Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models

Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Planets Vol. 126; no. 12; pp. e2021JE006875 - n/a
Main Authors: Daher, Houraa, Arbic, Brian K., Williams, James G., Ansong, Joseph K., Boggs, Dale H., Müller, Malte, Schindelegger, Michael, Austermann, Jacqueline, Cornuelle, Bruce D., Crawford, Eliana B., Fringer, Oliver B., Lau, Harriet C. P., Lock, Simon J., Maloof, Adam C., Menemenlis, Dimitris, Mitrovica, Jerry X., Green, J. A. Mattias, Huber, Matthew
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01.12.2021
John Wiley and Sons Inc
Subjects:
ISSN:2169-9097, 2169-9100
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3 Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Plain Language Summary Tidal dissipation in Earth′s oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and Earth′s obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of Earth′s history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the Moon′s tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models. Key Points Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide models Rapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factor Tidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past
AbstractList Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide modelsRapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factorTidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s $\mathrm{E}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{h}\prime \mathrm{s}$ rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s $\mathrm{E}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{h}\prime \mathrm{s}$ rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s $\mathrm{t}\mathrm{o}\mathrm{d}\mathrm{a}\mathrm{y}\prime \mathrm{s}$ rate due to a closer Moon. Prior to ∼3Ga $\sim 3\,\mathrm{Ga}$, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded rate due to a closer Moon. Prior to , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Tidal dissipation in oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models. Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide models Rapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factor Tidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3 Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Plain Language Summary Tidal dissipation in Earth′s oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and Earth′s obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of Earth′s history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the Moon′s tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models. Key Points Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide models Rapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factor Tidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past
Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
Author Müller, Malte
Austermann, Jacqueline
Ansong, Joseph K.
Lau, Harriet C. P.
Huber, Matthew
Schindelegger, Michael
Cornuelle, Bruce D.
Fringer, Oliver B.
Mitrovica, Jerry X.
Crawford, Eliana B.
Lock, Simon J.
Menemenlis, Dimitris
Green, J. A. Mattias
Daher, Houraa
Maloof, Adam C.
Boggs, Dale H.
Arbic, Brian K.
Williams, James G.
AuthorAffiliation 8 Norwegian Meteorological Institute Oslo Norway
18 Department of Geosciences Princeton University Princeton NJ USA
5 Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS) Toulouse France
15 Department of Earth and Planetary Sciences University of California Berkeley CA USA
9 Institute of Geodesy and Geoinformation University of Bonn Bonn Germany
2 Rosenstiel School for Marine and Atmospheric Science University of Miami Miami FL USA
10 Department of Earth and Environmental Sciences Columbia University New York NY USA
20 Department of Earth, Atmospheric, and Planetary Sciences Purdue University West Lafayette IN USA
17 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
11 Scripps Institution of Oceanography University of California La Jolla CA USA
3 Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA
14 Department of Civil and Environmental Engineering Stanford University Stanford CA USA
1 Department
AuthorAffiliation_xml – name: 6 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
– name: 16 Department of Earth and Planetary Sciences Harvard University Cambridge MA USA
– name: 5 Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS) Toulouse France
– name: 1 Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA
– name: 4 Institut des Géosciences de L'Environnement (IGE) Grenoble France
– name: 13 Department of Physics Kenyon College Gambier OH USA
– name: 3 Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA
– name: 15 Department of Earth and Planetary Sciences University of California Berkeley CA USA
– name: 19 School of Ocean Sciences Bangor University Menai Bridge UK
– name: 9 Institute of Geodesy and Geoinformation University of Bonn Bonn Germany
– name: 2 Rosenstiel School for Marine and Atmospheric Science University of Miami Miami FL USA
– name: 7 Department of Mathematics University of Ghana Accra Ghana
– name: 12 Swift Navigation San Francisco CA USA
– name: 17 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
– name: 8 Norwegian Meteorological Institute Oslo Norway
– name: 11 Scripps Institution of Oceanography University of California La Jolla CA USA
– name: 14 Department of Civil and Environmental Engineering Stanford University Stanford CA USA
– name: 20 Department of Earth, Atmospheric, and Planetary Sciences Purdue University West Lafayette IN USA
– name: 18 Department of Geosciences Princeton University Princeton NJ USA
– name: 10 Department of Earth and Environmental Sciences Columbia University New York NY USA
Author_xml – sequence: 1
  givenname: Houraa
  orcidid: 0000-0002-0017-7346
  surname: Daher
  fullname: Daher, Houraa
  organization: University of Miami
– sequence: 2
  givenname: Brian K.
  orcidid: 0000-0002-7969-2294
  surname: Arbic
  fullname: Arbic, Brian K.
  email: arbic@umich.edu
  organization: Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS)
– sequence: 3
  givenname: James G.
  orcidid: 0000-0002-8441-5937
  surname: Williams
  fullname: Williams, James G.
  organization: California Institute of Technology
– sequence: 4
  givenname: Joseph K.
  orcidid: 0000-0002-2214-377X
  surname: Ansong
  fullname: Ansong, Joseph K.
  organization: University of Ghana
– sequence: 5
  givenname: Dale H.
  orcidid: 0000-0002-1568-3428
  surname: Boggs
  fullname: Boggs, Dale H.
  organization: California Institute of Technology
– sequence: 6
  givenname: Malte
  orcidid: 0000-0003-2871-8359
  surname: Müller
  fullname: Müller, Malte
  organization: Norwegian Meteorological Institute
– sequence: 7
  givenname: Michael
  orcidid: 0000-0001-6250-7921
  surname: Schindelegger
  fullname: Schindelegger, Michael
  organization: University of Bonn
– sequence: 8
  givenname: Jacqueline
  orcidid: 0000-0003-3754-5082
  surname: Austermann
  fullname: Austermann, Jacqueline
  organization: Columbia University
– sequence: 9
  givenname: Bruce D.
  surname: Cornuelle
  fullname: Cornuelle, Bruce D.
  organization: University of California
– sequence: 10
  givenname: Eliana B.
  orcidid: 0000-0002-6092-5406
  surname: Crawford
  fullname: Crawford, Eliana B.
  organization: Kenyon College
– sequence: 11
  givenname: Oliver B.
  orcidid: 0000-0003-3176-6925
  surname: Fringer
  fullname: Fringer, Oliver B.
  organization: Stanford University
– sequence: 12
  givenname: Harriet C. P.
  orcidid: 0000-0003-0311-695X
  surname: Lau
  fullname: Lau, Harriet C. P.
  organization: Harvard University
– sequence: 13
  givenname: Simon J.
  orcidid: 0000-0001-5365-9616
  surname: Lock
  fullname: Lock, Simon J.
  organization: California Institute of Technology
– sequence: 14
  givenname: Adam C.
  surname: Maloof
  fullname: Maloof, Adam C.
  organization: Princeton University
– sequence: 15
  givenname: Dimitris
  orcidid: 0000-0001-9940-8409
  surname: Menemenlis
  fullname: Menemenlis, Dimitris
  organization: California Institute of Technology
– sequence: 16
  givenname: Jerry X.
  surname: Mitrovica
  fullname: Mitrovica, Jerry X.
