Kernels for structured data

This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gartner, Thomas
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: New Jersey World Scientific Publishing Co. Pte. Ltd 2008
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
World Scientific Publishing
Ausgabe:1
Schriftenreihe:Series in machine perception and artificial intelligence
Schlagworte:
ISBN:9812814558, 9789812814555, 9789812814562, 9812814566
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.
AbstractList This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.
Author Gärtner, Thomas
Author_xml – sequence: 1
  fullname: Gartner, Thomas
BackLink https://cir.nii.ac.jp/crid/1130000794393685376$$DView record in CiNii
BookMark eNpVkMtOwzAQRY14iL6-oJsukIBFwRPbsb2kVXmISiABYmk5jtOahqTYKRV_T0KKELPwaORz79i3iw6KsrAI9QFfANDoMhaM7aGB5EIKiARQFkf7qPs7MHGEOiLCklIWyWM0COEN18VAcMI6aHhvfWHzMMpKPwqV35hq4206SnWl--gw03mwg13voZfr2fP0djx_uLmbXs3HmkpM43EmEsIyDIZSHqcki3VqhSRSYh7xFGeJ1cKQRGgQVoDhYAyXBjNGUqZJTHrovPXVYWW3YVnmVVCfuU3KchXUv5_9sdvS52kwzhaVy5xRLQxYNamoJpWaPW3ZtS8_NjZU6sfS1BKvczWbTAEkAUlrcrgjrc_toty5Ccoj2bzvpL0tnFPGNScAaVLktVaSehnhDXbWYm6x3iS5C0tXLNTau3ftv9Tr0-N0UkuARYx8A_15fcA
ContentType eBook
Book
DBID WMAQA
RYH
YSPEL
DEWEY 006.31
DOI 10.1142/6855
DatabaseName World Scientific
CiNii Complete
Perlego
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9789812814562
9812814566
9814471038
9789814471039
Edition 1
ExternalDocumentID 9789812814562
10.1142/6855
EBC1193194
847296
BA87765372
WSPCB0001525
Genre Electronic books
GroupedDBID 089
20A
38.
9WS
A4J
AABBV
AATMT
ABARN
ABCYV
ABIAV
ABMRC
ABQPQ
ACBYE
ACLGV
ACZWY
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AMYDA
AZZ
BBABE
CZZ
C~9
DUGUG
EBBCW
EBSCA
GEOUK
J-X
MYL
PD6
PQQKQ
PVBBV
WMAQA
YSPEL
AVGCG
RYH
ID FETCH-LOGICAL-a49046-f8b35f01c4476d3f6ade893990727d0fbea8c3b8a18e81c71cc79c0553d5a363
ISBN 9812814558
9789812814555
9789812814562
9812814566
IngestDate Mon Sep 15 08:29:17 EDT 2025
Sat Mar 08 06:12:26 EST 2025
Wed Dec 10 13:43:43 EST 2025
Tue Dec 02 17:36:33 EST 2025
Mon Oct 06 01:32:05 EDT 2025
Mon Apr 07 05:00:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Kernel Methods
Graph Kernels
Machine Learning
Relational Learning
Structured Data
LCCallNum Q325.5
LCCallNum_Ident Q325.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a49046-f8b35f01c4476d3f6ade893990727d0fbea8c3b8a18e81c71cc79c0553d5a363
Notes Includes bibliographical references (p. 179-190) and index
OCLC 820944529
PQID EBC1193194
PageCount 216
ParticipantIDs perlego_books_847296
askewsholts_vlebooks_9789812814562
igpublishing_primary_WSPCB0001525
nii_cinii_1130000794393685376
worldscientific_books_10_1142_6855
proquest_ebookcentral_EBC1193194
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2008.
c2008
2008
20080800
2008-08-29
PublicationDateYYYYMMDD 2008-01-01
2008-08-01
2008-08-29
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace New Jersey
PublicationPlace_xml – name: New Jersey
– name: Singapore
PublicationSeriesTitle Series in machine perception and artificial intelligence
PublicationYear 2008
Publisher World Scientific Publishing Co. Pte. Ltd
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
World Scientific Publishing
Publisher_xml – name: World Scientific Publishing Co. Pte. Ltd
– name: World Scientific
– name: World Scientific Publishing Company
– name: WORLD SCIENTIFIC
– name: World Scientific Publishing
SSID ssj0000518735
Score 2.2969372
Snippet This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured...
