Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrea...
Saved in:
| Published in: | Journal of geophysical research. Planets Vol. 126; no. 12; pp. e2021JE006875 - n/a |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
Blackwell Publishing Ltd
01.12.2021
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 2169-9097, 2169-9100 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3 Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
Plain Language Summary
Tidal dissipation in Earth′s oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and Earth′s obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of Earth′s history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the Moon′s tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models.
Key Points
Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide models
Rapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factor
Tidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past |
|---|---|
| AbstractList | Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide modelsRapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factorTidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s $\mathrm{E}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{h}\prime \mathrm{s}$ rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s $\mathrm{E}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{h}\prime \mathrm{s}$ rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s $\mathrm{t}\mathrm{o}\mathrm{d}\mathrm{a}\mathrm{y}\prime \mathrm{s}$ rate due to a closer Moon. Prior to ∼3Ga $\sim 3\,\mathrm{Ga}$, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded rate due to a closer Moon. Prior to , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Tidal dissipation in oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models. Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide models Rapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factor Tidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3 Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. Plain Language Summary Tidal dissipation in Earth′s oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and Earth′s obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of Earth′s history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the Moon′s tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models. Key Points Long‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide models Rapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factor Tidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. |
| Author | Müller, Malte Austermann, Jacqueline Ansong, Joseph K. Lau, Harriet C. P. Huber, Matthew Schindelegger, Michael Cornuelle, Bruce D. Fringer, Oliver B. Mitrovica, Jerry X. Crawford, Eliana B. Lock, Simon J. Menemenlis, Dimitris Green, J. A. Mattias Daher, Houraa Maloof, Adam C. Boggs, Dale H. Arbic, Brian K. Williams, James G. |
| AuthorAffiliation | 8 Norwegian Meteorological Institute Oslo Norway 18 Department of Geosciences Princeton University Princeton NJ USA 5 Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS) Toulouse France 15 Department of Earth and Planetary Sciences University of California Berkeley CA USA 9 Institute of Geodesy and Geoinformation University of Bonn Bonn Germany 2 Rosenstiel School for Marine and Atmospheric Science University of Miami Miami FL USA 10 Department of Earth and Environmental Sciences Columbia University New York NY USA 20 Department of Earth, Atmospheric, and Planetary Sciences Purdue University West Lafayette IN USA 17 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA 11 Scripps Institution of Oceanography University of California La Jolla CA USA 3 Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA 14 Department of Civil and Environmental Engineering Stanford University Stanford CA USA 1 Department |