  organization: Harvard University
– sequence: 17
  givenname: J. A. Mattias
  orcidid: 0000-0001-5090-1040
  surname: Green
  fullname: Green, J. A. Mattias
  organization: Bangor University
– sequence: 18
  givenname: Matthew
  orcidid: 0000-0002-2771-9977
  surname: Huber
  fullname: Huber, Matthew
  organization: Purdue University
BookMark eNp9kc9OGzEQxq0KVCjl1gdYqZceCNhe_71UqtAWioKCqlQ9Ws7ubGLk2NTeTcWtj9Bn7JPUUUAqSNQXj_395vOM5w3aCzEAQu8IPiWY6jOKKblqMBZK8lfokBKhJ5pgvPcYYy0P0HHOt7gsVa5I_Rod1Fwxwbk4RDfTGJZ_fv2eQ1pXjU3DqhyuYwxVs4l-HFyJvrthVV265VaawgZ8NUsLN1Q2dNWsBRuqueuguo4d-PwW7ffWZzh-2I_Qt8_N_PxyMp1dfDn_NJ1YpjGeMMw7IRnpuAXNgCgMUnBm7bbEXneMyVpT1mtF9IJ3Uljd004IURdNWqiP0Med7924WEPXQhiS9eYuubVN9yZaZ54qwa3MMm6MpopjrYrBhweDFH-MkAezdrkF722AOGZDSyGMK0xkQd8_Q2_jmEJpr1CEEak45YWiO6pNMecEvWndYLc_WN533hBstjMz_86sJJ08S3rs4AW83uE_nYf7_7Lm6uJrQ4lkuP4LkkSmuQ
CitedBy_id crossref_primary_10_1007_s11214_025_01136_y
crossref_primary_10_1111_gbi_12601
crossref_primary_10_1016_j_precamres_2022_106799
crossref_primary_10_1051_0004_6361_202243445
crossref_primary_10_1016_j_epsl_2023_118348
crossref_primary_10_3847_1538_4357_ad9b93
crossref_primary_10_1073_pnas_2406930121
crossref_primary_10_1016_j_icarus_2023_115564
crossref_primary_10_1016_j_precamres_2023_107200
crossref_primary_10_3847_1538_3881_ad643a
crossref_primary_10_1111_sed_12975
crossref_primary_10_1016_j_pocean_2022_102824
crossref_primary_10_1029_2022PA004555
crossref_primary_10_1029_2022PA004556
crossref_primary_10_3847_1538_4357_adeb83
crossref_primary_10_1016_j_pepi_2024_107168
crossref_primary_10_1016_j_pepi_2024_107267
crossref_primary_10_1029_2023JB027050
crossref_primary_10_1016_j_pepi_2023_107022
crossref_primary_10_1029_2024PA004861
crossref_primary_10_1029_2024PA005016
crossref_primary_10_1029_2022GL098304
crossref_primary_10_1073_pnas_2216309119
crossref_primary_10_57035_journals_sdk_2024_e21_1271
crossref_primary_10_1063_pt_agkk_cyzd
crossref_primary_10_1016_j_icarus_2022_115257
crossref_primary_10_1111_nyas_14851
crossref_primary_10_3847_1538_4357_acfc40
crossref_primary_10_1016_j_epsl_2024_119086
crossref_primary_10_1073_pnas_2117146119
crossref_primary_10_1073_pnas_2317051121
Cites_doi 10.1007/s10569-017-9783-7
10.1016/0019-1035(86)90088-6
10.5194/gmd-7-2077-2014
10.1038/432460a
10.1175/jpo-d-12-054.1
10.1016/0019-1035(87)90160-6
10.1002/2016GL069790
10.1080/01490419809388134
10.1029/2007PA001573
10.1016/j.cageo.2012.06.022
10.1038/361608a0
10.1016/j.csr.2009.07.008
10.1029/2003GL017676
10.1130/G36511.1
10.1046/j.1365-246X.2003.02021.x
10.1002/ggge.20071
10.1175/1520-0485(1984)014<1532:nmotwo>2.0.co;2
10.1029/2018JC013959
10.1029/96GL02083
10.1051/0004-6361:20041335
10.1016/j.gsf.2017.07.009
10.1016/s0967-0637(98)00070-3
10.1007/s10236-010-0331-1
10.1038/nature10565
10.1016/0301-9268(87)90073-8
10.1029/jb094ib07p09533
10.1051/0004-6361/201731620
10.1038/320600a0
10.1093/gji/ggv227
10.1029/rg020i003p00457
10.1016/j.gsf.2012.12.007
10.5194/esd-11-291-2020
10.1089/ast.2017.1760
10.1038/nature10328
10.1029/2003JC001973
10.5194/essd-8-543-2016
10.1038/211676a0
10.1029/RG002i004p00661
10.1126/sciadv.1602365
10.1038/s41561-020-0538-9
10.1051/0004-6361/201116836
10.1016/j.epsl.2006.10.007
10.2110/jsr.2015.66
10.4294/jpe1952.37.345
10.1126/sciadv.1700207
10.1007/BFb0117927
10.1007/s10569-016-9702-3
10.1073/pnas.1502239112
10.1029/1999GL008348
10.1029/2007gc001743
10.1073/pnas.2003496117
10.1029/2007GL030845
10.1111/j.1365-246x.1982.tb06404.x
10.1073/pnas.1717689115
10.1016/j.dsr2.2004.09.014
10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
10.1038/s41467-020-20008-3
10.1016/j.ocemod.2007.09.001
10.1086/117209
10.1029/RG004i004p00411
10.1029/1999rg900016
10.1006/icar.1996.5642
10.1016/0012-821x(89)90049-6
10.1029/GL005i011p00943
10.1016/j.gloplacha.2018.03.004
10.1016/j.earscirev.2020.103477
10.1007/s00367-017-0500-z
10.1029/2003JC002034
10.1146/annurev-earth-081619-052705
10.1146/annurev-astro-082214-122246
10.1126/science.aba1948
10.1006/icar.1993.1010
10.1038/35059062
10.1175/2008JCLI2540.1
10.1016/0019-1035(89)90129-2
10.1098/rsta.1977.0159
10.3847/1538-3881/abd414
10.1111/j.1365-246x.1981.tb02693.x
10.1016/j.epsl.2018.12.009
10.1146/annurev-earth-060115-012211
10.1007/s11214-020-00729-z
10.1016/0198-0149(81)90139-4
10.1007/978-1-4684-8401-4_12
10.1029/rg010i001p00001
10.7302/ZCK4-0058
10.4294/jpe1952.38.475
10.1016/j.icarus.2011.10.013
10.1126/sciadv.aba8949
10.1080/01621459.1987.10478410
10.1098/rspa.1919.0059
10.1051/0004-6361/201732233
10.1111/j.1365-246x.1972.tb06167.x
10.1088/2041-8205/787/1/L2
10.1002/2016GL068912
10.1126/science.1151540
10.1016/0019-1035(75)90070-6
10.1029/RG002i003p00467
10.1146/annurev-earth-050212-124208
10.1016/0019-1035(69)90044-x
10.1130/B30385.1
10.1007/s00190-019-01296-0
10.3847/PSJ/abe53f
10.1016/j.epsl.2017.11.039
10.1016/j.epsl.2017.07.021
10.1126/science.189.4200.377
10.1130/B30950.1
10.1126/science.1232226
10.1038/385055a0
10.1016/0019-1035(67)90060-7
10.1130/B30094.1
10.1002/2017JE005333
10.1017/s174392130400897x
10.1126/science.265.5171.482
10.1038/238441a0
10.1029/2000gl012044
10.1007/s10236-016-1016-1
10.2110/jsr.69.1154
10.1029/2006gl028870
10.1111/j.1365-246X.2010.04563.x
10.17125/gov2018.ch13
10.1111/j.1365-246x.1981.tb02690.x
10.1038/35015531
10.1016/j.icarus.2015.10.024
10.1007/bf00644130
10.1038/nature19846
10.1016/0011-7471(71)90073-8
10.3847/2041-8213/ab133b
10.1002/2013JE004559
10.1127/0077-7749/2008/0247-0341
10.1029/2019GL085746
10.1144/gsjgs.146.1.0097
10.1073/pnas.1702297114
10.1029/98GL00048
10.1016/0019-1035(91)90046-V
10.1016/S0065-2687(08)60021-7
10.1029/2000JE001396
10.1002/grl.50510
10.1029/2019JE006016
10.1029/rg010i003p00761
10.1126/science.286.5445.1707
10.1088/0034-4885/40/6/002
10.1029/2000jc000699
10.1038/359123a0
10.1016/j.precamres.2012.07.009
10.1046/j.1365-246x.2001.00356.x
10.1016/j.epsl.2016.12.038
10.1002/2017GL076695
10.1098/rspa.2020.0355
10.1175/JPO-D-14-0150.1
10.1111/j.1365-246x.1976.tb04163.x
10.1038/361615a0
10.1038/35089010
10.3137/OC311.2009
10.1016/j.epsl.2006.11.034
10.1111/j.1365-246X.2012.05703.x
10.1093/gji/ggw401
10.1002/2014JE004755
ContentType Journal Article
Copyright 2021. The Authors.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. The Authors.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
7X8
5PM
DOI 10.1029/2021JE006875
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList
Aerospace Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Daher et al
EISSN 2169-9100
EndPage n/a
ExternalDocumentID PMC9285098
10_1029_2021JE006875
JGRE21740
Genre article
GrantInformation_xml – fundername: US National Science Foundation
  funderid: OCE‐0968783; OCE‐1351837; EAR‐1947614
– fundername: UK Natural Environment Research Council
  funderid: NE/S009566/1 (MATCH)
– fundername: NASA
  funderid: NNX16AH79G; NNX17AH55G; 80NSSC20K1135; NNX17AE42G; 80NM0018D0004
– fundername: Austrian Science Fund (FWF)
  funderid: P30097‐N29
– fundername: UK Natural Environment Research Council
  grantid: NE/S009566/1 (MATCH)
– fundername: ;
  grantid: P30097‐N29
– fundername: US National Science Foundation
  grantid: OCE‐0968783; OCE‐1351837; EAR‐1947614
– fundername: NASA
  grantid: NNX16AH79G; NNX17AH55G; 80NSSC20K1135; NNX17AE42G; 80NM0018D0004
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
8-1
88I
8FE
8FG
8FH
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PCBAR
PQQKQ
PROAC
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAYXX
AEYWJ
AFFHD
AGHNM
AGYGG
AIQQE
CITATION
PHGZM
PHGZT
PQGLB
7TG
8FD
H8D
KL.
L7M
7X8
5PM
ID FETCH-LOGICAL-a4900-405d6741d5ae94e180e7654aa1691f9d4473924f9819b5d76a9f2d66639d47ae3
IEDL.DBID 24P
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735886200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-9097
IngestDate Tue Sep 30 16:01:53 EDT 2025
Wed Oct 01 14:24:19 EDT 2025
Sat Jul 26 00:54:58 EDT 2025
Tue Nov 18 22:25:23 EST 2025
Sat Nov 29 04:24:06 EST 2025
Wed Jan 22 16:27:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4900-405d6741d5ae94e180e7654aa1691f9d4473924f9819b5d76a9f2d66639d47ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3176-6925
0000-0001-6250-7921
0000-0001-5365-9616
0000-0001-9940-8409
0000-0003-0311-695X
0000-0002-2214-377X
0000-0002-0017-7346
0000-0002-2771-9977
0000-0002-7969-2294
0000-0002-1568-3428
0000-0002-6092-5406
0000-0002-8441-5937
0000-0003-3754-5082
0000-0003-2871-8359
0000-0001-5090-1040
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021JE006875
PMID 35846556
PQID 2614178525
PQPubID 54729
PageCount 39
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285098
proquest_miscellaneous_2691458017
proquest_journals_2614178525
crossref_citationtrail_10_1029_2021JE006875
crossref_primary_10_1029_2021JE006875
wiley_primary_10_1029_2021JE006875_JGRE21740
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: Hoboken
PublicationTitle Journal of geophysical research. Planets
PublicationYear 2021
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2011; 479
2001; 144
2011; 477
1968; 9
2018; 165
2019; 93
2013; 4
2002; 19
2012; 124
1988; 190
1999; 286
1994; 66
2016; 266
2013; 125
1993; 361
2021; 161
1919; A220
2020; 13
2020; 11
2010; 181
2018; 45
2003; 154
1987; 37
2017; 208
2018; 9
1994; 265
2018; 612
2018; 613
1997; 385
2015; 85
2000; 405
2016; 43
1991; 92
1992; 359
2008; 23
2020; 216
1975; 189
1981
1989; 37
2010; 30
2001; 412
2016; 44
2011; 532
1976; 46
2019; 508
1990; 38
1982; 30
2015; 53
1999; 26
2015; 120
2017; 67
1969; 11
1994
2008; 247
1993
1981; 28
2001; 28
1992
1991
2013; 340
2004; 428
2003; 30
1976; 7
1955; B36
1993; 101
2018; 19
1967; 7
2014; 787
2004; 51
2004; 432
1971; 38
2015; 112
2018; 115
1975; 24
2012; 49
2004; 2004
2012; 220–221
2016; 8
1964; 2
2018; 482
2009; 47
2017; 3
1976; 23
1987; 71
2008b
1989; 81
2018; 123
2008; 9
2020; 369
1978; 5
2019; 124
2006; 252
1977; 287
2017; 475
1996; 38
2007; 34
2017; 114
1998; 45
2001; 106
2010; 60
2015; 45
2007; 255
2020; 6
2013; 14
2017; 37
1987; 82
1984; 14
1892; 60
1989; 146
1982; 20
2008; 319
2015; 43
2020; 48
2020; 47
1972; 10
2019; 876
2014; 7
1994; 108
2012; 217
1996; 23
2017; 129
1966; 4
2009; 22
2014; 119
1966; 211
1989; 20
2021; 2
2012
1982; 70
2013; 43
2015; 202
2010
2013; 40
2013; 41
1999; 69
1977; 40
2010; 122
2001; 409
2016; 126
2004; 109
1998; 21
1972; 238
1972; 29
2008a; 20
1981; 64
1998; 25
1997; 126
1989; 94
2000; 38
2016; 539
2021
2021; 214
1986; 66
1986; 320
1989; 92
2018
2020; 117
1960
2017; 461
2020; 476
1966
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
Kaula W. M. (e_1_2_11_82_1) 1966
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_163_1
Kagan B. A. (e_1_2_11_79_1) 1996
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_170_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
Munk W. H. (e_1_2_11_117_1) 1960
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_160_1
Chapront‐Touzé M. (e_1_2_11_32_1) 1988; 190
e_1_2_11_61_1
e_1_2_11_80_1
Cameron A. G. W. (e_1_2_11_27_1) 1976
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
Gill A. E. (e_1_2_11_59_1) 1982
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_156_1
e_1_2_11_110_1
e_1_2_11_39_1
Melosh H. J. (e_1_2_11_104_1) 1989
e_1_2_11_133_1
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_171_1
e_1_2_11_72_1
e_1_2_11_91_1
Gerstenkorn H. (e_1_2_11_56_1) 1955; 36
Scotese C. R. (e_1_2_11_138_1) 1992
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
Munk W. (e_1_2_11_115_1) 1968; 9
e_1_2_11_6_1
Petit G. (e_1_2_11_122_1) 2010
Ray R. D. (e_1_2_11_127_1) 1994
e_1_2_11_169_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_161_1
Williams J. G. (e_1_2_11_165_1) 2021
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_134_1
e_1_2_11_157_1
e_1_2_11_19_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_172_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
Darwin G. H. (e_1_2_11_38_1) 1892; 60
Hendershott M. C. (e_1_2_11_74_1) 1981
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_162_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
Müller M. (e_1_2_11_111_1) 2008
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_154_1
e_1_2_11_112_1
Webb D. J. (e_1_2_11_158_1) 1976
e_1_2_11_131_1
e_1_2_11_150_1
e_1_2_11_173_1
Chapront‐Touzé M. (e_1_2_11_33_1) 1991
References_xml – volume: 432
  start-page: 460
  year: 2004
  article-title: Paleoclimate: Ocean tides and Heinrich events
  publication-title: Nature
– volume: 126
  start-page: 126
  year: 1997
  end-page: 137
  article-title: The origin of the Moon and the single‐impact hypothesis V
  publication-title: Icarus
– volume: 2
  start-page: 661
  year: 1964
  end-page: 685
  article-title: Tidal dissipation by solid friction and the resulting orbital evolution
  publication-title: Reviews of Geophysics
– volume: 405
  start-page: 775
  year: 2000
  end-page: 778
  article-title: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data
  publication-title: Nature
– volume: 287
  start-page: 545
  year: 1977
  end-page: 594
  article-title: Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences
  publication-title: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
– start-page: 34
  year: 1992
– volume: 477
  start-page: 70
  year: 2011
  end-page: 72
  article-title: Chronological evidence that the Moon is either young or did not have a global magma ocean
  publication-title: Nature
– volume: 539
  start-page: 402
  year: 2016
  end-page: 406
  article-title: Tidal evolution of the Moon from a high‐obliquity, high‐angular‐momentum Earth
  publication-title: Nature
– volume: 217
  start-page: 77
  year: 2012
  end-page: 87
  article-title: Obliquity variations of a moonless Earth
  publication-title: Icarus
– volume: 161
  start-page: 105
  year: 2021
  article-title: The JPL planetary and lunar ephemerides DE440 and DE441
  publication-title: The Astronomical Journal
– year: 1966
– volume: 109
  year: 2004
  article-title: Numerical modeling of the global semidiurnal tide in the present day and in the Last Glacial Maximum
  publication-title: Journal of Geophysical Research Oceans
– volume: 613
  start-page: A68
  year: 2018
  article-title: The nature of the TRAPPIST‐1 exoplanets
  publication-title: Astronomy and Astrophysics
– volume: 320
  start-page: 600
  year: 1986
  end-page: 602
  article-title: Lunar nodal tide and distance to the Moon during the Precambrian
  publication-title: Nature
– volume: 20
  start-page: 207
  year: 2008a
  end-page: 222
  article-title: Synthesis of forced oscillations, Part I: Tidal dynamics and the influence of the loading and self‐attraction effect
  publication-title: Ocean Modelling
– volume: 120
  start-page: 689
  year: 2015
  end-page: 724
  article-title: Tides on the Moon: Theory and determination of dissipation
  publication-title: Journal of Geophysical Research: Planets
– volume: 146
  start-page: 97
  year: 1989
  end-page: 111
  article-title: Late Precambrian tidal rhythmites in South Australia and the history of the Earth’s rotation
  publication-title: Journal of the Geological Society
– volume: 479
  start-page: 215
  year: 2011
  end-page: 218
  article-title: An impact–driven dynamo for the early Moon
  publication-title: Nature
– volume: 255
  start-page: 9
  year: 2007
  end-page: 21
  article-title: Pre‐3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Quebec
  publication-title: Earth and Planetary Science Letters
– volume: 28
  start-page: 481
  year: 1981
  end-page: 493
  article-title: Estimates of the resonant period and Q in the semi‐diurnal tidal band in the North Atlantic and Pacific Oceans
  publication-title: Deep Sea Research Part A: Oceanographic Research Papers
– volume: 13
  start-page: 243
  year: 2020
  end-page: 248
  article-title: Limited Archaean continental emergence reflected in an early Archaean O‐enriched ocean
  publication-title: Nature Geoscience
– volume: 40
  start-page: 665
  year: 1977
  end-page: 708
  article-title: Oceanic tides
  publication-title: Reports on Progress in Physics
– volume: 4
  start-page: 411
  year: 1966
  end-page: 439
  article-title: History of the lunar orbit
  publication-title: Reviews of Geophysics
– volume: 409
  start-page: 1029
  year: 2001
  end-page: 1033
  article-title: Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years
  publication-title: Nature
– volume: 11
  start-page: 291
  year: 2020
  end-page: 299
  article-title: Back to the future II: Tidal evolution of four supercontinent scenarios
  publication-title: Earth System Dynamics
– volume: 9
  start-page: 352
  year: 1968
  end-page: 375
  article-title: Once again‐tidal friction
  publication-title: The Quarterly Journal of the Royal Astronomical Society
– volume: 482
  start-page: 388
  year: 2018
  end-page: 395
  article-title: Estimating the formation age of distribution of continental 494 crust by unmixing zircon ages
  publication-title: Earth and Planetary Science Letters
– volume: 9
  year: 2008
  article-title: Age, spreading rates, and spreading asymmetry of the world’s ocean crust
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: B36
  start-page: 245
  year: 1955
  end-page: 274
  article-title: Über Gezeitenreibung beim Zweikörperproblem
  publication-title: Zeitschrift für Astrophysik
– volume: 48
  start-page: 291
  issue: 1
  year: 2020
  end-page: 320
  article-title: Plate tectonics and the Archean Earth
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 45
  start-page: 678
  year: 2015
  end-page: 689
  article-title: Dynamic adjustment of the ocean circulation to self‐attraction and loading effects
  publication-title: Journal of Physical Oceanography
– volume: A220
  start-page: 1
  year: 1919
  end-page: 93
  article-title: Tidal friction in the Irish Sea
  publication-title: Philosophical Transactions of the Royal Society of London
– volume: 8
  start-page: 543
  year: 2016
  end-page: 557
  article-title: A global, high‐resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry
  publication-title: Earth System Science Data
– volume: 106
  start-page: 22475
  year: 2001
  end-page: 22502
  article-title: Estimates of M tidal energy dissipation from TOPEX/Poseidon altimeter data
  publication-title: Journal of Geophysical Research Oceans
– volume: 60
  start-page: 213
  issue: 1
  year: 1892
  article-title: The tides and kindred phenomena in the solar system
  publication-title: Nova
– volume: 19
  start-page: 183
  year: 2002
  end-page: 204
  article-title: Efficient inverse modeling of barotropic ocean tides
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 30
  start-page: 1907
  year: 2003
  article-title: Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry
  publication-title: Geophysical Research Letters
– start-page: 165
  year: 1966
  end-page: 209
– volume: 93
  start-page: 2195
  year: 2019
  end-page: 2210
  article-title: Lunar laser ranging–a tool for general relativity, lunar geophysics and earth science
  publication-title: Journal of Geodesy
– volume: 66
  start-page: 515
  year: 1986
  end-page: 535
  article-title: The origin of the Moon and the single‐impact hypothesis I
  publication-title: Icarus
– volume: 144
  start-page: 471
  year: 2001
  end-page: 480
  article-title: Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry
  publication-title: Geophysical Journal International
– volume: 43
  start-page: 5716
  year: 2016
  end-page: 5724
  article-title: Analysis of a Precambrian resonance‐stabilized day length
  publication-title: Geophysical Research Letters
– volume: 340
  start-page: 577
  year: 2013
  end-page: 582
  article-title: Exoplanet habitability
  publication-title: Science
– volume: 34
  year: 2007
  article-title: On the resonance and influence of the tides in Ungava Bay and Hudson Strait
  publication-title: Geophysical Research Letters
– year: 2012
  article-title: An enigma in estimates of the Earth’s dynamic ellipticity
  publication-title: Geophysical Journal International
– volume: 190
  start-page: 342
  year: 1988
  end-page: 352
  article-title: Elp 2000‐85: A semi‐analytical lunar ephemeris adequate for historical times
  publication-title: Astronomy and Astrophysics
– volume: 476
  year: 2020
  article-title: Tides: A key environmental driver of osteichthyan evolution and the fish‐tetrapod transition?
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences
– volume: 154
  start-page: 970
  year: 2003
  end-page: 990
  article-title: Climate friction and the Earth’s obliquity
  publication-title: Geophysical Journal International
– volume: 123
  start-page: 4593
  year: 2018
  end-page: 4609
  article-title: Can we model the effect of observed sea level rise on tides?
  publication-title: Journal of Geophysical Research: Oceans
– volume: 106
  start-page: 27933
  year: 2001
  end-page: 27968
  article-title: Lunar rotational dissipation in solid body and molten core
  publication-title: Journal of Geophysical Research
– volume: 508
  start-page: 18
  year: 2019
  end-page: 29
  article-title: Anelasticity from seismic to tidal timescales: Theory and observations
  publication-title: Earth and Planetary Science Letters
– volume: 34
  year: 2007
  article-title: The free oscillations of the World Ocean in the period range 8 to 165 hours including the full loading effect
  publication-title: Geophysical Research Letters
– volume: 101
  start-page: 108
  year: 1993
  end-page: 128
  article-title: Habitable zones around main sequence stars
  publication-title: Icarus
– volume: 214
  year: 2021
  article-title: Extending full‐plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic
  publication-title: Earth‐Science Reviews
– volume: 22
  start-page: 2905
  year: 2009
  end-page: 2924
  article-title: Modeling of polar ocean tides at the Last Glacial Maximum: Amplification, sensitivity, and climatological implications
  publication-title: Journal of Climate
– volume: 38
  start-page: 179
  year: 1996
  end-page: 266
  article-title: Dissipation of tidal energy, paleotides, and evolution of the Earth‐Moon system
– volume: 25
  start-page: 539
  year: 1998
  end-page: 542
  article-title: Neoproterozoic Earth‐Moon dynamics: Rework of the 900 Ma Big Cottonwood Canyon tidal laminae
  publication-title: Geophysical Research Letters
– volume: 71
  start-page: 30
  year: 1987
  end-page: 45
  article-title: The origin of the Moon and the single‐impact hypothesis II
  publication-title: Icarus
– volume: 7
  start-page: 2077
  year: 2014
  end-page: 2090
  article-title: A suite of early Eocene (∼55 Ma) climate model boundary conditions
  publication-title: Geoscientific Model Development
– volume: 238
  start-page: 441
  year: 1972
  end-page: 443
  article-title: Tidal resonance in the Bay of Fundy and Gulf of Maine
  publication-title: Nature
– volume: 211
  start-page: 676
  year: 1966
  end-page: 681
  article-title: Did the Atlantic close and then re‐open?
  publication-title: Nature
– volume: 126
  start-page: 89
  year: 2016
  end-page: 129
  article-title: Secular tidal changes in lunar orbit and Earth rotation
  publication-title: Celestial Mechanics and Dynamical Astronomy
– volume: 38
  start-page: 493
  year: 1971
  end-page: 503
  article-title: The age of the tide and “Q” of the oceans
  publication-title: Deep‐Sea Research
– volume: 20
  start-page: 457
  year: 1982
  end-page: 480
  article-title: Secular effects of oceanic tidal dissipation on the Moon’s orbit and the Earth’s rotation
  publication-title: Reviews of Geophysics
– volume: 28
  start-page: 811
  year: 2001
  end-page: 814
  article-title: Parameterizing tidal dissipation over rough topography
  publication-title: Geophysical Research Letters
– volume: 6
  year: 2020
  article-title: A long‐lived magma ocean on a young Moon
  publication-title: Science Advances
– volume: 5
  start-page: 943
  year: 1978
  end-page: 946
  article-title: Tidal acceleration of the Moon
  publication-title: Geophysical Research Letters
– volume: 428
  start-page: 261
  year: 2004
  end-page: 285
  article-title: A long‐term numerical solution for the insolation quantities of the Earth
  publication-title: Astronomy and Astrophysics
– year: 2010
– volume: 122
  start-page: 1686
  year: 2010
  end-page: 1699
  article-title: Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia
  publication-title: The Geological Society of America Bulletin
– volume: 82
  start-page: 171
  year: 1987
  end-page: 185
  article-title: Better bootstrap confidence intervals
  publication-title: Journal of the American Statistical Association
– volume: 189
  start-page: 377
  year: 1975
  end-page: 379
  article-title: Past orientation of the lunar spin axis
  publication-title: Science
– volume: 165
  start-page: 128
  year: 2018
  end-page: 136
  article-title: Long‐term cyclicities in Phanerozoic sea‐level sedimentary record and their potential drivers
  publication-title: Global and Planetary Change
– volume: 60
  start-page: 1243
  year: 2010
  end-page: 1253
  article-title: Ocean tides and resonance
  publication-title: Ocean Dynamics
– volume: 44
  start-page: 107
  year: 2016
  end-page: 138
  article-title: Ocean basin evolution and global‐scale plate reorganization events since Pangea breakup
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 41
  start-page: 117
  year: 2013
  end-page: 151
  article-title: Initiation and evolution of plate tectonics on Earth: Theories and observations
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 123
  start-page: 910
  year: 2018
  end-page: 951
  article-title: The origin of the Moon within a terrestrial synestia
  publication-title: Journal of Geophysical Research: Planets
– volume: 119
  start-page: 1546
  year: 2014
  end-page: 1578
  article-title: Lunar interior properties from the GRAIL mission
  publication-title: Journal of Geophysical Research: Planets
– volume: 11
  start-page: 6227
  year: 2020
  article-title: Weak tides during Cryogenian glaciations
  publication-title: Nature Communications
– volume: 361
  start-page: 615
  year: 1993
  end-page: 617
  article-title: Stabilization of the Earth’s obliquity by the Moon
  publication-title: Nature
– volume: 38
  start-page: 475
  year: 1990
  end-page: 491
  article-title: Tidal rhythmites: Key to the history of the Earth’s rotation and the lunar orbit
  publication-title: Journal of Physics of the Earth
– volume: 38
  start-page: 37
  year: 2000
  end-page: 59
  article-title: Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit
  publication-title: Reviews of Geophysics
– volume: 125
  start-page: 1735
  issue: 11–12
  year: 2013
  end-page: 1751
  article-title: Reconstructing pre‐Pangean supercontinents
  publication-title: The Geological Society of America Bulletin
– volume: 4
  start-page: 439
  year: 2013
  end-page: 448
  article-title: Origins of the supercontinent cycle
  publication-title: Geoscience Frontiers
– volume: 117
  start-page: 15460
  year: 2020
  end-page: 15464
  article-title: Vertical angular momentum constraint on lunar formation and orbital history
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 467
  year: 1964
  end-page: 541
  article-title: Tidal friction
  publication-title: Reviews of Geophysics
– volume: 26
  start-page: 3045
  year: 1999
  end-page: 3048
  article-title: Lunar orbital evolution: A synthesis of recent results
  publication-title: Geophysical Research Letters
– volume: 252
  start-page: 398
  year: 2006
  end-page: 412
  article-title: The core–mantle friction effect on the secular spin evolution of terrestrial planets
  publication-title: Earth and Planetary Science Letters
– volume: 208
  start-page: 368
  year: 2017
  end-page: 384
  article-title: Anelasticity across seismic to tidal timescales: A self‐consistent approach
  publication-title: Geophysical Journal International
– volume: 37
  start-page: 333
  year: 2017
  end-page: 344
  article-title: Lunar recession encoded in tidal rhythmites: A selective overview with examples from Argentina
  publication-title: Geo‐Marine Letters
– volume: 10
  start-page: 1
  year: 1972
  end-page: 49
  article-title: Bermuda sea level in relation to tides, weather, and baroclinic fluctuations
  publication-title: Reviews of Geophysics
– volume: 45
  start-page: 1977
  year: 1998
  end-page: 2010
  article-title: Abyssal recipes II: Energetics of tidal and wind mixing
  publication-title: Deep Sea Research Part I: Oceanographic Research Papers
– volume: 69
  start-page: 1154
  year: 1999
  end-page: 1168
  article-title: Calculating lunar retreat rates using tidal rhythmites
  publication-title: Journal of Sedimentary Research
– volume: 51
  start-page: 3069
  year: 2004
  end-page: 3101
  article-title: The accuracy of surface elevations in forward global barotropic and baroclinic tide models
  publication-title: Deep Sea Research Part II: Topical Studies in Oceanography
– volume: 47
  start-page: 239
  year: 2009
  end-page: 266
  article-title: On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides
  publication-title: Atmosphere‐Ocean
– volume: 85
  start-page: 990
  year: 2015
  end-page: 998
  article-title: Milankovitch period uncertainties and their impact on cyclostratigraphy
  publication-title: Journal of Sedimentary Research
– volume: 265
  start-page: 482
  year: 1994
  end-page: 490
  article-title: Lunar laser ranging: A continuing legacy of the Apollo program
  publication-title: Science
– start-page: 171
  year: 1994
  end-page: 185
– volume: 92
  start-page: 204
  year: 1991
  end-page: 216
  article-title: The origin of the Moon and the single‐impact hypothesis IV
  publication-title: Icarus
– volume: 216
  start-page: 109
  year: 2020
  article-title: Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities
  publication-title: Space Science Reviews
– volume: 43
  start-page: 459
  year: 2015
  end-page: 462
  article-title: A cryogenian chronology: Two long‐lasting synchronous Neoproterozoic glaciations
  publication-title: Geology
– volume: 2004
  start-page: 445
  issue: IAUC197
  year: 2004
  end-page: 452
  article-title: Numerical modelling of the paleotidal evolution of the Earth‐Moon system
  publication-title: Proceedings of the International Astronomical Union
– year: 2008b
– volume: 92
  start-page: 234
  year: 1989
  end-page: 246
  article-title: Crustal volumes of the continents and of oceanic and continental submarine plateaus
  publication-title: Earth and Planetary Science Letters
– volume: 112
  start-page: E1406
  year: 2015
  end-page: E1413
  article-title: Orbital forcing of climate 1.4 billion years ago
  publication-title: Proceedings of the National Academy of the United States of America
– volume: 475
  start-page: 15
  year: 2017
  end-page: 24
  article-title: Tungsten isotopes and the origin of the Moon
  publication-title: Earth and Planetary Science Letters
– volume: 612
  start-page: A68
  year: 2018
  article-title: Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST‐1 planets
  publication-title: Astronomy and Astrophysics
– volume: 10
  start-page: 761
  year: 1972
  end-page: 797
  article-title: Deformation of the Earth by surface loads
  publication-title: Reviews of Geophysics and Space Physics
– year: 2021
– volume: 23
  start-page: 1
  year: 1976
  end-page: 15
  article-title: A model of continental‐shelf resonances
– volume: 47
  year: 2020
  article-title: Tides on other Earths: Implications for exoplanet and palaeo‐tidal simulations
  publication-title: Geophysical Research Letters
– volume: 37
  start-page: 345
  year: 1989
  end-page: 355
  article-title: Effects of configuration and bathymetry of the oceans on the tidal dissipation of the Earth's rotation
  publication-title: Journal of Physics of the Earth
– volume: 461
  start-page: 46
  year: 2017
  end-page: 53
  article-title: Explicitly modelled deep‐time tidal dissipation and its implication for lunar history
  publication-title: Earth and Planetary Science Letters
– volume: 66
  start-page: 173
  year: 1994
  end-page: 188
  article-title: A stochastic model of the Earth‐Moon tidal evolution accounting for cyclic variations of resonant properties of the ocean: An asymptotic solution
  publication-title: Earth, Moon, and Planets
– volume: 94
  start-page: 9533
  year: 1989
  end-page: 9544
  article-title: Evolution of the lunar orbit with temperature‐and frequency‐dependent dissipation
  publication-title: Journal of Geophysical Research Solid Earth
– volume: 46
  start-page: 363
  year: 1976
  end-page: 406
  article-title: The passive influence of the oceans upon the rotation of the Earth
  publication-title: Geophysical Journal of the Royal Astronomical Society
– volume: 45
  start-page: 3568
  year: 2018
  end-page: 3576
  article-title: Is there a tectonically driven super‐tidal cycle?
  publication-title: Geophysical Research Letters
– volume: 64
  start-page: 747
  year: 1981
  end-page: 765
  article-title: A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free “core nutation”
  publication-title: Geophysical Journal of the Royal Astronomical Society
– volume: 129
  start-page: 509
  year: 2017
  end-page: 536
  article-title: Tidal locking of habitable exoplanets
  publication-title: Celestial Mechanics and Dynamical Astronomy
– volume: 412
  start-page: 708
  year: 2001
  end-page: 712
  article-title: Origin of the Moon in a giant impact near the end of the Earth’s formation
  publication-title: Nature
– volume: 266
  start-page: 24
  year: 2016
  end-page: 43
  article-title: Tidal friction in the Earth‐Moon system and Laplace planes: Darwin redux
  publication-title: Icarus
– volume: 359
  start-page: 123
  year: 1992
  end-page: 129
  article-title: A model for the global variation in oceanic depth and heat flow with lithospheric age
  publication-title: Nature
– volume: 81
  start-page: 113
  year: 1989
  end-page: 131
  article-title: The origin of the Moon and the single‐impact hypothesis III
  publication-title: Icarus
– volume: 67
  start-page: 165
  year: 2017
  end-page: 189
  article-title: Time‐domain modeling of global ocean tides generated by the full lunisolar potential
  publication-title: Ocean Dynamics
– volume: 29
  start-page: 389
  year: 1972
  end-page: 402
  article-title: The effects of solid Earth deformation on global ocean tides
  publication-title: Geophysical Journal International
– volume: 361
  start-page: 608
  year: 1993
  end-page: 612
  article-title: The chaotic obliquity of the planets
  publication-title: Nature
– volume: 114
  start-page: 5653
  issue: 22
  year: 2017
  end-page: 5658
  article-title: Plate tectonic regulation of global marine animal diversity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 70
  start-page: 261
  year: 1982
  end-page: 271
  article-title: Tides and the evolution of the Earth‐Moon system
  publication-title: Geophysical Journal International
– volume: 7
  start-page: 120
  year: 1976
  end-page: 122
  article-title: The origin of the Moon
– start-page: 100
  year: 1993
  end-page: 141
– volume: 876
  start-page: L22
  year: 2019
  article-title: Consequences of tidal dissipation in a putative Venusian ocean
  publication-title: The Astrophysical Journal Letters
– volume: 11
  start-page: 189
  year: 1969
  end-page: 207
  article-title: The earliest past of the Earth‐Moon system
  publication-title: Icarus
– volume: 40
  start-page: 2707
  year: 2013
  end-page: 2713
  article-title: Tidal dissipation in the early Eocene and implications for ocean mixing
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 61
  issue: 1
  year: 2018
  end-page: 89
  article-title: Dominant Lid Tectonics behaviour of continental lithosphere in Precambrian times: Palaeomagnetism confirms prolonged quasi‐integrity and absence of supercontinent cycles
  publication-title: Geoscience Frontiers
– start-page: 307
  year: 2018
  end-page: 392
– volume: 2
  start-page: 70
  year: 2021
  article-title: On the tidal history and future of the Earth–Moon orbital system
  publication-title: The Planetary Science Journal
– volume: 319
  start-page: 1357
  year: 2008
  end-page: 1362
  article-title: Long‐term sea‐level fluctuations driven by ocean basin dynamics
  publication-title: Science
– volume: 21
  start-page: 181
  year: 1998
  end-page: 192
  article-title: Ocean self‐attraction and loading in numerical tidal models
  publication-title: Marine Geodesy
– volume: 124
  start-page: 549
  year: 2012
  end-page: 577
  article-title: Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian—Early Permian (Cisuralian) time scale and pan‐Euramerican chronostratigraphic correlation
  publication-title: The Geological Society of America Bulletin
– volume: 14
  start-page: 1532
  year: 1984
  end-page: 1550
  article-title: Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides
  publication-title: Journal of Physical Oceanography
– volume: 787
  year: 2014
  article-title: Strong dependence of the inner edge of the habitable zone on planetary rotation rate
  publication-title: The Astrophysical Journal Letters
– volume: 3
  year: 2017
  article-title: Early formation of the Moon 4.51 billion years ago
  publication-title: Science Advances
– year: 1960
– volume: 23
  start-page: 2279
  year: 1996
  end-page: 2282
  article-title: Gravitational oscillations in the length of day
  publication-title: Geophysical Research Letters
– volume: 115
  start-page: 6363
  year: 2018
  end-page: 6368
  article-title: Proterozoic Milankovitch cycles and the history of the solar system
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 43
  start-page: 1301
  year: 2013
  end-page: 1324
  article-title: On the resonance and shelf/open‐ocean coupling of the global diurnal tides
  publication-title: Journal of Physical Oceanography
– volume: 14
  start-page: 751
  year: 2013
  end-page: 758
  article-title: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations
  publication-title: Geochemistry, Geophysics, Geosystems
– start-page: 292
  year: 1981
  end-page: 341
– volume: 37
  start-page: 95
  year: 1987
  end-page: 105
  article-title: A constant daylength during the Precambrian Era?