SourceID askewsholts
worldscientific
proquest
perlego
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence (Machine Learning, Neural Networks, Fuzzy Logic)
Computer Systems (Database Systems, Operating Systems)
Kernel functions
Machine learning
Robotics (Machine Vision, Pattern Recognition)
SCIENCE
SubjectTermsDisplay Kernel functions
Machine learning
TableOfContents Kernels for structured data -- Preface -- Contents -- Notational Conventions -- Chapter 1: Why Kernels for Structured Data? -- Chapter 2: Kernel Methods in a Nutshell -- Chapter 3: Kernel Design -- Chapter 4: Basic Term Kernels -- Chapter 5: Graph Kernels -- Chapter 6: Conclusions -- Bibliography -- Index.
5.7.4.2 Comparison with previous RRL-implementations -- 5.7.5 Future Work -- 5.8 Molecule Classification -- 5.8.1 Mutagenicity -- 5.8.2 HIV Data -- 5.9 Summary -- 6. Conclusions -- Bibliography -- Index
Intro -- Contents -- Preface -- Notational Conventions -- 1. Why Kernels for Structured Data? -- 1.1 Supervised Machine Learning -- 1.2 Kernel Methods -- 1.3 Representing Structured Data -- 1.4 Goals and Contributions -- 1.5 Outline -- 1.6 Bibliographical Notes -- 2. Kernel Methods in a Nutshell -- 2.1 Mathematical Foundations -- 2.1.1 From Sets to Functions -- 2.1.2 Measures and Integrals -- 2.1.3 Metric Spaces -- 2.1.4 Linear Spaces and Banach Spaces -- 2.1.5 Inner Product Spaces and Hilbert Spaces -- 2.1.6 Reproducing Kernels and Positive-Definite Functions -- 2.1.7 Matrix Computations -- 2.1.8 Partitioned Inverse Equations -- 2.2 Recognising Patterns with Kernels -- 2.2.1 Supervised Learning -- 2.2.2 Empirical Risk Minimisation -- 2.2.3 Assessing Predictive Performance -- 2.3 Foundations of Kernel Methods -- 2.3.1 Model Fitting and Linear Inverse Equations -- 2.3.2 Common Grounds of Kernel Methods -- 2.3.3 Representer Theorem -- 2.4 Kernel Machines -- 2.4.1 Regularised Least Squares -- 2.4.2 Support Vector Machines -- 2.4.3 Gaussian Processes -- 2.4.4 Kernel Perceptron -- 2.4.5 Kernel Principal Component Analysis -- 2.4.6 Distance-Based Algorithms -- 2.5 Summary -- 3. Kernel Design -- 3.1 General Remarks on Kernels and Examples -- 3.1.1 Classes of Kernels -- 3.1.2 Good Kernels -- 3.1.3 Kernels on Inner Product Spaces -- 3.1.4 Some Illustrations -- 3.2 Kernel Functions -- 3.2.1 Closure Properties -- 3.2.2 Kernel Modifiers -- 3.2.3 Minimal and Maximal Functions -- 3.2.4 Soft-Maximal Kernels -- 3.3 Introduction to Kernels for Structured Data -- 3.3.1 Intersection and Crossproduct Kernels on Sets -- 3.3.2 Minimal and Maximal Functions on Sets -- 3.3.3 Kernels on Multisets -- 3.3.4 Convolution Kernels -- 3.4 Prior Work -- 3.4.1 Kernels from Generative Models -- 3.4.2 Kernels from Instance Space Graphs -- 3.4.3 String Kernels -- 3.4.4 Tree Kernels
