioning in freezing soils publication-title: Can. Geotech. J. – volume: 12 start-page: 125 year: 2015 end-page: 146 ident: b0140 article-title: CO publication-title: Biogeosciences – reference: Baker, J. M., Spaans, E. J. A. 1997. Mechanics of meltwater movement above and within frozen soil, In: N.H. Hanover (Ed.), International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, U.S. Army Cold Reg. Res. and Eng. Lab., Fairbanks, Alaska, pp. 31-36. – volume: 62 start-page: 780 year: 2011 end-page: 796 ident: b0245 article-title: Modelling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China publication-title: Eur. J. Soil Sci. – volume: 249 start-page: 11 year: 2001 end-page: 29 ident: b0030 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: J. Hydrol. – volume: 11 start-page: 321 year: 2001 ident: b0125 article-title: Present situation and tendency of saline-alkali soil in west Jilin Province publication-title: J. Geog. Sci. – volume: 43 start-page: 1750 year: 2004 end-page: 1767 ident: b0075 article-title: Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia publication-title: J. Appl. Meteorol. – volume: 10 start-page: 124 year: 1974 end-page: 128 ident: b0025 article-title: Effects of salt concentration changes during freezing on the unfrozen water content of porous materials publication-title: Water Resour. Res. – reference: Graham, D. N., Butts, M. B. 2005. Flexible, integrated watershed modelling with MIKE SHE, Watershed models, 849336090, 245-272. – volume: 181 start-page: 193 year: 2016 end-page: 201 ident: b0200 article-title: Water and solute fluxes in soils undergoing freezing and thawing publication-title: Soil Sci. – reference: Lindeman, R., Merenda, P., Gold, R., 1980. Introduction to Bivariate and Multivariate Analysis (London, Foresman and Co.). – volume: 21 start-page: 103 year: 2007 end-page: 109 ident: b0130 article-title: Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia publication-title: Hydrol. Process. – reference: Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S. and Johanson, R. C.: Hydrological simulation program—FORTRAN user’s manual for version 11, Environmental Protection Agency Report No. EPA/600/R-97/080. US Environmental Protection Agency, Athens, Ga, 1997. – volume: 260 start-page: 50 year: 2013 end-page: 61 ident: b0220 article-title: Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest publication-title: Ecol. Model. – volume: 8 start-page: 64 year: 2016 ident: b0230 article-title: Constraining parameter uncertainty in simulations of water and heat dynamics in seasonally frozen soil using limited observed data publication-title: Water – volume: 25 start-page: 2205 year: 1989 end-page: 2210 ident: b0040 article-title: Comparison of soil freezing curve and soil-water curve for Windsor sandy loam publication-title: Water Resour. Res. – volume: 32 start-page: 565 year: 1989 end-page: 0571 ident: b0065 article-title: Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development publication-title: Trans. ASAE – volume: 31 start-page: 270 year: 2017 end-page: 278 ident: b0210 article-title: Effect of macropores on soil freezing and thawing with infiltration publication-title: Hydrol. Process. – volume: 272 start-page: 176 year: 2019 end-page: 186 ident: b0255 article-title: Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69° N) publication-title: Agric. For. Meteorol. – volume: 118 start-page: 780 year: 2013 end-page: 794 ident: b0170 article-title: Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios publication-title: J. Geophys. Res. Earth Surf. – volume: 4 start-page: 549 year: 2005 end-page: 558 ident: b0020 article-title: Modeling soil thermal conductivities over a wide range of conditions publication-title: J. Environ. Eng. Sci. – reference: Jordan, R. 1991. A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89, COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH. – volume: 123 start-page: 7393 year: 2018 end-page: 7415 ident: b0250 article-title: Liquid-vapor-air flow in the frozen soil publication-title: J. Geophys. Res. Atmosph. – volume: 17 year: 2018 ident: b0145 article-title: Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework publication-title: Vadose Zone J. – volume: 12 start-page: 513 year: 1976 end-page: 522 ident: b0150 article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media publication-title: Water Resour. Res. – reference: Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.-E. 2015. Solute and water effects on soil freezing characteristics based on laboratory experiments, Cold Regions Science and Technology, Accepted. – volume: 411 start-page: 91 year: 2011 end-page: 107 ident: b0160 article-title: A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland publication-title: J. Hydrol. – ident: 10.1016/j.jhydrol.2020.125693_b0100 – volume: 11 start-page: 321 year: 2001 ident: 10.1016/j.jhydrol.2020.125693_b0125 article-title: Present situation and tendency of saline-alkali soil in west Jilin Province publication-title: J. Geog. Sci. doi: 10.1007/BF02892316 – volume: 70 start-page: 81 year: 2001 ident: 10.1016/j.jhydrol.2020.125693_b0080 article-title: The surface energy balance of a snow cover: comparing measurements to two differentsimulation models publication-title: Theor. Appl. Climatol. doi: 10.1007/s007040170007 – volume: 12 year: 2013 ident: 10.1016/j.jhydrol.2020.125693_b0205 article-title: Water Infiltration into a Frozen Soil with Simultaneous Melting of the Frozen Layer publication-title: Vadose Zone J. doi: 10.2136/vzj2011.0188 – ident: 10.1016/j.jhydrol.2020.125693_b0085 doi: 10.2113/3.2.693 – volume: 10 start-page: 1305 year: 1996 ident: 10.1016/j.jhydrol.2020.125693_b0185 article-title: Preferential water flow in a frozen soil-A two-domain model approach publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(199610)10:10<1305::AID-HYP462>3.0.CO;2-F – volume: 38 start-page: 427 year: 2006 ident: 10.1016/j.jhydrol.2020.125693_b0215 article-title: Premelting dynamics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175758 – volume: 27 start-page: 726 year: 1990 ident: 10.1016/j.jhydrol.2020.125693_b0110 article-title: Solute partitioning in freezing soils publication-title: Can. Geotech. J. doi: 10.1139/t90-086 – volume: 62 start-page: 780 year: 2011 ident: 10.1016/j.jhydrol.2020.125693_b0245 article-title: Modelling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01397.x – volume: 12 start-page: 125 year: 2015 ident: 10.1016/j.jhydrol.2020.125693_b0140 article-title: CO2 fluxes and ecosystem dynamics at five European treeless peatlands–merging data and process oriented modeling publication-title: Biogeosciences doi: 10.5194/bg-12-125-2015 – ident: 10.1016/j.jhydrol.2020.125693_b0225 doi: 10.1016/j.jhydrol.2016.01.050 – volume: 123 start-page: 7393 year: 2018 ident: 10.1016/j.jhydrol.2020.125693_b0250 article-title: Liquid-vapor-air flow in the frozen soil publication-title: J. Geophys. Res. Atmosph. doi: 10.1029/2018JD028502 – volume: 119 start-page: 47 year: 2015 ident: 10.1016/j.jhydrol.2020.125693_b0105 article-title: Calibration of an energy balance model to simulate wintertime soil temperature, soil frost depth, and snow depth for a 14year period in a highland area of Iran publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2015.07.008 – volume: 57 start-page: 63 year: 2019 ident: 10.1016/j.jhydrol.2020.125693_b0175 article-title: Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw publication-title: Groundwater doi: 10.1111/gwat.12841 – ident: 10.1016/j.jhydrol.2020.125693_b0195 – volume: 55 start-page: 1337 year: 2012 ident: 10.1016/j.jhydrol.2020.125693_b0095 article-title: CoupModel: model use, calibration, and validation publication-title: Trans. ASABE doi: 10.13031/2013.42245 – volume: 181 start-page: 193 year: 2016 ident: 10.1016/j.jhydrol.2020.125693_b0200 article-title: Water and solute fluxes in soils undergoing freezing and thawing publication-title: Soil Sci. doi: 10.1097/SS.0000000000000148 – volume: 118 start-page: 780 year: 2013 ident: 10.1016/j.jhydrol.2020.125693_b0170 article-title: Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/jgrf.20069 – volume: 272 start-page: 176 year: 2019 ident: 10.1016/j.jhydrol.2020.125693_b0255 article-title: Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69° N) publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.02.021 – volume: 21 start-page: 103 year: 2007 ident: 10.1016/j.jhydrol.2020.125693_b0130 article-title: Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia publication-title: Hydrol. Process. doi: 10.1002/hyp.6224 – volume: 36 start-page: 549 year: 1972 ident: 10.1016/j.jhydrol.2020.125693_b0050 article-title: Salt and water movement in unsaturated frozen soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1972.03615995003600040019x – volume: 50 start-page: 9630 year: 2014 ident: 10.1016/j.jhydrol.2020.125693_b0265 article-title: Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR publication-title: Water Resour. Res. doi: 10.1002/2014WR015640 – volume: 34 start-page: 117 year: 2002 ident: 10.1016/j.jhydrol.2020.125693_b0135 article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils publication-title: Cold Reg. Sci. Technol. doi: 10.1016/S0165-232X(01)00064-7 – volume: 411 start-page: 91 year: 2011 ident: 10.1016/j.jhydrol.2020.125693_b0160 article-title: A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.09.038 – volume: 32 start-page: 565 year: 1989 ident: 10.1016/j.jhydrol.2020.125693_b0065 article-title: Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development publication-title: Trans. ASAE doi: 10.13031/2013.31040 – volume: 4 start-page: 549 year: 2005 ident: 10.1016/j.jhydrol.2020.125693_b0020 article-title: Modeling soil thermal conductivities over a wide range of conditions publication-title: J. Environ. Eng. Sci. doi: 10.1139/s05-007 – volume: 173 start-page: 28 year: 2012 ident: 10.1016/j.jhydrol.2020.125693_b0115 article-title: Simulation of freezing and thawing soils in inner Mongolia Hetao Irrigation District publication-title: China, Geoderma doi: 10.1016/j.geoderma.2012.01.009 – ident: 10.1016/j.jhydrol.2020.125693_b0045 – volume: 25 start-page: 2205 year: 1989 ident: 10.1016/j.jhydrol.2020.125693_b0040 article-title: Comparison of soil freezing curve and soil-water curve for Windsor sandy loam publication-title: Water Resour. Res. doi: 10.1029/WR025i010p02205 – volume: 260 start-page: 50 year: 2013 ident: 10.1016/j.jhydrol.2020.125693_b0220 article-title: Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2013.03.015 – volume: 146 start-page: 199 year: 2018 ident: 10.1016/j.jhydrol.2020.125693_b0165 article-title: Modelling present and future permafrost thermal regimes in Northeast Greenland publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2017.10.011 – ident: 10.1016/j.jhydrol.2020.125693_b0240 doi: 10.1016/j.coldregions.2015.03.007 – volume: 17 year: 2018 ident: 10.1016/j.jhydrol.2020.125693_b0145 article-title: Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework publication-title: Vadose Zone J. doi: 10.2136/vzj2018.04.0084 – volume: 125 year: 2020 ident: 10.1016/j.jhydrol.2020.125693_b0155 article-title: Assimilation of cosmic-ray neutron counts for the estimation of soil ice content on the eastern Tibetan Plateau publication-title: J. Geophys. Res. Atmosph. doi: 10.1029/2019JD031529 – volume: 10 start-page: 124 year: 1974 ident: 10.1016/j.jhydrol.2020.125693_b0025 article-title: Effects of salt concentration changes during freezing on the unfrozen water content of porous materials publication-title: Water Resour. Res. doi: 10.1029/WR010i001p00124 – volume: 8 start-page: 64 year: 2016 ident: 10.1016/j.jhydrol.2020.125693_b0230 article-title: Constraining parameter uncertainty in simulations of water and heat dynamics in seasonally frozen soil using limited observed data publication-title: Water doi: 10.3390/w8020064 – volume: 296 start-page: 81 year: 2004 ident: 10.1016/j.jhydrol.2020.125693_b0090 article-title: Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.03.020 – volume: 12 start-page: 513 year: 1976 ident: 10.1016/j.jhydrol.2020.125693_b0150 article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media publication-title: Water Resour. Res. doi: 10.1029/WR012i003p00513 – volume: 25 start-page: 1825 year: 1989 ident: 10.1016/j.jhydrol.2020.125693_b0010 article-title: Salt redistribution during freezing of saline sand columns at constant rates publication-title: Water Resour. Res. doi: 10.1029/WR025i008p01825 – volume: 43 start-page: 3 year: 1979 ident: 10.1016/j.jhydrol.2020.125693_b0055 article-title: Water and salt movement in unsaturated frozen soil: Principles and field observations publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1979.03615995004300010001x – volume: 34 start-page: 1099 year: 2012 ident: 10.1016/j.jhydrol.2020.125693_b0260 article-title: Simulating the Water-Heat Processes in Permafrost Regions in the Tibetan Plateau Based on CoupModel publication-title: J. Glaciol. Geocryol. – volume: 131 start-page: 105 year: 1992 ident: 10.1016/j.jhydrol.2020.125693_b0060 article-title: Coupled simulations of water flow from a field-investigated glacial till slope using a quasi-two-dimensional water and heat model with bypass flow publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90214-G – ident: 10.1016/j.jhydrol.2020.125693_b0120 – ident: 10.1016/j.jhydrol.2020.125693_b0015 – volume: 60 start-page: 205 year: 1996 ident: 10.1016/j.jhydrol.2020.125693_b0180 article-title: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000010005x – volume: 271 start-page: 295 year: 2019 ident: 10.1016/j.jhydrol.2020.125693_b0235 article-title: Global parameters sensitivity analysis of modeling water, energy and carbon exchange of an arid agricultural ecosystem publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.03.007 – volume: 31 start-page: 270 year: 2017 ident: 10.1016/j.jhydrol.2020.125693_b0210 article-title: Effect of macropores on soil freezing and thawing with infiltration publication-title: Hydrol. Process. doi: 10.1002/hyp.10939 – volume: 249 start-page: 11 year: 2001 ident: 10.1016/j.jhydrol.2020.125693_b0030 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00421-8 – volume: 195 start-page: 352 year: 1997 ident: 10.1016/j.jhydrol.2020.125693_b0190 article-title: Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03227-1 – ident: 10.1016/j.jhydrol.2020.125693_b0035 – ident: 10.1016/j.jhydrol.2020.125693_b0070 doi: 10.1201/9781420037432.ch10 – volume: 83–84 start-page: 103 year: 2012 ident: 10.1016/j.jhydrol.2020.125693_b0005 article-title: Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2012.07.002 – volume: 43 start-page: 1750 year: 2004 ident: 10.1016/j.jhydrol.2020.125693_b0075 article-title: Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia publication-title: J. Appl. Meteorol. doi: 10.1175/JAM2163.1 |
| SSID | ssj0000334 |
| Score | 2.4530587 |
| Snippet | •Salts in frozen soils impact freezing point and vary with time during freezing.•Couplings in water, heat and energy processes were found in frozen soils... Soil freezing/thawing is an important mechanism to control soil water and heat redistribution in mid-to-high latitudes. Salt in the agricultural soil from... |
| SourceID | swepub proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125693 |
| SubjectTerms | Agricultural robots Agricultural soils Agriculture Calibration and validations China climate Climate change Earth and Related Environmental Sciences Energy balance Freezing Freezing point depression Geovetenskap och relaterad miljövetenskap heat transfer Hydrological process Hydrology Model calibration and validation Model performance model validation Natural Sciences Naturvetenskap Oceanografi, hydrologi och vattenresurser Oceanography, Hydrology and Water Resources Saline soil Saline water Seasonal frost Sensitivity analysis Soil hydrology Soil mechanics Soil moisture Soil salinization soil temperature soil water spring Systematic modeling Temperature Temperature measurement Water management winter |
| Title | Improved soil hydrological modeling with the implementation of salt-induced freezing point depression in CoupModel: Model calibration and validation |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2020.125693 https://www.proquest.com/docview/2524260874 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290623 |
| Volume | 596 |
| WOSCitedRecordID | wos000642334400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 1879-2707 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BiwQcEBQqwkuLhLggB3u9ztrHCMqjh6pIBSouq80-EqepEzk2Kvx6Zu31oyJRy4GLFVlZe-Xv2_HMePYbhF4JIeBFopWn4lHkwUpUsOYk8QwBw0ASqmNJq2YT7OgoPj1Njl1Cf121E2BZFl9cJKv_CjWcA7Dt1tl_gLu9KJyA3wA6HAF2OF4L-DpNoG06PF28mf1SeWvfqrY3XfYVGJKeN_Xjjee4FovCg0C9tIUBJtf6d7VffZlmRVc2m9WbBcuVbaW22OLgNreu6gnG51aRQVn6tamH72WVjl2W4PNPexnsKnv7ZdgW98Db1O0LO9a5B5b77PIVDof93AUJukpBZ25jltgdcaxvj6O6xe1ftr1OM8yH83r6ENsTK44RjeoWixtks9-n38Z8mU_5WTHjVteehDfRLmFRAvZvd_z54PSwe2uHIW2U5YNR1UCznV238-vtxttv82n6MUtfh7byXU7uo3sOEzyuyfIA3dDZHro7nuZOeEXvodsftRMvf4jyhkLYUgj3KYQbCmFLIQwUwpcphJcG9ymEGwrhikK4oxBOM9xS6BH6-uHg5N0nz_Xm8ARNwsKTghHfJJPAMEqCUCmiowmDp2ikTOgk8JUUPhE0VNSERMmQBDIyxJhoEokELP8-2smWmX6McCCpiI1VSZKCGj-cMNvDjthYhCpwlwaINk-XSydcb_unLHhToTjnDhRuQeE1KAM0bIetauWWqwbEDXTcuZ-1W8mBgVcNfdlAzcE8229uItOwfDiJrA_sx4wO0OuaA-1stlB0gH5s-GMdjXMnATbji5KvNV_1cvuc-VQyJRg3sU85jYXhAgIKHiQTk6gwHoVGP7nuLJ6iO92KfYZ2irzUz9Et-bNI1_kLt3r-ADA15vU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+soil+hydrological+modeling+with+the+implementation+of+salt-induced+freezing+point+depression+in+CoupModel&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wu%2C+Mousong&rft.au=Zhao%2C+Q.&rft.au=Jansson%2C+Per-Erik&rft.au=Wu%2C+J.&rft.date=2021-05-01&rft.issn=1879-2707&rft.volume=596&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125693&rft.externalDocID=oai_DiVA_org_kth_290623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |