Single-and multi-objective genetic algorithm optimization for identifying soil parameters

SUMMARY This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation for which two constitutive models—a linear elastic perfectly plastic Mohr–Coulomb model and a strain‐hardening elasto‐plastic model—are succ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical and analytical methods in geomechanics Ročník 36; číslo 5; s. 597 - 618
Hlavní autoři: Papon, A., Riou, Y., Dano, C., Hicher, P.-Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 10.04.2012
Wiley
Témata:
ISSN:0363-9061, 1096-9853
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract SUMMARY This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation for which two constitutive models—a linear elastic perfectly plastic Mohr–Coulomb model and a strain‐hardening elasto‐plastic model—are successively considered. Two kinds of optimization algorithms have been used: a deterministic simplex method and a stochastic genetic method. The soil data come from the results of two pressuremeter tests, complemented by triaxial and resonant column testing. First, the inverse analysis has been performed separately on each pressuremeter test. The genetic method presents the advantage of providing a collection of satisfactory solutions, among which a geotechnical engineer has to choose the optimal one based on his scientific background and/or additional analyses based on further experimental test results. This advantage is enhanced when all the constitutive parameters sensitive to the considered problem have to be identified without restrictions in the search space. Second, the experimental values of the two pressuremeter tests have been processed simultaneously, so that the inverse analysis becomes a multi‐objective optimization problem. The genetic method allows the user to choose the most suitable parameter set according to the Pareto frontier and to guarantee the coherence between the tests. The sets of optimized parameters obtained from inverse analyses are then used to calculate the response of a spread footing, which is part of a predictive benchmark. The numerical results with respect to both the constitutive models and the inverse analysis procedure are discussed. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation for which two constitutive models—a linear elastic perfectly plastic Mohr–Coulomb model and a strain‐hardening elasto‐plastic model—are successively considered. Two kinds of optimization algorithms have been used: a deterministic simplex method and a stochastic genetic method. The soil data come from the results of two pressuremeter tests, complemented by triaxial and resonant column testing. First, the inverse analysis has been performed separately on each pressuremeter test. The genetic method presents the advantage of providing a collection of satisfactory solutions, among which a geotechnical engineer has to choose the optimal one based on his scientific background and/or additional analyses based on further experimental test results. This advantage is enhanced when all the constitutive parameters sensitive to the considered problem have to be identified without restrictions in the search space. Second, the experimental values of the two pressuremeter tests have been processed simultaneously, so that the inverse analysis becomes a multi‐objective optimization problem. The genetic method allows the user to choose the most suitable parameter set according to the Pareto frontier and to guarantee the coherence between the tests. The sets of optimized parameters obtained from inverse analyses are then used to calculate the response of a spread footing, which is part of a predictive benchmark. The numerical results with respect to both the constitutive models and the inverse analysis procedure are discussed. Copyright © 2011 John Wiley & Sons, Ltd.
SUMMARY This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation for which two constitutive models—a linear elastic perfectly plastic Mohr–Coulomb model and a strain‐hardening elasto‐plastic model—are successively considered. Two kinds of optimization algorithms have been used: a deterministic simplex method and a stochastic genetic method. The soil data come from the results of two pressuremeter tests, complemented by triaxial and resonant column testing. First, the inverse analysis has been performed separately on each pressuremeter test. The genetic method presents the advantage of providing a collection of satisfactory solutions, among which a geotechnical engineer has to choose the optimal one based on his scientific background and/or additional analyses based on further experimental test results. This advantage is enhanced when all the constitutive parameters sensitive to the considered problem have to be identified without restrictions in the search space. Second, the experimental values of the two pressuremeter tests have been processed simultaneously, so that the inverse analysis becomes a multi‐objective optimization problem. The genetic method allows the user to choose the most suitable parameter set according to the Pareto frontier and to guarantee the coherence between the tests. The sets of optimized parameters obtained from inverse analyses are then used to calculate the response of a spread footing, which is part of a predictive benchmark. The numerical results with respect to both the constitutive models and the inverse analysis procedure are discussed. Copyright © 2011 John Wiley & Sons, Ltd.
This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM-simulation for which two constitutive modelsa linear elastic perfectly plastic MohrCoulomb model and a strain-hardening elasto-plastic modelare successively considered. Two kinds of optimization algorithms have been used: a deterministic simplex method and a stochastic genetic method. The soil data come from the results of two pressuremeter tests, complemented by triaxial and resonant column testing. First, the inverse analysis has been performed separately on each pressuremeter test. The genetic method presents the advantage of providing a collection of satisfactory solutions, among which a geotechnical engineer has to choose the optimal one based on his scientific background and/or additional analyses based on further experimental test results. This advantage is enhanced when all the constitutive parameters sensitive to the considered problem have to be identified without restrictions in the search space. Second, the experimental values of the two pressuremeter tests have been processed simultaneously, so that the inverse analysis becomes a multi-objective optimization problem. The genetic method allows the user to choose the most suitable parameter set according to the Pareto frontier and to guarantee the coherence between the tests. The sets of optimized parameters obtained from inverse analyses are then used to calculate the response of a spread footing, which is part of a predictive benchmark. The numerical results with respect to both the constitutive models and the inverse analysis procedure are discussed.