| AuthorAffiliation_xml | – name: 6 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA – name: 16 Department of Earth and Planetary Sciences Harvard University Cambridge MA USA – name: 5 Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS) Toulouse France – name: 1 Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA – name: 4 Institut des Géosciences de L'Environnement (IGE) Grenoble France – name: 13 Department of Physics Kenyon College Gambier OH USA – name: 3 Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA – name: 15 Department of Earth and Planetary Sciences University of California Berkeley CA USA – name: 19 School of Ocean Sciences Bangor University Menai Bridge UK – name: 9 Institute of Geodesy and Geoinformation University of Bonn Bonn Germany – name: 2 Rosenstiel School for Marine and Atmospheric Science University of Miami Miami FL USA – name: 7 Department of Mathematics University of Ghana Accra Ghana – name: 12 Swift Navigation San Francisco CA USA – name: 17 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA – name: 8 Norwegian Meteorological Institute Oslo Norway – name: 11 Scripps Institution of Oceanography University of California La Jolla CA USA – name: 14 Department of Civil and Environmental Engineering Stanford University Stanford CA USA – name: 20 Department of Earth, Atmospheric, and Planetary Sciences Purdue University West Lafayette IN USA – name: 18 Department of Geosciences Princeton University Princeton NJ USA – name: 10 Department of Earth and Environmental Sciences Columbia University New York NY USA |
| Author_xml | – sequence: 1 givenname: Houraa orcidid: 0000-0002-0017-7346 surname: Daher fullname: Daher, Houraa organization: University of Miami – sequence: 2 givenname: Brian K. orcidid: 0000-0002-7969-2294 surname: Arbic fullname: Arbic, Brian K. email: arbic@umich.edu organization: Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS) – sequence: 3 givenname: James G. orcidid: 0000-0002-8441-5937 surname: Williams fullname: Williams, James G. organization: California Institute of Technology – sequence: 4 givenname: Joseph K. orcidid: 0000-0002-2214-377X surname: Ansong fullname: Ansong, Joseph K. organization: University of Ghana – sequence: 5 givenname: Dale H. orcidid: 0000-0002-1568-3428 surname: Boggs fullname: Boggs, Dale H. organization: California Institute of Technology – sequence: 6 givenname: Malte orcidid: 0000-0003-2871-8359 surname: Müller fullname: Müller, Malte organization: Norwegian Meteorological Institute – sequence: 7 givenname: Michael orcidid: 0000-0001-6250-7921 surname: Schindelegger fullname: Schindelegger, Michael organization: University of Bonn – sequence: 8 givenname: Jacqueline orcidid: 0000-0003-3754-5082 surname: Austermann fullname: Austermann, Jacqueline organization: Columbia University – sequence: 9 givenname: Bruce D. surname: Cornuelle fullname: Cornuelle, Bruce D. organization: University of California – sequence: 10 givenname: Eliana B. orcidid: 0000-0002-6092-5406 surname: Crawford fullname: Crawford, Eliana B. organization: Kenyon College – sequence: 11 givenname: Oliver B. orcidid: 0000-0003-3176-6925 surname: Fringer fullname: Fringer, Oliver B. organization: Stanford University – sequence: 12 givenname: Harriet C. P. orcidid: 0000-0003-0311-695X surname: Lau fullname: Lau, Harriet C. P. organization: Harvard University – sequence: 13 givenname: Simon J. orcidid: 0000-0001-5365-9616 surname: Lock fullname: Lock, Simon J. organization: California Institute of Technology – sequence: 14 givenname: Adam C. surname: Maloof fullname: Maloof, Adam C. organization: Princeton University – sequence: 15 givenname: Dimitris orcidid: 0000-0001-9940-8409 surname: Menemenlis fullname: Menemenlis, Dimitris organization: California Institute of Technology – sequence: 16 givenname: Jerry X. surname: Mitrovica fullname: Mitrovica, Jerry X. organization: Harvard University – sequence: 17 givenname: J. A. Mattias orcidid: 0000-0001-5090-1040 surname: Green fullname: Green, J. A. Mattias organization: Bangor University – sequence: 18 givenname: Matthew orcidid: 0000-0002-2771-9977 surname: Huber fullname: Huber, Matthew organization: Purdue University |