  publication-title: Precambrian Research
– volume: 220–221
  start-page: 23
  year: 2012
  end-page: 44
  article-title: Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt
  publication-title: Precambrian Research
– volume: 53
  start-page: 409
  year: 2015
  end-page: 447
  article-title: The occurrence and architecture of exoplanetary systems
  publication-title: Annual Review of Astronomy and Astrophysics
– volume: 247
  start-page: 341
  year: 2008
  end-page: 352
  article-title: The Puncoviscana Formation of northwest Argentina: U‐Pb geochronology of detrital zircons and Rb‐Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting
  publication-title: Neues Jahrbuch für Geologie und Paläontologie ‐ Abhandlungen
– volume: 43
  start-page: 8376
  year: 2016
  end-page: 8383
  article-title: Was Venus the first habitable world of our solar system?
  publication-title: Geophysical Research Letters
– volume: 49
  start-page: 190
  year: 2012
  end-page: 199
  article-title: Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0
  publication-title: Computational Geosciences
– volume: 7
  start-page: 160
  year: 1967
  end-page: 167
  article-title: On the controversy over the effect of tidal friction upon the history of the Earth‐Moon system
  publication-title: Icarus
– volume: 30
  year: 1982
– volume: 202
  start-page: 1392
  year: 2015
  end-page: 1406
  article-title: A normal mode treatment of semi‐diurnal body tides on an aspherical, rotating and anelastic Earth
  publication-title: Geophysical Journal International
– volume: 3
  year: 2017
  article-title: A two‐billion‐year history for the lunar dynamo
  publication-title: Science Advances
– volume: 369
  start-page: 1110
  year: 2020
  end-page: 1113
  article-title: Earth’s water may have been inherited from material similar to enstatite chondrite meteorites
  publication-title: Science
– volume: 24
  start-page: 504
  year: 1975
  end-page: 515
  article-title: Satellite‐sized planetesimals and lunar origin
  publication-title: Icarus
– volume: 108
  start-page: 1943
  year: 1994
  end-page: 1961
  article-title: Evolution of the Earth‐Moon system
  publication-title: The Astronomical Journal
– volume: 23
  start-page: PA3211
  year: 2008
  article-title: On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events
  publication-title: Paleoceanography
– volume: 109
  year: 2004
  article-title: Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation
  publication-title: Journal of Geophysical Research
– volume: 385
  start-page: 55
  year: 1997
  end-page: 58
  article-title: Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago
  publication-title: Nature
– volume: 19
  start-page: 99
  year: 2018
  end-page: 125
  article-title: Habitable climate scenarios for Proxima Centauri b with a dynamic ocean
  publication-title: Astrobiology
– volume: 181
  start-page: 806
  year: 2010
  end-page: 817
  article-title: Inner core–mantle gravitational locking and the super‐rotation of the inner core
  publication-title: Geophysical Journal International
– year: 1991
– volume: 20
  start-page: 685
  year: 1989
  end-page: 686
  article-title: Giant impact theory of the Moon’s origin: First 3‐D hydrocode results
– volume: 64
  start-page: 677
  year: 1981
  end-page: 703
  article-title: Body tides on an elliptical, rotating, elastic and oceanless Earth
  publication-title: Geophysical Journal of the Royal Astronomical Society
– volume: 30
  start-page: 564
  year: 2010
  end-page: 574
  article-title: A coupled oscillator model of shelf and ocean tides
  publication-title: Continental Shelf Research
– volume: 532
  start-page: A89
  year: 2011
  article-title: La2010: A new orbital solution for the long‐term motion of the Earth
  publication-title: Astronomy and Astrophysics
– volume: 124
  start-page: 2917
  year: 2019
  end-page: 2928
  article-title: Early dynamics of the lunar core
  publication-title: Journal of Geophysical Research: Planets
– volume: 286
  start-page: 1707
  year: 1999
  end-page: 1709
  article-title: Core rotational dynamics and geological events
  publication-title: Science
– ident: e_1_2_11_13_1
  doi: 10.1007/s10569-017-9783-7
– ident: e_1_2_11_15_1
  doi: 10.1016/0019-1035(86)90088-6
– ident: e_1_2_11_75_1
  doi: 10.5194/gmd-7-2077-2014
– ident: e_1_2_11_7_1
  doi: 10.1038/432460a
– ident: e_1_2_11_140_1
  doi: 10.1175/jpo-d-12-054.1
– ident: e_1_2_11_16_1
  doi: 10.1016/0019-1035(87)90160-6
– volume-title: The rotation of the Earth
  year: 1960
  ident: e_1_2_11_117_1
– volume-title: DE440 lunar orbit, physical librations, and surface coordinates
  year: 2021
  ident: e_1_2_11_165_1
– ident: e_1_2_11_157_1
  doi: 10.1002/2016GL069790
– ident: e_1_2_11_128_1
  doi: 10.1080/01490419809388134
– ident: e_1_2_11_8_1
  doi: 10.1029/2007PA001573
– ident: e_1_2_11_155_1
  doi: 10.1016/j.cageo.2012.06.022
– ident: e_1_2_11_90_1
  doi: 10.1038/361608a0
– ident: e_1_2_11_4_1
  doi: 10.1016/j.csr.2009.07.008
– ident: e_1_2_11_49_1
  doi: 10.1029/2003GL017676
– ident: e_1_2_11_130_1
  doi: 10.1130/G36511.1
– ident: e_1_2_11_96_1
  doi: 10.1046/j.1365-246X.2003.02021.x
– ident: e_1_2_11_133_1
  doi: 10.1002/ggge.20071
– ident: e_1_2_11_125_1
  doi: 10.1175/1520-0485(1984)014<1532:nmotwo>2.0.co;2
– ident: e_1_2_11_135_1
  doi: 10.1029/2018JC013959
– ident: e_1_2_11_23_1
  doi: 10.1029/96GL02083
– ident: e_1_2_11_91_1
  doi: 10.1051/0004-6361:20041335
– ident: e_1_2_11_124_1
  doi: 10.1016/j.gsf.2017.07.009
– ident: e_1_2_11_116_1
  doi: 10.1016/s0967-0637(98)00070-3
– ident: e_1_2_11_61_1
  doi: 10.1007/s10236-010-0331-1
– ident: e_1_2_11_95_1
  doi: 10.1038/nature10565
– ident: e_1_2_11_174_1
  doi: 10.1016/0301-9268(87)90073-8
– ident: e_1_2_11_131_1
  doi: 10.1029/jb094ib07p09533
– ident: e_1_2_11_148_1
  doi: 10.1051/0004-6361/201731620
– ident: e_1_2_11_153_1
  doi: 10.1038/320600a0
– ident: e_1_2_11_94_1
  doi: 10.1093/gji/ggv227
– ident: e_1_2_11_70_1
  doi: 10.1029/rg020i003p00457
– ident: e_1_2_11_118_1
  doi: 10.1016/j.gsf.2012.12.007
– ident: e_1_2_11_39_1
  doi: 10.5194/esd-11-291-2020
– ident: e_1_2_11_42_1
  doi: 10.1089/ast.2017.1760
– ident: e_1_2_11_20_1
  doi: 10.1038/nature10328
– ident: e_1_2_11_50_1
  doi: 10.1029/2003JC001973
– ident: e_1_2_11_134_1
  doi: 10.5194/essd-8-543-2016
– ident: e_1_2_11_169_1
  doi: 10.1038/211676a0
– ident: e_1_2_11_81_1
  doi: 10.1029/RG002i004p00661
– volume-title: Hamburg studies on maritime affairs
  year: 2008
  ident: e_1_2_11_111_1
– ident: e_1_2_11_11_1
  doi: 10.1126/sciadv.1602365
– ident: e_1_2_11_77_1
  doi: 10.1038/s41561-020-0538-9
– ident: e_1_2_11_88_1
  doi: 10.1051/0004-6361/201116836
– ident: e_1_2_11_34_1
  doi: 10.1016/j.epsl.2006.10.007
– ident: e_1_2_11_154_1
  doi: 10.2110/jsr.2015.66
– ident: e_1_2_11_120_1
  doi: 10.4294/jpe1952.37.345
– ident: e_1_2_11_146_1
  doi: 10.1126/sciadv.1700207
– ident: e_1_2_11_30_1
  doi: 10.1007/BFb0117927
– ident: e_1_2_11_164_1
  doi: 10.1007/s10569-016-9702-3
– ident: e_1_2_11_175_1
  doi: 10.1073/pnas.1502239112
– volume-title: Lunar tables and programs from 4000 B.C. to A.D. 8000
  year: 1991
  ident: e_1_2_11_33_1
– ident: e_1_2_11_18_1
  doi: 10.1029/1999GL008348
– ident: e_1_2_11_112_1
  doi: 10.1029/2007gc001743
– ident: e_1_2_11_145_1
  doi: 10.1073/pnas.2003496117
– ident: e_1_2_11_10_1
  doi: 10.1029/2007GL030845
– ident: e_1_2_11_159_1
  doi: 10.1111/j.1365-246x.1982.tb06404.x
– ident: e_1_2_11_106_1
  doi: 10.1073/pnas.1717689115
– ident: e_1_2_11_5_1