Author Hicher, P.-Y.
Riou, Y.
Papon, A.
Dano, C.
Author_xml – sequence: 1
  givenname: A.
  surname: Papon
  fullname: Papon, A.
  email: aurelie.papon@ec-nantes.fr
  organization: Research Institute in Civil and Mechanical Engineering, UMR CNRS 6183-Ecole Centrale Nantes, University of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France
– sequence: 2
  givenname: Y.
  surname: Riou
  fullname: Riou, Y.
  organization: Research Institute in Civil and Mechanical Engineering, UMR CNRS 6183-Ecole Centrale Nantes, University of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France
– sequence: 3
  givenname: C.
  surname: Dano
  fullname: Dano, C.
  organization: Research Institute in Civil and Mechanical Engineering, UMR CNRS 6183-Ecole Centrale Nantes, University of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France
– sequence: 4
  givenname: P.-Y.
  surname: Hicher
  fullname: Hicher, P.-Y.
  organization: Research Institute in Civil and Mechanical Engineering, UMR CNRS 6183-Ecole Centrale Nantes, University of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25589369$$DView record in Pascal Francis
https://hal.science/hal-01007307$$DView record in HAL
BookMark eNp1kEFvEzEQhS3USqQFiZ-wFyQ4bPGu13Z8jCqagkJ7KKhwssZeO3Xx2pFtCuHX4zRQiQpOM5r53tPMO0IHIQaD0IsOn3QY928CrGvTiSdo1mHBWjGn5ADNMGGkFZh1T9FRzrcYY1q3M_TlyoW1Ny2EsZm--eLaqG6NLu7ONGsTTHG6Ab-OyZWbqYmb4ib3E4qLobExNW40oTi7rSZNjs43G0gwmWJSfoYOLfhsnv-ux-jT2duPp-ft6nL57nSxamEQWLRKWTvMFWECjFGa6Y5TzMZBjcPIe86t0kIbRSm1zKqBznHPYeBEaGIZB06O0eu97w14uUlugrSVEZw8X6zkboZrLpxgftdV9uWe3UDW4G2CoF1-UPWUzkW9pHIne06nmHMyVmpX7r8uCZyXHZa7sGUNW-7CroJXjwR_PP-Btnv0u_Nm-19OXiyWf_MuF_PjgYf0VTJOOJXXF0tJPpD3_erqWn4mvwD36aAE
CODEN IJNGDZ
CitedBy_id crossref_primary_10_1007_s11440_012_0196_1
crossref_primary_10_1007_s11440_015_0425_5
crossref_primary_10_1016_j_commatsci_2025_113885
crossref_primary_10_1016_j_trgeo_2020_100448
crossref_primary_10_1016_j_enggeo_2018_03_019
crossref_primary_10_1080_0305215X_2015_1061814
crossref_primary_10_1007_s11440_017_0553_1
crossref_primary_10_1007_s11440_019_00847_1
crossref_primary_10_1080_19648189_2020_1752809
crossref_primary_10_1080_17499518_2024_2395553
crossref_primary_10_1007_s00366_019_00918_7
crossref_primary_10_1016_j_compgeo_2024_106268
crossref_primary_10_1007_s11440_021_01441_0
crossref_primary_10_1061__ASCE_AS_1943_5525_0000464
crossref_primary_10_3390_cryst12030387
crossref_primary_10_3390_technologies13090381
crossref_primary_10_1007_s12517_021_09154_0
crossref_primary_10_1007_s13369_021_06461_2
crossref_primary_10_3390_app9040780
crossref_primary_10_1016_j_catena_2022_106289
crossref_primary_10_1007_s11440_017_0586_5
crossref_primary_10_1016_j_sandf_2022_101244
crossref_primary_10_1016_j_compgeo_2017_06_006
crossref_primary_10_1680_jgeen_19_00163
crossref_primary_10_1155_2021_9929708
crossref_primary_10_1007_s00603_016_1129_3
crossref_primary_10_1007_s00170_021_08648_1
crossref_primary_10_1016_j_ijrmms_2020_104419
crossref_primary_10_1002_nag_2554
crossref_primary_10_1002_nag_2714
crossref_primary_10_1061__ASCE_EM_1943_7889_0002085
crossref_primary_10_2183_pjab_99_023
crossref_primary_10_1016_j_compgeo_2025_107423
crossref_primary_10_1002_nag_2717
crossref_primary_10_1371_journal_pone_0330424
crossref_primary_10_1007_s11440_023_02191_x
crossref_primary_10_1631_jzus_A1500031
crossref_primary_10_1109_ACCESS_2019_2914697
crossref_primary_10_1002_nag_2487
crossref_primary_10_1002_nag_2287
crossref_primary_10_1002_nag_3419
crossref_primary_10_1002_nag_3218
crossref_primary_10_1016_j_engappai_2018_11_002
crossref_primary_10_1016_j_undsp_2020_04_002
crossref_primary_10_1061_IJGNAI_GMENG_9429
crossref_primary_10_1007_s11440_019_00776_z
crossref_primary_10_1016_j_enggeo_2016_12_005
crossref_primary_10_1007_s00603_022_02925_5
crossref_primary_10_1007_s41062_022_00804_0
crossref_primary_10_1080_17499518_2018_1440317
crossref_primary_10_1007_s00500_021_05745_x
crossref_primary_10_1139_cgj_2021_0004
crossref_primary_10_1007_s11440_016_0486_0
crossref_primary_10_1016_j_compgeo_2014_11_008
crossref_primary_10_2478_sgem_2020_0008
crossref_primary_10_1007_s11440_021_01432_1
crossref_primary_10_1016_j_tust_2017_01_009
crossref_primary_10_1155_2015_127878
crossref_primary_10_1016_j_oceaneng_2018_01_023
crossref_primary_10_1002_nag_2812
crossref_primary_10_1016_j_sandf_2014_09_008
crossref_primary_10_1007_s11440_021_01435_y
crossref_primary_10_1016_j_enggeo_2019_105215
Cites_doi 10.1016/j.compgeo.2007.08.008
10.1016/0041-5553(67)90144-9
10.3208/sandf1972.24.4_95
10.1115/1.2897051
10.1061/JSFEAQ.0001458
10.1093/comjnl/7.4.308
10.1051/geotech/1993063039
10.1061/(ASCE)0733-9410(1996)122:8(641)
10.1002/nag.1610150806
10.1061/(ASCE)1532-3641(2005)5:3(206)
10.1016/S0266-352X(00)00020-3
10.1002/nag.258
10.1061/(ASCE)1090-0241(2005)131:7(826)
10.1016/S0266-352X(96)00006-7
10.1002/nag.776
10.1137/1.9780898717921
10.1016/0266-352X(95)00021-2
10.1002/nag.707
10.1016/j.compgeo.2004.03.004
10.1002/nag.241
10.1002/nag.813
10.1002/nag.614
10.1016/0266-352X(95)00022-3
10.1002/nag.583
10.1061/(ASCE)0733-9496(1994)120:4(423)
10.2136/vzj2005.0117
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Public Domain
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Public Domain
DBID BSCLL
AAYXX
CITATION
IQODW
1XC
VOOES
DOI 10.1002/nag.1019
DatabaseName Istex
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1096-9853
EndPage 618
ExternalDocumentID oai:HAL:hal-01007307v1
25589369
10_1002_nag_1019
NAG1019
ark_67375_WNG_3M3J2LSW_X
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
31~
41~
ABEML
ACSCC
AFZJQ
AGHNM
AI.
GBZZK
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
ZY4
1XC
AIQQE
VOOES
ID FETCH-LOGICAL-a4909-bbff48b369aeebc6c17506d4bd4d7277fbc9ceb555f6fb458027a4739c3f67a73
IEDL.DBID DRFUL
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301780800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0363-9061
IngestDate Tue Oct 14 19:58:13 EDT 2025
Mon Jul 21 09:14:58 EDT 2025
Sat Nov 29 04:23:50 EST 2025
Tue Nov 18 21:48:25 EST 2025
Wed Aug 20 07:25:24 EDT 2025
Tue Nov 11 03:31:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Footing
Multiobjective programming
Property of soil
Identification
genetic algorithms
Forecast model
Modeling
Optimization
Inverse problem
Experimental result
Genetic algorithm
Soil test
Formulation
Parameter
inverse analysis
multi-objective algorithm
Comparative study
soil parameter identification
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Public Domain: http://hal.archives-ouvertes.fr/licences/publicDomain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4909-bbff48b369aeebc6c17506d4bd4d7277fbc9ceb555f6fb458027a4739c3f67a73
Notes ark:/67375/WNG-3M3J2LSW-X
istex:87F5E371A63AD0483536E2E93B3D960D97F58E4E
ArticleID:NAG1019
ORCID 0000-0001-8648-7195
OpenAccessLink https://hal.science/hal-01007307
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_01007307v1
pascalfrancis_primary_25589369
crossref_citationtrail_10_1002_nag_1019
crossref_primary_10_1002_nag_1019
wiley_primary_10_1002_nag_1019_NAG1019
istex_primary_ark_67375_WNG_3M3J2LSW_X
PublicationCentury 2000
PublicationDate 10 April 2012
PublicationDateYYYYMMDD 2012-04-10
PublicationDate_xml – month: 04
  year: 2012
  text: 10 April 2012
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationTitleAlternate Int. J. Numer. Anal. Meth. Geomech
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Renders JM. Algorithmes Génétiques et Réseaux de Neurones. Herm ès: Paris, 1995.
Lecampion B, Constantinescu A, Nguyen Minh D. Parameter identification for lined tunnels in viscoplastic medium. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:1191-1211.
Dano C, Hicher PY, Rangeard D, Marchina P. Interpretation of dilatometer tests in a heavy oil reservoir. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 31:1197-1215.
Nelder JA, Mead R. A simplex method for function minimization. Computer Journal 1965; 7:308-313.
Zentar R, Hicher PY, Moulin G. Identification of soil parameters by inverse analysis. Computers and Geotechnics 2001; 28:129-144.
Obrzud RF, Vulliet L, Truty A. Optimization framework for calibration of constitutive models enhanced by neural networks. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33:71-94.
Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Wiley: New York, 2001.
Finno RJ, Calvello M. Supported excavations: the observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2005; 131(7):826-836.
Duncan JM, Chang CY. Non linear analysis of stress and strain in soils. Journal of Soil Mechanics and Foundations Division (ASCE) 1970; 96:1629-1653.
Bardet JP. Lode dependences for isotropic pressure-sensitive elastoplastic materials. Journal of Applied Mechanics 1990; 57:498-506.
Rangeard D, Hicher PY, Zentar R. Determining soil permeability from pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2003; 27:1-24.
Pal S, Wathugala WG, Kundu S. Calibration of a constitutive model using genetic algorithms. Computers and Geotechnics 1996; 19:325-348.
Biarez J, Hicher PY. Elementary Mechanics of Soil Behaviour. Balkema: Rotterdam, 1994.
Rechea C, Levasseur S, Finno RJ. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics 2008; 35(3):331-345.
Gens A, Ledesma A, Alonso EE. Estimation of parameters in geotechnical backanalysis-II. Application to a tunnel excavation problem. Computers and Geotechnics 1996; 18(1):29-46.
Simpson AR, Dandy GC, Murphy LJ. Genetic algorithms compared to other techniques for pipe optimization. Journal of Water Resources Planning and Management 1994; 120(4):423-443.
Samarajiva P, Macari EJ, Wathugala W. Genetic algorithms for the calibration of constitutive models for soils. International Journal of Geomechanics 2005; 5(3):206-217.
Pareto V. Cours d'Economie Politique. Rouge: Lausanne, 1897.
Hicher PY, Rahma A. Micro-macro correlations for granular media. Application to the modelling of sands. European Journal of Mechanics, A/Solids 1994; 13(6):763-781.
Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Adisson-Wesley: Reading, MA, 1989.
Arai K, Ohta H, Kojima K. Estimation of soil parameters based on monitored movement of subsoil under consolidation. Soils and Foundations 1984; 24(4):95-108.
Levasseur S, Malécot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33:1485-1511.
Holland JH. Adaptation in Natural and Artificial Systems. University of Michigan Press: Ann Arbor, MI, 1975.
Cambou B, Bahar R. Utilisation de l'essai pressiométrique pour l'identification de param ètres intrins èques du comportement du sol. Revue Fran çaise de Géotechnique 1993; 63:39-50.
Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM: Philadelphia, 2005.
Calvello M, Finno RJ. Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics 2004; 31:411-425.
Ledesma A, Gens A, Alonso EE. Estimation of parameters in geotechnical backanalysis-I. Maximum likehood Approach. Computers and Geotechnics 1996; 18(1):1-27.
Sobol IM. Distribution of points in a cube and approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics 1967; 7:86-112.
Mestat P, Arafati N. Modélisation des sables avec la loi de Nova: détermination des param ètres et influence sur les simulations. LPC Bulletin 2000; 225:21-40.
Kolymbas D. Computed-aided design of constitutive laws. International Journal for Numerical and Analysis Methods in Geomechanics 1991; 15:593-604.
Levasseur S, Malécot Y, Boulon M, Flavigny E. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32:189-213.
Briaud JL, Gibbens RM. Predicted and measured behavior of five spread footings on sand. Geotechnical Special Publication 41, ASCE, New-York, 1994.
Hicher PY. Elastic properties of soils. Journal of Geotechnical Engineering 1996; 122(8):641-648.
Mertens J, Stenger R, Barkle GF. Multiobjective inverse modeling for soil parameter estimation and model verification. Vadose Zone Journal 2006; 5:917-933.
Levasseur S, Malécot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: applications to excavation problems and pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2010; 34:471-491.
2010; 34
1996; 18
2006; 31
1990; 57
1991; 15
1996; 19
2005; 131
1984; 24
1993; 63
2009
1975
1997
1897
2006; 5
2008; 35
1995
1970; 96
2008; 32
1994
2005
1996; 122
2004
2001; 28
1992
2002
2009; 33
1967; 7
2004; 31
2002; 26
2001
2000; 225
1965; 7
1994; 120
2005; 5
1985
2003; 27
1994; 13
1989
1988
e_1_2_6_31_2
e_1_2_6_30_2
Biarez J (e_1_2_6_39_2) 1994
Dano C (e_1_2_6_37_2) 2002
Goldberg DE (e_1_2_6_29_2) 1989
Mestat P (e_1_2_6_5_2) 2000; 225
Holland JH (e_1_2_6_28_2) 1975
Gioda G (e_1_2_6_6_2) 1985
Renders JM (e_1_2_6_43_2) 1995
Briaud JL (e_1_2_6_12_2) 1994
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_36_2
Duncan JM (e_1_2_6_2_2) 1970; 96
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
Lade PV (e_1_2_6_3_2) 1988
Deb K (e_1_2_6_14_2) 2001
e_1_2_6_8_2
e_1_2_6_7_2
Poles S (e_1_2_6_32_2) 2004
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_24_2
Hicher PY (e_1_2_6_25_2) 1994; 13
e_1_2_6_23_2
e_1_2_6_22_2
e_1_2_6_21_2
Pareto V (e_1_2_6_15_2) 1897
e_1_2_6_27_2
e_1_2_6_26_2
Poloni C (e_1_2_6_33_2) 1997
References_xml – reference: Bardet JP. Lode dependences for isotropic pressure-sensitive elastoplastic materials. Journal of Applied Mechanics 1990; 57:498-506.