3.5 Summary -- 4. Basic Term Kernels -- 4.1 Logics for Learning -- 4.1.1 Propositional Logic for Learning -- 4.1.2 First-Order Logic for Learning -- 4.1.3 Lambda Calculus -- 4.1.4 Lambda Calculus with Polymorphic Types -- 4.1.5 Basic Terms for Learning -- 4.2 Kernels for Basic Terms -- 4.2.1 Default Kernels for Basic Terms -- 4.2.2 Positive Definiteness of the Default Kernel -- 4.2.2 Positive Definiteness of the Default Kernel . . . . 98 4.2.3 Specifying Kernels -- 4.3 Multi-Instance Learning -- 4.3.1 The Multi-Instance Setting -- 4.3.2 Separating MI Problems -- 4.3.3 Convergence of the MI Kernel Perceptron -- 4.3.4 Alternative MI Kernels -- 4.3.5 Learning MI Ray Concepts -- 4.4 Related Work -- 4.4.1 Kernels for General Data Structures -- 4.4.2 Multi-Instance Learning -- 4.5 Applications and Experiments -- 4.5.1 East/West Challenge -- 4.5.2 Drug Activity Prediction -- 4.5.3 Structure Elucidation from Spectroscopic Analyses -- 4.5.4 Spatial Clustering -- 4.6 Summary -- 5. Graph Kernels -- 5.1 Motivation and Approach -- 5.2 Labelled Directed Graphs -- 5.2.1 Basic Terminology and Notation -- 5.2.2 Matrix Notation and some Functions -- 5.2.3 Product Graphs -- 5.2.4 Limits of Matrix Power Series -- 5.3 Complete Graph Kernels -- 5.4 Walk Kernels -- 5.4.1 Kernels Based on Label Pairs -- 5.4.2 Kernels Based on Contiguous Label Sequences -- 5.4.3 Transition Graphs -- 5.4.4 Non-Contiguous Label Sequences -- 5.5 Cyclic Pattern Kernels -- 5.5.1 Undirected Graphs -- 5.5.2 Kernel Definition -- 5.5.3 Kernel Computation -- 5.6 Related Work -- 5.7 Relational Reinforcement Learning -- 5.7.1 Relational Reinforcement Learning -- 5.7.2 Kernels for Graphs with Parallel Edges -- 5.7.3 Kernel Based RRL in the Blocks World -- 5.7.3.1 State and Action Representation -- 5.7.3.2 Blocks World Kernels -- 5.7.4 Experiments -- 5.7.4.1 Parameter Influence
Title Kernels for structured data
URI http://portal.igpublish.com/iglibrary/search/WSPCB0001525.html
https://cir.nii.ac.jp/crid/1130000794393685376
https://www.perlego.com/book/847296/kernels-for-structured-data-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1193194
https://www.worldscientific.com/doi/10.1142/6855
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789812814562
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5BQIgi8SqIUIoM4moR2_s8kiiAVKlUohW9rXa96yqicqM4VP35zD7iuOGAOHBZ2RvJ43yznsfuPAA-MOkEqmGdo_Xpd6tomZuG8JwKYy3qC2mtDs0m-PGxOD-XJ6m1WhfaCfC2FTc3cvlfWY1zyGyfOvsP7O4fihN4jUzHEdmO445F3N9Gjh-5VYuaLgQOxrKwv3xweco-i1E24VycrNYpzWUQHrTx_MWO5x-jbYIICGFFtzxDKfwRGaGxBu6fcpL4uqtMxJ93Kk5PPwnOGa04qra7nKFLe-_L_NvZUb93hR-y4BWN9Yu2lNDp7W_EA3iUCH30ZPZgT3c_UW6jTF93vi7sxbLfZ0O93i4W6IEs3erSXVzdsvYfh9KxXf83B-r_9CmMfErIM7jj2ufwZNMII0tycR8OEvQZQp9toc889C_g7PP8dPY1T10nck3khLC8EaaizaSoCeHMVg3T1qFVh2obbT07aYzToq6M0IXAdV7zoq65rCeUVpbqilUvYdRete4VZKbxWGhXmlITzYVpdFFYQaxpOEdHeQzvB6Co68twQN6pAaqsHMO7IVZqGauQqB_fT2bTkApf0jEcIoCqXvix8CeUaPpJtDV9ewFUIWPYT9CqSAFtklLidLbBWQXSKSBYzaezAi37QhJ8xR380xNiQnupPHNf_4X8ATzcrt83MEI-uEO4X1-vF93qbVpdvwFeV0Ex
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Kernels+for+structured+data&rft.au=G%C3%A4rtner%2C+Thomas&rft.date=2008-01-01&rft.pub=World+Scientific&rft.isbn=9789812814555&rft_id=info:doi/10.1142%2F6855&rft.externalDocID=BA87765372
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fworld_scientific_pub_rlpceeul%2F9789812814562.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898128%2F9789812814562.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWSPCB0001525_null_0_320.png
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F6855