  doi: 10.1016/j.dsr2.2004.09.014
– ident: e_1_2_11_46_1
  doi: 10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
– ident: e_1_2_11_62_1
  doi: 10.1038/s41467-020-20008-3
– ident: e_1_2_11_110_1
  doi: 10.1016/j.ocemod.2007.09.001
– ident: e_1_2_11_147_1
  doi: 10.1086/117209
– ident: e_1_2_11_60_1
  doi: 10.1029/RG004i004p00411
– volume: 190
  start-page: 342
  year: 1988
  ident: e_1_2_11_32_1
  article-title: Elp 2000‐85: A semi‐analytical lunar ephemeris adequate for historical times
  publication-title: Astronomy and Astrophysics
– ident: e_1_2_11_162_1
  doi: 10.1029/1999rg900016
– ident: e_1_2_11_25_1
  doi: 10.1006/icar.1996.5642
– start-page: 34
  volume-title: Paleogeographic atlas: PALEOMAP progress report. Progress report 20‐0692
  year: 1992
  ident: e_1_2_11_138_1
– ident: e_1_2_11_137_1
  doi: 10.1016/0012-821x(89)90049-6
– ident: e_1_2_11_168_1
  doi: 10.1029/GL005i011p00943
– ident: e_1_2_11_21_1
  doi: 10.1016/j.gloplacha.2018.03.004
– ident: e_1_2_11_105_1
  doi: 10.1016/j.earscirev.2020.103477
– start-page: 685
  year: 1989
  ident: e_1_2_11_104_1
– ident: e_1_2_11_40_1
  doi: 10.1007/s00367-017-0500-z
– ident: e_1_2_11_143_1
  doi: 10.1029/2003JC002034
– start-page: 120
  year: 1976
  ident: e_1_2_11_27_1
– ident: e_1_2_11_22_1
  doi: 10.1146/annurev-earth-081619-052705
– ident: e_1_2_11_170_1
  doi: 10.1146/annurev-astro-082214-122246
– volume: 60
  start-page: 213
  issue: 1
  year: 1892
  ident: e_1_2_11_38_1
  article-title: The tides and kindred phenomena in the solar system
  publication-title: Nova
– ident: e_1_2_11_123_1
  doi: 10.1126/science.aba1948
– ident: e_1_2_11_80_1
  doi: 10.1006/icar.1993.1010
– ident: e_1_2_11_100_1
  doi: 10.1038/35059062
– ident: e_1_2_11_68_1
  doi: 10.1175/2008JCLI2540.1
– ident: e_1_2_11_17_1
  doi: 10.1016/0019-1035(89)90129-2
– ident: e_1_2_11_87_1
  doi: 10.1098/rsta.1977.0159
– ident: e_1_2_11_121_1
  doi: 10.3847/1538-3881/abd414
– ident: e_1_2_11_152_1
  doi: 10.1111/j.1365-246x.1981.tb02693.x
– ident: e_1_2_11_92_1
  doi: 10.1016/j.epsl.2018.12.009
– ident: e_1_2_11_114_1
  doi: 10.1146/annurev-earth-060115-012211
– ident: e_1_2_11_98_1
  doi: 10.1007/s11214-020-00729-z
– ident: e_1_2_11_72_1
  doi: 10.1016/0198-0149(81)90139-4
– start-page: 171
  volume-title: The oceans
  year: 1994
  ident: e_1_2_11_127_1
– ident: e_1_2_11_102_1
  doi: 10.1007/978-1-4684-8401-4_12
– ident: e_1_2_11_171_1
  doi: 10.1029/rg010i001p00001
– start-page: 1
  year: 1976
  ident: e_1_2_11_158_1
– ident: e_1_2_11_9_1
  doi: 10.7302/ZCK4-0058
– ident: e_1_2_11_161_1
  doi: 10.4294/jpe1952.38.475
– ident: e_1_2_11_97_1
  doi: 10.1016/j.icarus.2011.10.013
– ident: e_1_2_11_103_1
  doi: 10.1126/sciadv.aba8949
– ident: e_1_2_11_45_1
  doi: 10.1080/01621459.1987.10478410
– volume-title: Theory of satellite geodesy: Applications of satellites to geodesy
  year: 1966
  ident: e_1_2_11_82_1
– ident: e_1_2_11_144_1
  doi: 10.1098/rspa.1919.0059
– ident: e_1_2_11_69_1
  doi: 10.1051/0004-6361/201732233
– ident: e_1_2_11_73_1
  doi: 10.1111/j.1365-246x.1972.tb06167.x
– ident: e_1_2_11_172_1
  doi: 10.1088/2041-8205/787/1/L2
– ident: e_1_2_11_14_1
  doi: 10.1002/2016GL068912
– ident: e_1_2_11_113_1
  doi: 10.1126/science.1151540
– ident: e_1_2_11_71_1
  doi: 10.1016/0019-1035(75)90070-6
– ident: e_1_2_11_101_1
  doi: 10.1029/RG002i003p00467
– volume: 36
  start-page: 245
  year: 1955
  ident: e_1_2_11_56_1
  article-title: Über Gezeitenreibung beim Zweikörperproblem
  publication-title: Zeitschrift für Astrophysik
– ident: e_1_2_11_83_1
  doi: 10.1146/annurev-earth-050212-124208
– ident: e_1_2_11_58_1
  doi: 10.1016/0019-1035(69)90044-x
– ident: e_1_2_11_136_1
  doi: 10.1130/B30385.1
– ident: e_1_2_11_108_1
  doi: 10.1007/s00190-019-01296-0
– ident: e_1_2_11_149_1
  doi: 10.3847/PSJ/abe53f
– ident: e_1_2_11_84_1
  doi: 10.1016/j.epsl.2017.11.039
– ident: e_1_2_11_85_1
  doi: 10.1016/j.epsl.2017.07.021
– ident: e_1_2_11_156_1
  doi: 10.1126/science.189.4200.377
– ident: e_1_2_11_52_1
  doi: 10.1130/B30950.1
– ident: e_1_2_11_139_1
  doi: 10.1126/science.1232226
– ident: e_1_2_11_12_1
  doi: 10.1038/385055a0
– ident: e_1_2_11_57_1
  doi: 10.1016/0019-1035(67)90060-7
– ident: e_1_2_11_41_1
  doi: 10.1130/B30094.1
– ident: e_1_2_11_99_1
  doi: 10.1002/2017JE005333
– ident: e_1_2_11_126_1
  doi: 10.1017/s174392130400897x
– ident: e_1_2_11_43_1
  doi: 10.1126/science.265.5171.482
– volume-title: Atmosphere‐ocean dynamics. International Geophysics Series
  year: 1982
  ident: e_1_2_11_59_1
– ident: e_1_2_11_54_1
  doi: 10.1038/238441a0
– ident: e_1_2_11_76_1
  doi: 10.1029/2000gl012044
– ident: e_1_2_11_51_1
  doi: 10.1007/s10236-016-1016-1
– ident: e_1_2_11_86_1
  doi: 10.2110/jsr.69.1154
– ident: e_1_2_11_109_1
  doi: 10.1029/2006gl028870
– ident: e_1_2_11_44_1
  doi: 10.1111/j.1365-246X.2010.04563.x
– ident: e_1_2_11_3_1
  doi: 10.17125/gov2018.ch13
– ident: e_1_2_11_151_1
  doi: 10.1111/j.1365-246x.1981.tb02690.x
– ident: e_1_2_11_47_1
  doi: 10.1038/35015531
– ident: e_1_2_11_132_1
  doi: 10.1016/j.icarus.2015.10.024
– ident: e_1_2_11_78_1
  doi: 10.1007/bf00644130
– ident: e_1_2_11_35_1
  doi: 10.1038/nature19846
– ident: e_1_2_11_55_1
  doi: 10.1016/0011-7471(71)90073-8
– ident: e_1_2_11_66_1
  doi: 10.3847/2041-8213/ab133b
– ident: e_1_2_11_167_1
  doi: 10.1002/2013JE004559
– ident: e_1_2_11_2_1
  doi: 10.1127/0077-7749/2008/0247-0341
– ident: e_1_2_11_19_1
  doi: 10.1029/2019GL085746
– ident: e_1_2_11_160_1
  doi: 10.1144/gsjgs.146.1.0097
– ident: e_1_2_11_173_1
  doi: 10.1073/pnas.1702297114
– ident: e_1_2_11_141_1
  doi: 10.1029/98GL00048
– ident: e_1_2_11_26_1
  doi: 10.1016/0019-1035(91)90046-V
– start-page: 179
  year: 1996
  ident: e_1_2_11_79_1
  doi: 10.1016/S0065-2687(08)60021-7
– ident: e_1_2_11_166_1
  doi: 10.1029/2000JE001396
– start-page: 292
  volume-title: Evolution of physical oceanography
  year: 1981
  ident: e_1_2_11_74_1
– ident: e_1_2_11_63_1
  doi: 10.1002/grl.50510
– volume: 9
  start-page: 352
  year: 1968
  ident: e_1_2_11_115_1
  article-title: Once again‐tidal friction
  publication-title: The Quarterly Journal of the Royal Astronomical Society
– ident: e_1_2_11_36_1
  doi: 10.1029/2019JE006016
– ident: e_1_2_11_53_1
  doi: 10.1029/rg010i003p00761
– ident: e_1_2_11_67_1
  doi: 10.1126/science.286.5445.1707
– ident: e_1_2_11_29_1
  doi: 10.1088/0034-4885/40/6/002
– ident: e_1_2_11_48_1
  doi: 10.1029/2000jc000699
– ident: e_1_2_11_142_1
  doi: 10.1038/359123a0
– ident: e_1_2_11_119_1
  doi: 10.1016/j.precamres.2012.07.009
– ident: e_1_2_11_129_1
  doi: 10.1046/j.1365-246x.2001.00356.x
– volume-title: IERS conventions (2010), IERS Technical Note No. 36, International Earth Rotation and Reference Systems Service (IERS)
  year: 2010
  ident: e_1_2_11_122_1
– ident: e_1_2_11_64_1
  doi: 10.1016/j.epsl.2016.12.038
– ident: e_1_2_11_65_1
  doi: 10.1002/2017GL076695
– ident: e_1_2_11_24_1
  doi: 10.1098/rspa.2020.0355
– ident: e_1_2_11_150_1
  doi: 10.1175/JPO-D-14-0150.1
– ident: e_1_2_11_37_1
  doi: 10.1111/j.1365-246x.1976.tb04163.x
– ident: e_1_2_11_89_1
  doi: 10.1038/361615a0
– ident: e_1_2_11_28_1
  doi: 10.1038/35089010
– ident: e_1_2_11_6_1
  doi: 10.3137/OC311.2009
– ident: e_1_2_11_31_1
  doi: 10.1016/j.epsl.2006.11.034
– ident: e_1_2_11_107_1
  doi: 10.1111/j.1365-246X.2012.05703.x
– ident: e_1_2_11_93_1
  doi: 10.1093/gji/ggw401
– ident: e_1_2_11_163_1
  doi: 10.1002/2014JE004755
SSID ssj0000816913
Score 2.4222867
Snippet Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity,...
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows rotation rate, increases obliquity, lunar orbit...
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s...
Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2021JE006875
SubjectTerms Abrupt/Rapid Climate Change
Air/Sea Constituent Fluxes
Air/Sea Interactions
Atmospheric
Atmospheric Composition and Structure
Atmospheric Effects
Atmospheric Processes
Avalanches
Basin geometry
Benefit‐cost Analysis
Biogeosciences
Celestial bodies
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Computational Geophysics
Continents
Cryosphere
Decadal Ocean Variability
Disaster Risk Analysis and Assessment
Earth rotation
Earth System Modeling
Earth-Moon system
Earthquake Ground Motions and Engineering Seismology
Earth‐Moon history
Effusive Volcanism
Energy absorption
Energy dissipation
Equator
Explosive Volcanism
General Circulation
Geodesy and Gravity
Geological
Geological time
Global Change
Global Change from Geodesy
Gravitational Fields
Gravity and Isostasy
Hydrological Cycles and Budgets
Hydrology
Ice caps
Impacts of Global Change
Inclination
Informatics
Land/Atmosphere Interactions
Lunar and Planetary Geodesy and Gravity
lunar orbit
Lunar orbits
Lunar rotation
Marine Geology and Geophysics
Mass Balance
Mean sea level
Modeling
Monte Carlo simulation
Moon
Mud Volcanism
Natural Hazards
Numerical Modeling
Numerical Solutions
Obliquity
Ocean basins
Ocean circulation
Ocean currents
Ocean influence of Earth rotation
Ocean models
Ocean Monitoring with Geodetic Techniques
Ocean tides
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: General
Oceanography: Physical
Oceans
Orbital and Rotational Dynamics
Orbital mechanics
Origin and Evolution
Paleoceanography
Parameters
Physical Modeling
Planetary Sciences: Comets and Small Bodies
Planetary Sciences: Fluid Planets
Planetary Sciences: Solar System Objects
Planetary Sciences: Solid Surface Planets
Plate tectonics
Plates (tectonics)
Policy Sciences
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Risk
Sea level
Sea Level Change
Sea Level: Variations and Mean
Seismology
Solid Earth
Surface Waves and Tides
Theoretical Modeling
Tidal energy
Tidal power
Tides
Tsunamis and Storm Surges
Volcanic Effects
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanology
Water circulation
Water Cycles
Title Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021JE006875
https://www.proquest.com/docview/2614178525
https://www.proquest.com/docview/2691458017
https://pubmed.ncbi.nlm.nih.gov/PMC9285098
Volume 126
WOSCitedRecordID wos000735886200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-9100
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816913
  issn: 2169-9097
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-9100
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816913
  issn: 2169-9097
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELag5cCF8qsulMpIwAUikqwdx8cKskC1bFfVVt1b5PiHjdQm1WZbqTcegWfkSZhx0rCLBBLiEjkaK7HiGfubyfgbQl4moVQaYEFgnEwCNkxtoBTngbOwfTipeWg8Zf5YTCbpfC6nXcANz8K0_BB9wA0tw6_XaOCqaDqyAeTIBK89OszwiIPgt8l2FA0FanXMpn2MBYtKSF8hOYZGIEMputx3eMS79Qds7kq_oObviZLrANbvQKOd_x37fXKvw570oFWWB-SWrR6S3YMGo-H1-TV9TX27DXY0j8h0XFdff3z7PoPVm2agYwu4-VLXFc2uOo2lp-VqQTFZBERjTECiR8uiXFFVGXqkrarorDSWYsm1s-YxORlls_efgq4CQ6CYDENwLrlJAHMYrqxkNkpDKxLOlMLv6qRhTAC-Yk4Crii4EYmSLjbgEQ1BJpQdPiFbVV3ZXUJNIZDsrSiUS5nmqlCJdoKzwmmdAAYdkDc3M5Drjp4cq2Sc5f43eSzz9Y82IK_63hctLccf-u3dTGbeGWeTg9PIIpHyGMQvejGYFf4rUZWtL7GPjBiH7VsMiNhQgv59SMy9KanKhSfolnEKOCwdkLdeCf46wvzw43GGfmH49N-6PyN3UdCm1uyRrdXy0j4nd_TVqmyW-94Q4Crm6T7Z_nA8OhnD3ennyU_3LQxr
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BFgku_KNuKWAk4AJRs1k7jo8VZCkl3VbVVvQWObbDRipJtdlW4sYj8Iw8CTNJGnaRQELcHM0osZyZ-Jvx5BuAF6GvtEFY4NlchR4fR87TWggvd7h95MoI3zaU-YmcTqPTU3XU9Tmlf2Fafog-4Uae0XyvycEpId2xDRBJJobto_2Y_nGQ4jpscLQkMYCNd8eTk6RPs1BfCdU0SQ5w4Clfya78HW-ys3qL9Y3pF9r8vVZyFcM2m9Dkzn9P_y7c7vAn220N5h5cc-V92NytKSNeffnKXrFm3CY86gdwlFTl5x_fvs_wC85itLM5XhxUVcniy85q2adiOWdUMIKihIqQ2OEiK5ZMl5YdGqdLNiusY9R27ax-CCeTePZ2z-u6MHiaK9_HAFPYEHGHFdop7kaR72QouNa0sLmynEvEWDxXiC0yYWWoVR5YjIrGKJPajR_BoKxKtwnMZpII37JM5xE3Qmc6NLkUPMuNCRGHDuH11StITUdRTp0yztLmqDxQ6eqiDeFlr33eUnP8QW_76m2mnYPWKQaOfCQjEaD4eS9G16LzEl266oJ01IgL3MLlEOSaFfTPI3LudUlZzBuSbhVEiMWiIbxprOCvM0z33x_HFBv6W_-m_gxu7s0OkjT5MP34GG6RUltqsw2D5eLCPYEb5nJZ1IunnV_8BMRnDlE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagIMSl_KtbChgJuEDUbNaO42MFWaAs2xVaRG-R4x82UnGqzbYSNx6BZ-RJmHHSsIsEEuKWaEZJ5MzY34zH3xDyJI2l0gALIuNkGrFRZiOlOI-cheXDSc1jEyjzJ2I6zY6P5azrc4pnYVp-iD7hhp4R5mt0cHtqXMc2gCSZELYPD3M84yD4ZXKFcZhmkdqZzfokC3aVkKFFcgIXkYyl6Irf4RH76w_YXJZ-Yc3fKyXXEWxYgsY3_vvjb5LtDn3Sg9ZcbpFL1t8mOwcN5sPrL1_pMxqu23RHc4fMJrX__OPb9znM3zQHK1vAzfu69jQ_72yWfqpWC4rlIiCaYAkSPVqW1Yoqb-iRtsrTeWUsxaZrJ81d8nGcz1--iboeDJFiMo4hvOQmBdRhuLKS2WEWW5FyphQOrJOGMQEIizkJyKLkRqRKusRATDQCmVB2dI9s-drbHUJNKZDurSyVy5jmqlSpdoKz0mmdAgodkOcXv6DQHUE59sk4KcJGeSKL9UEbkKe99mlLzPEHvb2Lv1l07tkUEDayoch4AuLHvRgcC3dLlLf1GerIIeOwgIsBERtW0L8Pqbk3Jb5aBIpumWSAxLIBeRGs4K9fWBy-_pBjZBjv_pv6I3Jt9mpcTN5O390n11GnrbPZI1ur5Zl9QK7q81XVLB8Gp_gJbDwMOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long%E2%80%90Term+Earth%E2%80%90Moon+Evolution+With+High%E2%80%90Level+Orbit+and+Ocean+Tide+Models&rft.jtitle=Journal+of+geophysical+research.+Planets&rft.au=Daher%2C+Houraa&rft.au=Arbic%2C+Brian+K&rft.au=Williams%2C+James+G&rft.au=Ansong%2C+Joseph+K&rft.date=2021-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9097&rft.eissn=2169-9100&rft.volume=126&rft.issue=12&rft_id=info:doi/10.1029%2F2021JE006875&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9097&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9097&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9097&client=summon