– reference: Calvello M, Finno RJ. Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics 2004; 31:411-425.
– reference: Briaud JL, Gibbens RM. Predicted and measured behavior of five spread footings on sand. Geotechnical Special Publication 41, ASCE, New-York, 1994.
– reference: Samarajiva P, Macari EJ, Wathugala W. Genetic algorithms for the calibration of constitutive models for soils. International Journal of Geomechanics 2005; 5(3):206-217.
– reference: Hicher PY. Elastic properties of soils. Journal of Geotechnical Engineering 1996; 122(8):641-648.
– reference: Pareto V. Cours d'Economie Politique. Rouge: Lausanne, 1897.
– reference: Cambou B, Bahar R. Utilisation de l'essai pressiométrique pour l'identification de param ètres intrins èques du comportement du sol. Revue Fran çaise de Géotechnique 1993; 63:39-50.
– reference: Dano C, Hicher PY, Rangeard D, Marchina P. Interpretation of dilatometer tests in a heavy oil reservoir. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 31:1197-1215.
– reference: Hicher PY, Rahma A. Micro-macro correlations for granular media. Application to the modelling of sands. European Journal of Mechanics, A/Solids 1994; 13(6):763-781.
– reference: Sobol IM. Distribution of points in a cube and approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics 1967; 7:86-112.
– reference: Levasseur S, Malécot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: applications to excavation problems and pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2010; 34:471-491.
– reference: Pal S, Wathugala WG, Kundu S. Calibration of a constitutive model using genetic algorithms. Computers and Geotechnics 1996; 19:325-348.
– reference: Mestat P, Arafati N. Modélisation des sables avec la loi de Nova: détermination des param ètres et influence sur les simulations. LPC Bulletin 2000; 225:21-40.
– reference: Nelder JA, Mead R. A simplex method for function minimization. Computer Journal 1965; 7:308-313.
– reference: Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Wiley: New York, 2001.
– reference: Ledesma A, Gens A, Alonso EE. Estimation of parameters in geotechnical backanalysis-I. Maximum likehood Approach. Computers and Geotechnics 1996; 18(1):1-27.
– reference: Gens A, Ledesma A, Alonso EE. Estimation of parameters in geotechnical backanalysis-II. Application to a tunnel excavation problem. Computers and Geotechnics 1996; 18(1):29-46.
– reference: Renders JM. Algorithmes Génétiques et Réseaux de Neurones. Herm ès: Paris, 1995.
– reference: Rechea C, Levasseur S, Finno RJ. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics 2008; 35(3):331-345.
– reference: Kolymbas D. Computed-aided design of constitutive laws. International Journal for Numerical and Analysis Methods in Geomechanics 1991; 15:593-604.
– reference: Finno RJ, Calvello M. Supported excavations: the observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2005; 131(7):826-836.
– reference: Holland JH. Adaptation in Natural and Artificial Systems. University of Michigan Press: Ann Arbor, MI, 1975.
– reference: Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Adisson-Wesley: Reading, MA, 1989.
– reference: Levasseur S, Malécot Y, Boulon M, Flavigny E. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32:189-213.
– reference: Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM: Philadelphia, 2005.
– reference: Biarez J, Hicher PY. Elementary Mechanics of Soil Behaviour. Balkema: Rotterdam, 1994.
– reference: Rangeard D, Hicher PY, Zentar R. Determining soil permeability from pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2003; 27:1-24.
– reference: Mertens J, Stenger R, Barkle GF. Multiobjective inverse modeling for soil parameter estimation and model verification. Vadose Zone Journal 2006; 5:917-933.
– reference: Duncan JM, Chang CY. Non linear analysis of stress and strain in soils. Journal of Soil Mechanics and Foundations Division (ASCE) 1970; 96:1629-1653.
– reference: Zentar R, Hicher PY, Moulin G. Identification of soil parameters by inverse analysis. Computers and Geotechnics 2001; 28:129-144.
– reference: Arai K, Ohta H, Kojima K. Estimation of soil parameters based on monitored movement of subsoil under consolidation. Soils and Foundations 1984; 24(4):95-108.
– reference: Levasseur S, Malécot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33:1485-1511.
– reference: Lecampion B, Constantinescu A, Nguyen Minh D. Parameter identification for lined tunnels in viscoplastic medium. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:1191-1211.
– reference: Simpson AR, Dandy GC, Murphy LJ. Genetic algorithms compared to other techniques for pipe optimization. Journal of Water Resources Planning and Management 1994; 120(4):423-443.
– reference: Obrzud RF, Vulliet L, Truty A. Optimization framework for calibration of constitutive models enhanced by neural networks. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33:71-94.
– volume: 28
  start-page: 129
  year: 2001
  end-page: 144
  article-title: Identification of soil parameters by inverse analysis
  publication-title: Computers and Geotechnics
– volume: 33
  start-page: 71
  year: 2009
  end-page: 94
  article-title: Optimization framework for calibration of constitutive models enhanced by neural networks
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 35
  start-page: 331
  issue: 3
  year: 2008
  end-page: 345
  article-title: Inverse analysis techniques for parameter identification in simulation of excavation support systems
  publication-title: Computers and Geotechnics
– year: 2009
– volume: 96
  start-page: 1629
  year: 1970
  end-page: 1653
  article-title: Non linear analysis of stress and strain in soils
  publication-title: Journal of Soil Mechanics and Foundations Division
– volume: 225
  start-page: 21
  year: 2000
  end-page: 40
  article-title: Modélisation des sables avec la loi de Nova: détermination des param ètres et influence sur les simulations
  publication-title: LPC Bulletin
– start-page: 367
  year: 1988
  end-page: 382
– year: 2005
– volume: 5
  start-page: 917
  year: 2006
  end-page: 933
  article-title: Multiobjective inverse modeling for soil parameter estimation and model verification
  publication-title: Vadose Zone Journal
– start-page: 47
  year: 1985
  end-page: 61
– year: 2001
– year: 1897
– year: 1989
– volume: 31
  start-page: 1197
  year: 2006
  end-page: 1215
  article-title: Interpretation of dilatometer tests in a heavy oil reservoir
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– year: 1975
– volume: 31
  start-page: 411
  year: 2004
  end-page: 425
  article-title: Selecting parameters to optimize in model calibration by inverse analysis
  publication-title: Computers and Geotechnics
– volume: 32
  start-page: 189
  year: 2008
  end-page: 213
  article-title: Soil parameter identification using a genetic algorithm
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 7
  start-page: 86
  year: 1967
  end-page: 112
  article-title: Distribution of points in a cube and approximate evaluation of integrals
  publication-title: USSR Computational Mathematics and Mathematical Physics
– volume: 34
  start-page: 471
  year: 2010
  end-page: 491
  article-title: Statistical inverse analysis based on genetic algorithm and principal component analysis: applications to excavation problems and pressuremeter tests
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– year: 1992
– year: 1994
– start-page: 51
  year: 2004
  end-page: 62
– volume: 63
  start-page: 39
  year: 1993
  end-page: 50
  article-title: Utilisation de l'essai pressiométrique pour l'identification de param ètres intrins èques du comportement du sol
  publication-title: Revue Fran çaise de Géotechnique
– volume: 18
  start-page: 29
  issue: 1
  year: 1996
  end-page: 46
  article-title: Estimation of parameters in geotechnical backanalysis—II. Application to a tunnel excavation problem
  publication-title: Computers and Geotechnics
– volume: 122
  start-page: 641
  issue: 8
  year: 1996
  end-page: 648
  article-title: Elastic properties of soils
  publication-title: Journal of Geotechnical Engineering
– start-page: 267
  year: 1997
  end-page: 288
– volume: 5
  start-page: 206
  issue: 3
  year: 2005
  end-page: 217
  article-title: Genetic algorithms for the calibration of constitutive models for soils
  publication-title: International Journal of Geomechanics
– volume: 33
  start-page: 1485
  year: 2009
  end-page: 1511
  article-title: Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 19
  start-page: 325
  year: 1996
  end-page: 348
  article-title: Calibration of a constitutive model using genetic algorithms
  publication-title: Computers and Geotechnics
– volume: 18
  start-page: 1
  issue: 1
  year: 1996
  end-page: 27
  article-title: Estimation of parameters in geotechnical backanalysis—I. Maximum likehood Approach
  publication-title: Computers and Geotechnics
– year: 1995
– volume: 15
  start-page: 593
  year: 1991
  end-page: 604
  article-title: Computed‐aided design of constitutive laws
  publication-title: International Journal for Numerical and Analysis Methods in Geomechanics
– volume: 13
  start-page: 763
  issue: 6
  year: 1994
  end-page: 781
  article-title: Micro‐macro correlations for granular media. Application to the modelling of sands
  publication-title: European Journal of Mechanics, A/Solids
– volume: 57
  start-page: 498
  year: 1990
  end-page: 506
  article-title: Lode dependences for isotropic pressure‐sensitive elastoplastic materials
  publication-title: Journal of Applied Mechanics
– volume: 27
  start-page: 1
  year: 2003
  end-page: 24
  article-title: Determining soil permeability from pressuremeter tests
