Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles
Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and th...
Uloženo v:
| Vydáno v: | Environmental science & technology Ročník 49; číslo 18; s. 10825 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
15.09.2015
|
| Témata: | |
| ISSN: | 1520-5851, 1520-5851 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses. |
|---|---|
| AbstractList | Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses. Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses. |
| Author | Hu, Xiangang Mu, Li Zhou, Qixing An, Jing Ouyang, Shaohu |
| Author_xml | – sequence: 1 givenname: Xiangang surname: Hu fullname: Hu, Xiangang organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China – sequence: 2 givenname: Shaohu surname: Ouyang fullname: Ouyang, Shaohu organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China – sequence: 3 givenname: Li surname: Mu fullname: Mu, Li organization: Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China – sequence: 4 givenname: Jing surname: An fullname: An, Jing organization: Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences , Shenyang 110016, China – sequence: 5 givenname: Qixing surname: Zhou fullname: Zhou, Qixing organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26295980$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLAzEUhYMovtfuJEsXbU0ynUeWUusDfIF2XW6SG4xOk5pkRP0Z_mLHquDqnAMf53LPDln3wSMhB5yNOBP8GHQaYcqjUvWJiTWyzUvBhmVT8vV_fovspPTEGBMFazbJlqiELGXDtsnn1FrUOdFg6XmE5SN6pLdvziAFb1bOfaChE4gqeHoDPuROYc97mh-RTrBtuxYiPXWvLrngB_Ta6RhSjp3OXcQBnS0zPPf63QXZvSK9zxFTGqwuXGMGFVqn6V0M1rWY9siGhTbh_q_uktnZ9GFyMby6Pb-cnFwNYSyLPBR1JU0hRNPYwvBScqO0rVE2RpQKVCPHkinOK80qtNiU2vTRGgkwZtaCFrvk6Kd3GcNL1684X7ik-3_AY-jSnNdc1HVVyKJHD3_RTi3QzJfRLSC-z_92FF8fonnS |
| CitedBy_id | crossref_primary_10_3390_nano8020095 crossref_primary_10_3390_nano7110401 crossref_primary_10_1016_j_envpol_2017_10_116 crossref_primary_10_1016_j_eti_2023_103455 crossref_primary_10_1007_s00128_025_04077_y crossref_primary_10_1016_j_envpol_2024_123960 crossref_primary_10_1016_j_chemosphere_2018_01_140 crossref_primary_10_1016_j_ecoenv_2022_114218 crossref_primary_10_1016_j_scitotenv_2018_09_024 crossref_primary_10_1016_j_envpol_2020_116071 crossref_primary_10_3390_nano6100181 crossref_primary_10_1016_j_envres_2022_114314 crossref_primary_10_1016_j_chemosphere_2021_130015 crossref_primary_10_1007_s00128_020_02888_9 crossref_primary_10_1016_j_chemosphere_2016_08_138 crossref_primary_10_1016_j_ecoenv_2022_114451 crossref_primary_10_1016_j_plaphy_2024_108753 crossref_primary_10_1016_j_jbiosc_2019_01_006 crossref_primary_10_3390_ma13225121 crossref_primary_10_1007_s00128_020_03052_z crossref_primary_10_1016_j_copbio_2016_11_024 crossref_primary_10_1016_j_etap_2018_09_010 crossref_primary_10_1016_j_scitotenv_2018_03_132 crossref_primary_10_1007_s11367_016_1151_4 crossref_primary_10_1088_2053_1583_aa65c2 crossref_primary_10_1007_s11356_016_8174_z crossref_primary_10_1016_j_ecoenv_2020_110781 crossref_primary_10_1039_D1EN00763G crossref_primary_10_3390_nano14020188 crossref_primary_10_1016_j_etap_2019_103208 crossref_primary_10_1016_j_envpol_2020_114224 crossref_primary_10_3390_ijms22042180 crossref_primary_10_3390_nano10091764 crossref_primary_10_1007_s10450_024_00588_y crossref_primary_10_1016_j_plaphy_2019_12_034 crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_1016_j_scitotenv_2023_168652 crossref_primary_10_3390_w13121713 crossref_primary_10_1016_j_watres_2023_119678 crossref_primary_10_1088_1361_6528_ab99f1 crossref_primary_10_1007_s11356_018_2203_z crossref_primary_10_1016_j_ecoenv_2019_109664 crossref_primary_10_1016_j_chemosphere_2018_01_051 crossref_primary_10_1016_j_ecoenv_2023_114905 crossref_primary_10_3390_nano12060936 crossref_primary_10_1016_j_jhazmat_2023_131015 crossref_primary_10_3390_nano10122559 crossref_primary_10_1016_j_plaphy_2023_108257 crossref_primary_10_2166_wrd_2023_003 crossref_primary_10_1016_j_etap_2019_03_012 crossref_primary_10_1016_j_jhazmat_2021_127898 crossref_primary_10_1016_j_jhazmat_2019_120885 crossref_primary_10_3390_w14192997 crossref_primary_10_1016_j_envpol_2023_122485 crossref_primary_10_1016_j_ecoenv_2020_111379 crossref_primary_10_1039_D1EN00531F crossref_primary_10_1016_j_ecoenv_2020_111776 crossref_primary_10_1016_j_scitotenv_2019_134994 crossref_primary_10_1016_j_jenvman_2024_122241 crossref_primary_10_1016_j_envres_2020_109143 crossref_primary_10_3390_nano8070539 crossref_primary_10_1016_j_jenvman_2019_05_034 crossref_primary_10_1016_j_biortech_2025_132869 crossref_primary_10_3390_plants13070984 crossref_primary_10_1016_j_envint_2019_104992 crossref_primary_10_1016_j_scitotenv_2019_06_257 crossref_primary_10_1007_s12010_021_03623_8 crossref_primary_10_1016_j_chemosphere_2017_07_010 crossref_primary_10_1016_j_psep_2023_05_073 crossref_primary_10_1016_j_ecoenv_2019_109602 crossref_primary_10_1016_j_ecoenv_2020_110448 crossref_primary_10_1016_j_watres_2016_12_037 crossref_primary_10_1016_j_algal_2023_103267 crossref_primary_10_1016_j_marpolbul_2019_110838 crossref_primary_10_1002_smll_201602133 crossref_primary_10_1007_s11270_022_05611_y crossref_primary_10_1186_s12951_020_0581_0 crossref_primary_10_1002_adom_201800606 crossref_primary_10_1080_09593330_2021_1946167 crossref_primary_10_22201_ceiich_24485691e_2024_33_69799 crossref_primary_10_1016_j_scitotenv_2016_07_214 crossref_primary_10_1016_j_carbon_2020_07_057 crossref_primary_10_1038_s41467_024_55270_2 crossref_primary_10_1002_adsu_202000076 crossref_primary_10_1016_j_lwt_2022_114394 crossref_primary_10_1016_j_envres_2024_119119 crossref_primary_10_1155_2016_8608567 crossref_primary_10_1002_etc_5685 crossref_primary_10_1016_j_plaphy_2022_10_009 crossref_primary_10_1007_s00128_023_03792_8 crossref_primary_10_1080_09205063_2023_2292442 crossref_primary_10_1016_j_aquatox_2019_105297 crossref_primary_10_1016_j_envint_2021_106842 crossref_primary_10_3390_w14192971 crossref_primary_10_1002_etc_4074 crossref_primary_10_1016_j_carbon_2019_08_086 crossref_primary_10_1016_j_chemosphere_2019_125640 crossref_primary_10_1016_j_envpol_2018_02_021 crossref_primary_10_1016_j_scitotenv_2020_138010 crossref_primary_10_1177_0960327119899988 crossref_primary_10_1016_j_scitotenv_2022_158722 crossref_primary_10_1039_C8EN01378K crossref_primary_10_1080_10408436_2021_1935717 crossref_primary_10_1039_C8EN00703A crossref_primary_10_1016_j_chemosphere_2022_134262 crossref_primary_10_1039_D0EN01204A crossref_primary_10_1007_s10646_022_02539_1 crossref_primary_10_1016_j_carbon_2024_119224 crossref_primary_10_1016_j_scitotenv_2019_05_034 crossref_primary_10_1016_j_carbon_2016_07_068 crossref_primary_10_1016_j_jhazmat_2018_12_069 crossref_primary_10_1080_17435390_2018_1458342 crossref_primary_10_1016_j_enceco_2025_05_025 crossref_primary_10_1016_j_envpol_2019_113847 crossref_primary_10_1080_21655979_2022_2108564 crossref_primary_10_1016_j_algal_2022_102877 crossref_primary_10_1016_j_taap_2015_12_014 crossref_primary_10_1016_j_scitotenv_2020_138288 crossref_primary_10_1002_adma_201706709 crossref_primary_10_1371_journal_pone_0207042 crossref_primary_10_3390_molecules27020379 crossref_primary_10_1016_j_impact_2020_100211 crossref_primary_10_1016_j_agwat_2025_109550 crossref_primary_10_1016_j_aquatox_2023_106703 crossref_primary_10_3389_fpls_2022_778602 crossref_primary_10_1016_j_envpol_2016_12_055 crossref_primary_10_1007_s11356_023_27367_6 crossref_primary_10_1016_j_inoche_2024_113492 crossref_primary_10_1016_j_jhazmat_2021_125958 crossref_primary_10_1016_j_scitotenv_2020_142804 crossref_primary_10_1016_j_jece_2023_111673 crossref_primary_10_1016_j_marenvres_2015_10_001 crossref_primary_10_1016_j_scitotenv_2022_154151 crossref_primary_10_1080_09593330_2021_1916090 crossref_primary_10_1016_j_scitotenv_2020_137582 crossref_primary_10_1039_C8EN01368C crossref_primary_10_1039_D4EN01108B crossref_primary_10_3390_nano10040758 crossref_primary_10_1016_j_addr_2016_08_009 crossref_primary_10_1016_j_aac_2023_01_001 crossref_primary_10_1016_j_scitotenv_2016_07_184 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.est.5b02102 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1520-5851 |
| ExternalDocumentID | 26295980 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CGR CS3 CUPRZ CUY CVF EBS ECM ED~ EIF EJD F5P GGK GNL IH9 JG~ LG6 MS~ MW2 NPM PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW XZL YZZ ZCA 7X8 ABUFD |
| ID | FETCH-LOGICAL-a493t-2769d32288f3d1591dbcf7e98d25bab89490b116c06efe85cd0b1fd9aa40ffac2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361415800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5851 |
| IngestDate | Sun Nov 09 12:54:29 EST 2025 Mon Jul 21 06:04:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a493t-2769d32288f3d1591dbcf7e98d25bab89490b116c06efe85cd0b1fd9aa40ffac2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26295980 |
| PQID | 1712776393 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1712776393 pubmed_primary_26295980 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-15 |
| PublicationDateYYYYMMDD | 2015-09-15 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Environmental science & technology |
| PublicationTitleAlternate | Environ Sci Technol |
| PublicationYear | 2015 |
| SSID | ssj0002308 |
| Score | 2.5654962 |
| Snippet | Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10825 |
| SubjectTerms | Biomarkers - metabolism Cell Division - drug effects Cell Survival - drug effects Chlorella vulgaris - drug effects Chlorella vulgaris - metabolism Chlorella vulgaris - ultrastructure Fatty Acids, Unsaturated - metabolism Graphite - chemistry Graphite - pharmacology Lysine - metabolism Membrane Potential, Mitochondrial - drug effects Nanostructures Nanotubes, Carbon - chemistry Oxidation-Reduction Oxidative Stress - drug effects Reactive Oxygen Species - metabolism Valine - metabolism |
| Title | Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26295980 https://www.proquest.com/docview/1712776393 |
| Volume | 49 |
| WOSCitedRecordID | wos000361415800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5R0kM5AE1LCZRqkXqMi1_r3T1VVQr00IRILVVu1j4lq5EdYgchfga_mNm1Q3qphMTFD2nttTQPf7M78w1Cn62yVmY6DCyYWpByRgImCA2UoVxQxcLYL138-UknEzab8Wm34FZ3aZVrn-gdta6UWyM_i2gUUzAGnnxd3ASua5TbXe1aaLxCvQSgjNNqOtuwhQO89qVwBEIkt_31RO0TnQlVf3FTEOmDnv_jS_-fudh76Rfuo90OYeJvrUq8RVum7KOdf3gH--jgfFPeBkM7-67foYeWzLjGlcWXjsoaPCG-uiu0waLU_qq4NxqPxFJWJQbXXDUraWB8iQFJ4pGZz11eK_5etEXrQzx2GX8tS-1qaYb4etGIv3B27_Kk4_iXL1cZ-hnGpgGtnBcKT9tm4vV7dH1x_nv0I-i6NgQi5UkTxDTjGtwEYzbRAJYiLZWlhjMdEykk4ykPZRRlKsyMNYwoDbdWcyHS0Fqh4gO0XValOUTYMuMI8qShlKVWaB47QCEYhEAq0oQP0OlaEjlYhdvqEKWpVnW-kcUAfWjFmS9a-o48zmJOOAuPnvH0MXoDCIm4BJGIfEQ9Cz7BnKDX6rYp6uUnr25wnEzHj8Wz4xA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Graphene+Oxide+and+Oxidized+Carbon+Nanotubes+on+the+Cellular+Division%2C+Microstructure%2C+Uptake%2C+Oxidative+Stress%2C+and+Metabolic+Profiles&rft.jtitle=Environmental+science+%26+technology&rft.au=Hu%2C+Xiangang&rft.au=Ouyang%2C+Shaohu&rft.au=Mu%2C+Li&rft.au=An%2C+Jing&rft.date=2015-09-15&rft.eissn=1520-5851&rft.volume=49&rft.issue=18&rft.spage=10825&rft_id=info:doi/10.1021%2Facs.est.5b02102&rft_id=info%3Apmid%2F26295980&rft_id=info%3Apmid%2F26295980&rft.externalDocID=26295980 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5851&client=summon |