Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles

Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental science & technology Ročník 49; číslo 18; s. 10825
Hlavní autoři: Hu, Xiangang, Ouyang, Shaohu, Mu, Li, An, Jing, Zhou, Qixing
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 15.09.2015
Témata:
ISSN:1520-5851, 1520-5851
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.
AbstractList Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.
Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.
Author Hu, Xiangang
Mu, Li
Zhou, Qixing
An, Jing
Ouyang, Shaohu
Author_xml – sequence: 1
  givenname: Xiangang
  surname: Hu
  fullname: Hu, Xiangang
  organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
– sequence: 2
  givenname: Shaohu
  surname: Ouyang
  fullname: Ouyang, Shaohu
  organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
– sequence: 3
  givenname: Li
  surname: Mu
  fullname: Mu, Li
  organization: Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
– sequence: 4
  givenname: Jing
  surname: An
  fullname: An, Jing
  organization: Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences , Shenyang 110016, China
– sequence: 5
  givenname: Qixing
  surname: Zhou
  fullname: Zhou, Qixing
  organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26295980$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYMovtfuJEsXbU0ynUeWUusDfIF2XW6SG4xOk5pkRP0Z_mLHquDqnAMf53LPDln3wSMhB5yNOBP8GHQaYcqjUvWJiTWyzUvBhmVT8vV_fovspPTEGBMFazbJlqiELGXDtsnn1FrUOdFg6XmE5SN6pLdvziAFb1bOfaChE4gqeHoDPuROYc97mh-RTrBtuxYiPXWvLrngB_Ta6RhSjp3OXcQBnS0zPPf63QXZvSK9zxFTGqwuXGMGFVqn6V0M1rWY9siGhTbh_q_uktnZ9GFyMby6Pb-cnFwNYSyLPBR1JU0hRNPYwvBScqO0rVE2RpQKVCPHkinOK80qtNiU2vTRGgkwZtaCFrvk6Kd3GcNL1684X7ik-3_AY-jSnNdc1HVVyKJHD3_RTi3QzJfRLSC-z_92FF8fonnS
CitedBy_id crossref_primary_10_3390_nano8020095
crossref_primary_10_3390_nano7110401
crossref_primary_10_1016_j_envpol_2017_10_116
crossref_primary_10_1016_j_eti_2023_103455
crossref_primary_10_1007_s00128_025_04077_y
crossref_primary_10_1016_j_envpol_2024_123960
crossref_primary_10_1016_j_chemosphere_2018_01_140
crossref_primary_10_1016_j_ecoenv_2022_114218
crossref_primary_10_1016_j_scitotenv_2018_09_024
crossref_primary_10_1016_j_envpol_2020_116071
crossref_primary_10_3390_nano6100181
crossref_primary_10_1016_j_envres_2022_114314
crossref_primary_10_1016_j_chemosphere_2021_130015
crossref_primary_10_1007_s00128_020_02888_9
crossref_primary_10_1016_j_chemosphere_2016_08_138
crossref_primary_10_1016_j_ecoenv_2022_114451
crossref_primary_10_1016_j_plaphy_2024_108753
crossref_primary_10_1016_j_jbiosc_2019_01_006
crossref_primary_10_3390_ma13225121
crossref_primary_10_1007_s00128_020_03052_z
crossref_primary_10_1016_j_copbio_2016_11_024
crossref_primary_10_1016_j_etap_2018_09_010
crossref_primary_10_1016_j_scitotenv_2018_03_132
crossref_primary_10_1007_s11367_016_1151_4
crossref_primary_10_1088_2053_1583_aa65c2
crossref_primary_10_1007_s11356_016_8174_z
crossref_primary_10_1016_j_ecoenv_2020_110781
crossref_primary_10_1039_D1EN00763G
crossref_primary_10_3390_nano14020188
crossref_primary_10_1016_j_etap_2019_103208
crossref_primary_10_1016_j_envpol_2020_114224
crossref_primary_10_3390_ijms22042180
crossref_primary_10_3390_nano10091764
crossref_primary_10_1007_s10450_024_00588_y
crossref_primary_10_1016_j_plaphy_2019_12_034
crossref_primary_10_1016_j_jhazmat_2021_126611
crossref_primary_10_1016_j_scitotenv_2023_168652
crossref_primary_10_3390_w13121713
crossref_primary_10_1016_j_watres_2023_119678
crossref_primary_10_1088_1361_6528_ab99f1
crossref_primary_10_1007_s11356_018_2203_z
crossref_primary_10_1016_j_ecoenv_2019_109664
crossref_primary_10_1016_j_chemosphere_2018_01_051
crossref_primary_10_1016_j_ecoenv_2023_114905
crossref_primary_10_3390_nano12060936
crossref_primary_10_1016_j_jhazmat_2023_131015
crossref_primary_10_3390_nano10122559
crossref_primary_10_1016_j_plaphy_2023_108257
crossref_primary_10_2166_wrd_2023_003
crossref_primary_10_1016_j_etap_2019_03_012
crossref_primary_10_1016_j_jhazmat_2021_127898
crossref_primary_10_1016_j_jhazmat_2019_120885
crossref_primary_10_3390_w14192997
crossref_primary_10_1016_j_envpol_2023_122485
crossref_primary_10_1016_j_ecoenv_2020_111379
crossref_primary_10_1039_D1EN00531F
crossref_primary_10_1016_j_ecoenv_2020_111776
crossref_primary_10_1016_j_scitotenv_2019_134994
crossref_primary_10_1016_j_jenvman_2024_122241
crossref_primary_10_1016_j_envres_2020_109143
crossref_primary_10_3390_nano8070539
crossref_primary_10_1016_j_jenvman_2019_05_034
crossref_primary_10_1016_j_biortech_2025_132869
crossref_primary_10_3390_plants13070984
crossref_primary_10_1016_j_envint_2019_104992
crossref_primary_10_1016_j_scitotenv_2019_06_257
crossref_primary_10_1007_s12010_021_03623_8
crossref_primary_10_1016_j_chemosphere_2017_07_010
crossref_primary_10_1016_j_psep_2023_05_073
crossref_primary_10_1016_j_ecoenv_2019_109602
crossref_primary_10_1016_j_ecoenv_2020_110448
crossref_primary_10_1016_j_watres_2016_12_037
crossref_primary_10_1016_j_algal_2023_103267
crossref_primary_10_1016_j_marpolbul_2019_110838
crossref_primary_10_1002_smll_201602133
crossref_primary_10_1007_s11270_022_05611_y
crossref_primary_10_1186_s12951_020_0581_0
crossref_primary_10_1002_adom_201800606
crossref_primary_10_1080_09593330_2021_1946167
crossref_primary_10_22201_ceiich_24485691e_2024_33_69799
crossref_primary_10_1016_j_scitotenv_2016_07_214
crossref_primary_10_1016_j_carbon_2020_07_057
crossref_primary_10_1038_s41467_024_55270_2
crossref_primary_10_1002_adsu_202000076
crossref_primary_10_1016_j_lwt_2022_114394
crossref_primary_10_1016_j_envres_2024_119119
crossref_primary_10_1155_2016_8608567
crossref_primary_10_1002_etc_5685
crossref_primary_10_1016_j_plaphy_2022_10_009
crossref_primary_10_1007_s00128_023_03792_8
crossref_primary_10_1080_09205063_2023_2292442
crossref_primary_10_1016_j_aquatox_2019_105297
crossref_primary_10_1016_j_envint_2021_106842
crossref_primary_10_3390_w14192971
crossref_primary_10_1002_etc_4074
crossref_primary_10_1016_j_carbon_2019_08_086
crossref_primary_10_1016_j_chemosphere_2019_125640
crossref_primary_10_1016_j_envpol_2018_02_021
crossref_primary_10_1016_j_scitotenv_2020_138010
crossref_primary_10_1177_0960327119899988
crossref_primary_10_1016_j_scitotenv_2022_158722
crossref_primary_10_1039_C8EN01378K
crossref_primary_10_1080_10408436_2021_1935717
crossref_primary_10_1039_C8EN00703A
crossref_primary_10_1016_j_chemosphere_2022_134262
crossref_primary_10_1039_D0EN01204A
crossref_primary_10_1007_s10646_022_02539_1
crossref_primary_10_1016_j_carbon_2024_119224
crossref_primary_10_1016_j_scitotenv_2019_05_034
crossref_primary_10_1016_j_carbon_2016_07_068
crossref_primary_10_1016_j_jhazmat_2018_12_069
crossref_primary_10_1080_17435390_2018_1458342
crossref_primary_10_1016_j_enceco_2025_05_025
crossref_primary_10_1016_j_envpol_2019_113847
crossref_primary_10_1080_21655979_2022_2108564
crossref_primary_10_1016_j_algal_2022_102877
crossref_primary_10_1016_j_taap_2015_12_014
crossref_primary_10_1016_j_scitotenv_2020_138288
crossref_primary_10_1002_adma_201706709
crossref_primary_10_1371_journal_pone_0207042
crossref_primary_10_3390_molecules27020379
crossref_primary_10_1016_j_impact_2020_100211
crossref_primary_10_1016_j_agwat_2025_109550
crossref_primary_10_1016_j_aquatox_2023_106703
crossref_primary_10_3389_fpls_2022_778602
crossref_primary_10_1016_j_envpol_2016_12_055
crossref_primary_10_1007_s11356_023_27367_6
crossref_primary_10_1016_j_inoche_2024_113492
crossref_primary_10_1016_j_jhazmat_2021_125958
crossref_primary_10_1016_j_scitotenv_2020_142804
crossref_primary_10_1016_j_jece_2023_111673
crossref_primary_10_1016_j_marenvres_2015_10_001
crossref_primary_10_1016_j_scitotenv_2022_154151
crossref_primary_10_1080_09593330_2021_1916090
crossref_primary_10_1016_j_scitotenv_2020_137582
crossref_primary_10_1039_C8EN01368C
crossref_primary_10_1039_D4EN01108B
crossref_primary_10_3390_nano10040758
crossref_primary_10_1016_j_addr_2016_08_009
crossref_primary_10_1016_j_aac_2023_01_001
crossref_primary_10_1016_j_scitotenv_2016_07_184
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.est.5b02102
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
ExternalDocumentID 26295980
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
NPM
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
XZL
YZZ
ZCA
7X8
ABUFD
ID FETCH-LOGICAL-a493t-2769d32288f3d1591dbcf7e98d25bab89490b116c06efe85cd0b1fd9aa40ffac2
IEDL.DBID 7X8
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361415800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5851
IngestDate Sun Nov 09 12:54:29 EST 2025
Mon Jul 21 06:04:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a493t-2769d32288f3d1591dbcf7e98d25bab89490b116c06efe85cd0b1fd9aa40ffac2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26295980
PQID 1712776393
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1712776393
pubmed_primary_26295980
PublicationCentury 2000
PublicationDate 2015-09-15
PublicationDateYYYYMMDD 2015-09-15
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ Sci Technol
PublicationYear 2015
SSID ssj0002308
Score 2.5654962
Snippet Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10825
SubjectTerms Biomarkers - metabolism
Cell Division - drug effects
Cell Survival - drug effects
Chlorella vulgaris - drug effects
Chlorella vulgaris - metabolism
Chlorella vulgaris - ultrastructure
Fatty Acids, Unsaturated - metabolism
Graphite - chemistry
Graphite - pharmacology
Lysine - metabolism
Membrane Potential, Mitochondrial - drug effects
Nanostructures
Nanotubes, Carbon - chemistry
Oxidation-Reduction
Oxidative Stress - drug effects
Reactive Oxygen Species - metabolism
Valine - metabolism
Title Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles
URI https://www.ncbi.nlm.nih.gov/pubmed/26295980
https://www.proquest.com/docview/1712776393
Volume 49
WOSCitedRecordID wos000361415800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5R0kM5AE1LCZRqkXqMi1_r3T1VVQr00IRILVVu1j4lq5EdYgchfga_mNm1Q3qphMTFD2nttTQPf7M78w1Cn62yVmY6DCyYWpByRgImCA2UoVxQxcLYL138-UknEzab8Wm34FZ3aZVrn-gdta6UWyM_i2gUUzAGnnxd3ASua5TbXe1aaLxCvQSgjNNqOtuwhQO89qVwBEIkt_31RO0TnQlVf3FTEOmDnv_jS_-fudh76Rfuo90OYeJvrUq8RVum7KOdf3gH--jgfFPeBkM7-67foYeWzLjGlcWXjsoaPCG-uiu0waLU_qq4NxqPxFJWJQbXXDUraWB8iQFJ4pGZz11eK_5etEXrQzx2GX8tS-1qaYb4etGIv3B27_Kk4_iXL1cZ-hnGpgGtnBcKT9tm4vV7dH1x_nv0I-i6NgQi5UkTxDTjGtwEYzbRAJYiLZWlhjMdEykk4ykPZRRlKsyMNYwoDbdWcyHS0Fqh4gO0XValOUTYMuMI8qShlKVWaB47QCEYhEAq0oQP0OlaEjlYhdvqEKWpVnW-kcUAfWjFmS9a-o48zmJOOAuPnvH0MXoDCIm4BJGIfEQ9Cz7BnKDX6rYp6uUnr25wnEzHj8Wz4xA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Graphene+Oxide+and+Oxidized+Carbon+Nanotubes+on+the+Cellular+Division%2C+Microstructure%2C+Uptake%2C+Oxidative+Stress%2C+and+Metabolic+Profiles&rft.jtitle=Environmental+science+%26+technology&rft.au=Hu%2C+Xiangang&rft.au=Ouyang%2C+Shaohu&rft.au=Mu%2C+Li&rft.au=An%2C+Jing&rft.date=2015-09-15&rft.eissn=1520-5851&rft.volume=49&rft.issue=18&rft.spage=10825&rft_id=info:doi/10.1021%2Facs.est.5b02102&rft_id=info%3Apmid%2F26295980&rft_id=info%3Apmid%2F26295980&rft.externalDocID=26295980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5851&client=summon