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– start-page: 57
  year: 2002
  end-page: 62
– volume: 131
  start-page: 826
  issue: 7
  year: 2005
  end-page: 836
  article-title: Supported excavations: the observational method and inverse modeling
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 120
  start-page: 423
  issue: 4
  year: 1994
  end-page: 443
  article-title: Genetic algorithms compared to other techniques for pipe optimization
  publication-title: Journal of Water Resources Planning and Management
– volume: 26
  start-page: 1191
  year: 2002
  end-page: 1211
  article-title: Parameter identification for lined tunnels in viscoplastic medium
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  article-title: A simplex method for function minimization
  publication-title: Computer Journal
– volume: 24
  start-page: 95
  issue: 4
  year: 1984
  end-page: 108
  article-title: Estimation of soil parameters based on monitored movement of subsoil under consolidation
  publication-title: Soils and Foundations
– ident: e_1_2_6_34_2
  doi: 10.1016/j.compgeo.2007.08.008
– ident: e_1_2_6_42_2
  doi: 10.1016/0041-5553(67)90144-9
– ident: e_1_2_6_7_2
  doi: 10.3208/sandf1972.24.4_95
– start-page: 267
  volume-title: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science. Recent Advances and Industrial Applications
  year: 1997
  ident: e_1_2_6_33_2
– ident: e_1_2_6_38_2
  doi: 10.1115/1.2897051
– volume: 96
  start-page: 1629
  year: 1970
  ident: e_1_2_6_2_2
  article-title: Non linear analysis of stress and strain in soils
  publication-title: Journal of Soil Mechanics and Foundations Division
  doi: 10.1061/JSFEAQ.0001458
– ident: e_1_2_6_22_2
  doi: 10.1093/comjnl/7.4.308
– ident: e_1_2_6_35_2
  doi: 10.1051/geotech/1993063039
– volume-title: Predicted and measured behavior of five spread footings on sand
  year: 1994
  ident: e_1_2_6_12_2
– ident: e_1_2_6_40_2
  doi: 10.1061/(ASCE)0733-9410(1996)122:8(641)
– ident: e_1_2_6_4_2
  doi: 10.1002/nag.1610150806
– ident: e_1_2_6_31_2
  doi: 10.1061/(ASCE)1532-3641(2005)5:3(206)
– ident: e_1_2_6_19_2
  doi: 10.1016/S0266-352X(00)00020-3
– start-page: 47
  volume-title: Fifth International Conference on Numerical Methods in Geomechanics
  year: 1985
  ident: e_1_2_6_6_2
– start-page: 57
  volume-title: Fifth European Conference on Numerical Methods in Geotechnical Engineering—NUMGE 2002
  year: 2002
  ident: e_1_2_6_37_2
– ident: e_1_2_6_21_2
  doi: 10.1002/nag.258
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: e_1_2_6_28_2
– volume: 225
  start-page: 21
  year: 2000
  ident: e_1_2_6_5_2
  article-title: Modélisation des sables avec la loi de Nova: détermination des param ètres et influence sur les simulations
  publication-title: LPC Bulletin
– volume-title: Elementary Mechanics of Soil Behaviour
  year: 1994
  ident: e_1_2_6_39_2
– ident: e_1_2_6_17_2
  doi: 10.1061/(ASCE)1090-0241(2005)131:7(826)
– ident: e_1_2_6_8_2
  doi: 10.1016/S0266-352X(96)00006-7
– start-page: 51
  volume-title: International Conference on Bioinspired Optimization Methods and their Applications—BIOMA 2004
  year: 2004
  ident: e_1_2_6_32_2
– ident: e_1_2_6_10_2
  doi: 10.1002/nag.776
– ident: e_1_2_6_13_2
  doi: 10.1137/1.9780898717921
– volume-title: Cours d'Economie Politique
  year: 1897
  ident: e_1_2_6_15_2
– ident: e_1_2_6_23_2
  doi: 10.1016/0266-352X(95)00021-2
– volume-title: Multi‐Objective Optimization using Evolutionary Algorithms
  year: 2001
  ident: e_1_2_6_14_2
– ident: e_1_2_6_26_2
  doi: 10.1002/nag.707
– ident: e_1_2_6_16_2
  doi: 10.1016/j.compgeo.2004.03.004
– volume: 13
  start-page: 763
  issue: 6
  year: 1994
  ident: e_1_2_6_25_2
  article-title: Micro‐macro correlations for granular media. Application to the modelling of sands
  publication-title: European Journal of Mechanics, A/Solids
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning
  year: 1989
  ident: e_1_2_6_29_2
– ident: e_1_2_6_18_2
  doi: 10.1002/nag.241
– ident: e_1_2_6_11_2
  doi: 10.1002/nag.813
– ident: e_1_2_6_9_2
  doi: 10.1002/nag.614
– ident: e_1_2_6_24_2
  doi: 10.1016/0266-352X(95)00022-3
– start-page: 367
  volume-title: Constitutive Equations for Granular Noncohesive Soils
  year: 1988
  ident: e_1_2_6_3_2
– ident: e_1_2_6_20_2
  doi: 10.1002/nag.583
– ident: e_1_2_6_30_2
  doi: 10.1061/(ASCE)0733-9496(1994)120:4(423)
– ident: e_1_2_6_27_2
  doi: 10.2136/vzj2005.0117
– ident: e_1_2_6_36_2
– volume-title: Algorithmes Génétiques et Réseaux de Neurones
  year: 1995
  ident: e_1_2_6_43_2
– ident: e_1_2_6_41_2
SSID ssj0005096
Score 2.2876875
Snippet SUMMARY This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation...
This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation for...
This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM-simulation for...
SourceID hal
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 597
SubjectTerms Applied sciences
Buildings. Public works
Civil Engineering
Computation methods. Tables. Charts
Engineering Sciences
Exact sciences and technology
genetic algorithms
Geotechnics
Géotechnique
inverse analysis
multi-objective algorithm
Soil investigations. Testing
soil parameter identification
Structural analysis. Stresses
Title Single-and multi-objective genetic algorithm optimization for identifying soil parameters
URI https://api.istex.fr/ark:/67375/WNG-3M3J2LSW-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.1019
https://hal.science/hal-01007307
Volume 36
WOSCitedRecordID wos000301780800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-9853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005096
  issn: 0363-9061
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xlgd4GH8nOmAyCMFTNDdx4vixAroJlQoxpvUFRbZjb4W2mZpu4pGPwGfcJ9ldkoZVAgmJp0TJObJ8Z_su_t3vAF5xaV2UShd4520gcusDlYQu4CZPUxdRQfiKxHUkx-N0MlGfGlQl5cLU_BDtDzeaGdV6TRNcm3L_BmmoPqXQU21BN0SzFR3ovvs8PB79Bnhw1Z5UKty21tSzPNxft93YjLbOCArZpdH9QRBJXeIo-bq8xabrWu09w3v_0-v7sN14nGxQm8gDuOUWD-HuDR7CR_D1CC8zd_Xzl17krMIY4n1hvtWrIUMjo1xHpmenxXK6OpuzAleaeZPCydDvZdMq4bdKmmJlMZ0x4hSfE9amfAzHw_df3h4GTd2FQAvFVWCM9yI1UaK0c8YmFl0MnuTC5CJHd0d6Y5V1Jo5jn3gj4hRDWy1kpGzkE6lltAOdRbFwT4Bx7pS0xmMcIkUsjDI6tNLrfhQrr6TpwZu1AjLbkJJTbYxZVtMphxkOGMHQVA9etJLnNRHHH2Reog7b18ScfTgYZfSMExoE17PLfg9eVypuxfTyO6HbZJydjA-y6GP0IRwdnWSTHuxt2EDbAKOwlOog4pcqVf-1P9l4cEDX3X8VfAp30CEL6bSqz59BZ7W8cM_htr1cTcvlXmPg18J8Afo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9tLRLwwH9E-TMMQvAUzU2cOBZPFdAVyCLENq0vk2U79lZoG9SWiUc-Ap-RT4IvScMqgYTEk6PkHFm-8_nOvvsdwDPKjY1SbgNnnQlYYVwgktAGVBdpaiMsCF-BuGY8z9PxWHzYgpfrXJgaH6I9cMOVUelrXOB4IL17ATVUnaLvKbahy7wUxR3ovv44PMp-R3hQ0V5VCr9vrbFnabi77ruxG22fYSxkF6f3G8ZIqqWfJlfXt9i0XavNZ3j9v4Z9A641NicZ1EJyE7bs_BZcvYBEeBtODnwztT-__1DzglRRhv651J9qfUi8mGG2I1HT03IxWZ3NSOl1zaxJ4iTe8iWTKuW3Spsiy3IyJYgqPsNom-UdOBq-OXw1CprKC4FigopAa-dYqqNEKGu1SYw3MmhSMF2wwhs83GkjjNVxHLvEaRan3rlVjEfCRC7hikd3oTMv5_YeEEqt4EY774lwFjMttAoNd6ofxcIJrnvwYs0BaRpYcqyOMZU1oHIo_YRhIJrowZOW8ksNxfEHmqeeie1nxM4eDTKJ7yjGg3iNdt7vwfOKxy2ZWnzG-DYey-N8T0b70bswOziW4x7sbAhB28H7YSlWQvR_qnj91_HIfLCH7f1_JXwMl0eH-5nM3ubvH8AVb56FeHfVpw-hs1p8tY_gkjlfTZaLnUbafwEimQXq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9tK0LwwH9E-TMMQvAUzU2cONaeKkY3IEQTY1pfkGU79lZom6kt0x73EfYZ-ST4kjSsEkhIPCVKzpHlO9t38e9-B_CKcmOjlNvAWWcCVhgXiCS0AdVFmtoIC8JXJK4Zz_N0OBT7a7C9zIWp-SHaH244M6r1Gie4PS3c1hXWUHWMsadYhw6LReJnZWfn8-Aw-43woKI9qhR-31pyz9Jwa9l2ZTdaP0EsZAeH9xwxkmruh8nV9S1Wfddq8xnc_q9u34Fbjc9J-rWR3IU1O70HN68wEd6Hrwf-MrY_Ly7VtCAVytDfl_pbvR4Sb2aY7UjU-LicjRYnE1L6tWbSJHES7_mSUZXyW6VNkXk5GhNkFZ8g2mb-AA4H77683QuayguBYoKKQGvnWKqjRChrtUmMdzJoUjBdsMI7PNxpI4zVcRy7xGkWpz64VYxHwkQu4YpHD2FjWk7tIyCUWsGNdj4S4SxmWmgVGu5UL4qFE1x34c1SA9I0tORYHWMsa0LlUPoBQyCa6MKLVvK0puL4g8xLr8T2NXJn7_Uzic8o4kH8inbW68LrSsetmJp9R3wbj-VRviujT9GHMDs4ksMubK4YQdvAx2EpVkL0X6p0_df-yLy_i9fH_yr4HK7v7wxk9j7_-ARueO8sxKOrHn0KG4vZD_sMrpmzxWg-22yM_Ren1AVl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-+and+multi-objective+genetic+algorithm+optimization+for+identifying+soil+parameters&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=PAPON%2C+A&rft.au=RIOU%2C+Y&rft.au=DANO%2C+C&rft.au=HICHER%2C+P.-Y&rft.date=2012-04-10&rft.pub=Wiley&rft.issn=0363-9061&rft.volume=36&rft.issue=5&rft.spage=597&rft.epage=618&rft_id=info:doi/10.1002%2Fnag.1019&rft.externalDBID=n%2Fa&rft.externalDocID=25589369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon