A Pixel‐Based Framework for Data‐Driven Clothing

We propose a novel approach to learning cloth deformation as a function of body pose, recasting the graph‐like triangle mesh data structure into image‐based data in order to leverage popular and well‐developed convolutional neural networks (CNNs) in a two‐dimensional Euclidean domain. Then, a three‐...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 39; číslo 8; s. 135 - 144
Hlavní autoři: Jin, N., Zhu, Y., Geng, Z., Fedkiw, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.12.2020
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a novel approach to learning cloth deformation as a function of body pose, recasting the graph‐like triangle mesh data structure into image‐based data in order to leverage popular and well‐developed convolutional neural networks (CNNs) in a two‐dimensional Euclidean domain. Then, a three‐dimensional animation of clothing is equivalent to a sequence of two‐dimensional RGB images driven/choreographed by time dependent joint angles. In order to reduce nonlinearity demands on the neural network, we utilize procedural skinning of the body surface to capture much of the rotation/deformation so that the RGB images only contain textures of displacement offsets from skin to clothing. Notably, we illustrate that our approach does not require accurate unclothed body shapes or robust skinning techniques. Additionally, we discuss how standard image based techniques such as image partitioning for higher resolution can readily be incorporated into our framework.
Bibliografie:Work done while at Stanford University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14108