| BookMark | eNp9kc9OGzEQxq0KVCjl1gdYqZceCNhe_71UqtAWioKCqlQ9Ws7ubGLk2NTeTcWtj9Bn7JPUUUAqSNQXj_395vOM5w3aCzEAQu8IPiWY6jOKKblqMBZK8lfokBKhJ5pgvPcYYy0P0HHOt7gsVa5I_Rod1Fwxwbk4RDfTGJZ_fv2eQ1pXjU3DqhyuYwxVs4l-HFyJvrthVV265VaawgZ8NUsLN1Q2dNWsBRuqueuguo4d-PwW7ffWZzh-2I_Qt8_N_PxyMp1dfDn_NJ1YpjGeMMw7IRnpuAXNgCgMUnBm7bbEXneMyVpT1mtF9IJ3Uljd004IURdNWqiP0Med7924WEPXQhiS9eYuubVN9yZaZ54qwa3MMm6MpopjrYrBhweDFH-MkAezdrkF722AOGZDSyGMK0xkQd8_Q2_jmEJpr1CEEak45YWiO6pNMecEvWndYLc_WN533hBstjMz_86sJJ08S3rs4AW83uE_nYf7_7Lm6uJrQ4lkuP4LkkSmuQ |
| CitedBy_id | crossref_primary_10_1007_s11214_025_01136_y crossref_primary_10_1111_gbi_12601 crossref_primary_10_1016_j_precamres_2022_106799 crossref_primary_10_1051_0004_6361_202243445 crossref_primary_10_1016_j_epsl_2023_118348 crossref_primary_10_3847_1538_4357_ad9b93 crossref_primary_10_1073_pnas_2406930121 crossref_primary_10_1016_j_icarus_2023_115564 crossref_primary_10_1016_j_precamres_2023_107200 crossref_primary_10_3847_1538_3881_ad643a crossref_primary_10_1111_sed_12975 crossref_primary_10_1016_j_pocean_2022_102824 crossref_primary_10_1029_2022PA004555 crossref_primary_10_1029_2022PA004556 crossref_primary_10_3847_1538_4357_adeb83 crossref_primary_10_1016_j_pepi_2024_107168 crossref_primary_10_1016_j_pepi_2024_107267 crossref_primary_10_1029_2023JB027050 crossref_primary_10_1016_j_pepi_2023_107022 crossref_primary_10_1029_2024PA004861 crossref_primary_10_1029_2024PA005016 crossref_primary_10_1029_2022GL098304 crossref_primary_10_1073_pnas_2216309119 crossref_primary_10_57035_journals_sdk_2024_e21_1271 crossref_primary_10_1063_pt_agkk_cyzd crossref_primary_10_1016_j_icarus_2022_115257 crossref_primary_10_1111_nyas_14851 crossref_primary_10_3847_1538_4357_acfc40 crossref_primary_10_1016_j_epsl_2024_119086 crossref_primary_10_1073_pnas_2117146119 crossref_primary_10_1073_pnas_2317051121 |
| Cites_doi | 10.1007/s10569-017-9783-7 10.1016/0019-1035(86)90088-6 10.5194/gmd-7-2077-2014 10.1038/432460a 10.1175/jpo-d-12-054.1 10.1016/0019-1035(87)90160-6 10.1002/2016GL069790 10.1080/01490419809388134 10.1029/2007PA001573 10.1016/j.cageo.2012.06.022 10.1038/361608a0 10.1016/j.csr.2009.07.008 10.1029/2003GL017676 10.1130/G36511.1 10.1046/j.1365-246X.2003.02021.x 10.1002/ggge.20071 10.1175/1520-0485(1984)014<1532:nmotwo>2.0.co;2 10.1029/2018JC013959 10.1029/96GL02083 10.1051/0004-6361:20041335 10.1016/j.gsf.2017.07.009 10.1016/s0967-0637(98)00070-3 10.1007/s10236-010-0331-1 10.1038/nature10565 10.1016/0301-9268(87)90073-8 10.1029/jb094ib07p09533 10.1051/0004-6361/201731620 10.1038/320600a0 10.1093/gji/ggv227 10.1029/rg020i003p00457 10.1016/j.gsf.2012.12.007 10.5194/esd-11-291-2020 10.1089/ast.2017.1760 10.1038/nature10328 10.1029/2003JC001973 10.5194/essd-8-543-2016 10.1038/211676a0 10.1029/RG002i004p00661 10.1126/sciadv.1602365 10.1038/s41561-020-0538-9 10.1051/0004-6361/201116836 10.1016/j.epsl.2006.10.007 10.2110/jsr.2015.66 10.4294/jpe1952.37.345 10.1126/sciadv.1700207 10.1007/BFb0117927 10.1007/s10569-016-9702-3 10.1073/pnas.1502239112 10.1029/1999GL008348 10.1029/2007gc001743 10.1073/pnas.2003496117 10.1029/2007GL030845 10.1111/j.1365-246x.1982.tb06404.x 10.1073/pnas.1717689115 10.1016/j.dsr2.2004.09.014 10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2 10.1038/s41467-020-20008-3 10.1016/j.ocemod.2007.09.001 10.1086/117209 10.1029/RG004i004p00411 10.1029/1999rg900016 10.1006/icar.1996.5642 10.1016/0012-821x(89)90049-6 10.1029/GL005i011p00943 10.1016/j.gloplacha.2018.03.004 10.1016/j.earscirev.2020.103477 10.1007/s00367-017-0500-z 10.1029/2003JC002034 10.1146/annurev-earth-081619-052705 10.1146/annurev-astro-082214-122246 10.1126/science.aba1948 10.1006/icar.1993.1010 10.1038/35059062 10.1175/2008JCLI2540.1 10.1016/0019-1035(89)90129-2 10.1098/rsta.1977.0159 10.3847/1538-3881/abd414 10.1111/j.1365-246x.1981.tb02693.x 10.1016/j.epsl.2018.12.009 10.1146/annurev-earth-060115-012211 10.1007/s11214-020-00729-z 10.1016/0198-0149(81)90139-4 10.1007/978-1-4684-8401-4_12 10.1029/rg010i001p00001 10.7302/ZCK4-0058 10.4294/jpe1952.38.475 10.1016/j.icarus.2011.10.013 10.1126/sciadv.aba8949 10.1080/01621459.1987.10478410 10.1098/rspa.1919.0059 10.1051/0004-6361/201732233 10.1111/j.1365-246x.1972.tb06167.x 10.1088/2041-8205/787/1/L2 10.1002/2016GL068912 10.1126/science.1151540 10.1016/0019-1035(75)90070-6 10.1029/RG002i003p00467 10.1146/annurev-earth-050212-124208 10.1016/0019-1035(69)90044-x 10.1130/B30385.1 10.1007/s00190-019-01296-0 10.3847/PSJ/abe53f 10.1016/j.epsl.2017.11.039 10.1016/j.epsl.2017.07.021 10.1126/science.189.4200.377 10.1130/B30950.1 10.1126/science.1232226 10.1038/385055a0 10.1016/0019-1035(67)90060-7 10.1130/B30094.1 10.1002/2017JE005333 10.1017/s174392130400897x 10.1126/science.265.5171.482 10.1038/238441a0 10.1029/2000gl012044 10.1007/s10236-016-1016-1 10.2110/jsr.69.1154 10.1029/2006gl028870 10.1111/j.1365-246X.2010.04563.x 10.17125/gov2018.ch13 10.1111/j.1365-246x.1981.tb02690.x 10.1038/35015531 10.1016/j.icarus.2015.10.024 10.1007/bf00644130 10.1038/nature19846 10.1016/0011-7471(71)90073-8 10.3847/2041-8213/ab133b 10.1002/2013JE004559 10.1127/0077-7749/2008/0247-0341 10.1029/2019GL085746 10.1144/gsjgs.146.1.0097 10.1073/pnas.1702297114 10.1029/98GL00048 10.1016/0019-1035(91)90046-V 10.1016/S0065-2687(08)60021-7 10.1029/2000JE001396 10.1002/grl.50510 10.1029/2019JE006016 10.1029/rg010i003p00761 10.1126/science.286.5445.1707 10.1088/0034-4885/40/6/002 10.1029/2000jc000699 10.1038/359123a0 10.1016/j.precamres.2012.07.009 10.1046/j.1365-246x.2001.00356.x 10.1016/j.epsl.2016.12.038 10.1002/2017GL076695 10.1098/rspa.2020.0355 10.1175/JPO-D-14-0150.1 10.1111/j.1365-246x.1976.tb04163.x 10.1038/361615a0 10.1038/35089010 10.3137/OC311.2009 10.1016/j.epsl.2006.11.034 10.1111/j.1365-246X.2012.05703.x 10.1093/gji/ggw401 10.1002/2014JE004755 |
| ContentType | Journal Article |
| Copyright | 2021. The Authors. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. The Authors. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 8FD H8D KL. L7M 7X8 5PM |
| DOI | 10.1029/2021JE006875 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| DocumentTitleAlternate | Daher et al |
| EISSN | 2169-9100 |
| EndPage | n/a |
| ExternalDocumentID | PMC9285098 10_1029_2021JE006875 JGRE21740 |
| Genre | article |
| GrantInformation_xml | – fundername: US National Science Foundation funderid: OCE‐0968783; OCE‐1351837; EAR‐1947614 – fundername: UK Natural Environment Research Council funderid: NE/S009566/1 (MATCH) – fundername: NASA funderid: NNX16AH79G; NNX17AH55G; 80NSSC20K1135; NNX17AE42G; 80NM0018D0004 – fundername: Austrian Science Fund (FWF) funderid: P30097‐N29 – fundername: UK Natural Environment Research Council grantid: NE/S009566/1 (MATCH) – fundername: ; grantid: P30097‐N29 – fundername: US National Science Foundation grantid: OCE‐0968783; OCE‐1351837; EAR‐1947614 – fundername: NASA grantid: NNX16AH79G; NNX17AH55G; 80NSSC20K1135; NNX17AE42G; 80NM0018D0004 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 8-1 88I 8FE 8FG 8FH A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABUWG ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D1K DPXWK DRFUL DRSTM DWQXO EBS EJD FEDTE G-S GNUQQ GODZA HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W P62 PCBAR PQQKQ PROAC R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AAYXX AEYWJ AFFHD AGHNM AGYGG AIQQE CITATION PHGZM PHGZT PQGLB 7TG 8FD H8D KL. L7M 7X8 5PM |
| ID | FETCH-LOGICAL-a4900-405d6741d5ae94e180e7654aa1691f9d4473924f9819b5d76a9f2d66639d47ae3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735886200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-9097 |
| IngestDate | Tue Sep 30 16:01:53 EDT 2025 Wed Oct 01 14:24:19 EDT 2025 Sat Jul 26 00:54:58 EDT 2025 Tue Nov 18 22:25:23 EST 2025 Sat Nov 29 04:24:06 EST 2025 Wed Jan 22 16:27:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4900-405d6741d5ae94e180e7654aa1691f9d4473924f9819b5d76a9f2d66639d47ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3176-6925 0000-0001-6250-7921 0000-0001-5365-9616 0000-0001-9940-8409 0000-0003-0311-695X 0000-0002-2214-377X 0000-0002-0017-7346 0000-0002-2771-9977 0000-0002-7969-2294 0000-0002-1568-3428 0000-0002-6092-5406 0000-0002-8441-5937 0000-0003-3754-5082 0000-0003-2871-8359 0000-0001-5090-1040 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021JE006875 |
| PMID | 35846556 |
| PQID | 2614178525 |
| PQPubID | 54729 |
| PageCount | 39 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285098 proquest_miscellaneous_2691458017 proquest_journals_2614178525 crossref_citationtrail_10_1029_2021JE006875 crossref_primary_10_1029_2021JE006875 wiley_primary_10_1029_2021JE006875_JGRE21740 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington – name: Hoboken |
| PublicationTitle | Journal of geophysical research. Planets |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2011; 479 2001; 144 2011; 477 1968; 9 2018; 165 2019; 93 2013; 4 2002; 19 2012; 124 1988; 190 1999; 286 1994; 66 2016; 266 2013; 125 1993; 361 2021; 161 1919; A220 2020; 13 2020; 11 2010; 181 2018; 45 2003; 154 1987; 37 2017; 208 2018; 9 1994; 265 2018; 612 2018; 613 1997; 385 2015; 85 2000; 405 2016; 43 1991; 92 1992; 359 2008; 23 2020; 216 1975; 189 1981 1989; 37 2010; 30 2001; 412 2016; 44 2011; 532 1976; 46 2019; 508 1990; 38 1982; 30 2015; 53 1999; 26 2015; 120 2017; 67 1969; 11 1994 2008; 247 1993 1981; 28 2001; 28 1992 1991 2013; 340 2004; 428 2003; 30 1976; 7 1955; B36 1993; 101 2018; 19 1967; 7 2014; 787 2004; 51 2004; 432 1971; 38 2015; 112 2018; 115 1975; 24 2012; 49 2004; 2004 2012; 220–221 2016; 8 1964; 2 2018; 482 2009; 47 2017; 3 1976; 23 1987; 71 2008b 1989; 81 2018; 123 2008; 9 2020; 369 1978; 5 2019; 124 2006; 252 1977; 287 2017; 475 1996; 38 2007; 34 2017; 114 1998; 45 2001; 106 2010; 60 2015; 45 2007; 255 2020; 6 2013; 14 2017; 37 1987; 82 1984; 14 1892; 60 1989; 146 1982; 20 2008; 319 2015; 43 2020; 48 2020; 47 1972; 10 2019; 876 2014; 7 1994; 108 2012; 217 1996; 23 2017; 129 1966; 4 2009; 22 2014; 119 1966; 211 1989; 20 2021; 2 2012 1982; 70 2013; 43 2015; 202 2010 2013; 40 2013; 41 1999; 69 1977; 40 2010; 122 2001; 409 2016; 126 2004; 109 1998; 21 1972; 238 1972; 29 2008a; 20 1981; 64 1998; 25 1997; 126 1989; 94 2000; 38 2016; 539 2021 2021; 214 1986; 66 1986; 320 1989; 92 2018 2020; 117 1960 2017; 461 2020; 476 1966 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 Kaula W. M. (e_1_2_11_82_1) 1966 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_167_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_163_1 Kagan B. A. (e_1_2_11_79_1) 1996 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_174_1 e_1_2_11_151_1 e_1_2_11_170_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 Munk W. H. (e_1_2_11_117_1) 1960 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_160_1 Chapront‐Touzé M. (e_1_2_11_32_1) 1988; 190 e_1_2_11_61_1 e_1_2_11_80_1 Cameron A. G. W. (e_1_2_11_27_1) 1976 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 Gill A. E. (e_1_2_11_59_1) 1982 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_110_1 e_1_2_11_39_1 Melosh H. J. (e_1_2_11_104_1) 1989 e_1_2_11_133_1 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_171_1 e_1_2_11_72_1 e_1_2_11_91_1 Gerstenkorn H. (e_1_2_11_56_1) 1955; 36 Scotese C. R. (e_1_2_11_138_1) 1992 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 Munk W. (e_1_2_11_115_1) 1968; 9 e_1_2_11_6_1 Petit G. (e_1_2_11_122_1) 2010 Ray R. D. (e_1_2_11_127_1) 1994 e_1_2_11_169_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 e_1_2_11_161_1 Williams J. G. (e_1_2_11_165_1) 2021 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_134_1 e_1_2_11_157_1 e_1_2_11_19_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_172_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 Darwin G. H. (e_1_2_11_38_1) 1892; 60 Hendershott M. C. (e_1_2_11_74_1) 1981 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_120_1 e_1_2_11_162_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 Müller M. (e_1_2_11_111_1) 2008 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_154_1 e_1_2_11_112_1 Webb D. J. (e_1_2_11_158_1) 1976 e_1_2_11_131_1 e_1_2_11_150_1 e_1_2_11_173_1 Chapront‐Touzé M. (e_1_2_11_33_1) 1991 |
| References_xml | – volume: 432 start-page: 460 year: 2004 article-title: Paleoclimate: Ocean tides and Heinrich events publication-title: Nature – volume: 126 start-page: 126 year: 1997 end-page: 137 article-title: The origin of the Moon and the single‐impact hypothesis V publication-title: Icarus – volume: 2 start-page: 661 year: 1964 end-page: 685 article-title: Tidal dissipation by solid friction and the resulting orbital evolution publication-title: Reviews of Geophysics – volume: 405 start-page: 775 year: 2000 end-page: 778 article-title: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data publication-title: Nature – volume: 287 start-page: 545 year: 1977 end-page: 594 article-title: Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences publication-title: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences – start-page: 34 year: 1992 – volume: 477 start-page: 70 year: 2011 end-page: 72 article-title: Chronological evidence that the Moon is either young or did not have a global magma ocean publication-title: Nature – volume: 539 start-page: 402 year: 2016 end-page: 406 article-title: Tidal evolution of the Moon from a high‐obliquity, high‐angular‐momentum Earth publication-title: Nature – volume: 217 start-page: 77 year: 2012 end-page: 87 article-title: Obliquity variations of a moonless Earth publication-title: Icarus – volume: 161 start-page: 105 year: 2021 article-title: The JPL planetary and lunar ephemerides DE440 and DE441 publication-title: The Astronomical Journal – year: 1966 – volume: 109 year: 2004 article-title: Numerical modeling of the global semidiurnal tide in the present day and in the Last Glacial Maximum publication-title: Journal of Geophysical Research Oceans – volume: 613 start-page: A68 year: 2018 article-title: The nature of the TRAPPIST‐1 exoplanets publication-title: Astronomy and Astrophysics – volume: 320 start-page: 600 year: 1986 end-page: 602 article-title: Lunar nodal tide and distance to the Moon during the Precambrian publication-title: Nature – volume: 20 start-page: 207 year: 2008a end-page: 222 article-title: Synthesis of forced oscillations, Part I: Tidal dynamics and the influence of the loading and self‐attraction effect publication-title: Ocean Modelling – volume: 120 start-page: 689 year: 2015 end-page: 724 article-title: Tides on the Moon: Theory and determination of dissipation publication-title: Journal of Geophysical Research: Planets – volume: 146 start-page: 97 year: 1989 end-page: 111 article-title: Late Precambrian tidal rhythmites in South Australia and the history of the Earth’s rotation publication-title: Journal of the Geological Society – volume: 479 start-page: 215 year: 2011 end-page: 218 article-title: An impact–driven dynamo for the early Moon publication-title: Nature – volume: 255 start-page: 9 year: 2007 end-page: 21 article-title: Pre‐3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Quebec publication-title: Earth and Planetary Science Letters – volume: 28 start-page: 481 year: 1981 end-page: 493 article-title: Estimates of the resonant period and Q in the semi‐diurnal tidal band in the North Atlantic and Pacific Oceans publication-title: Deep Sea Research Part A: Oceanographic Research Papers – volume: 13 start-page: 243 year: 2020 end-page: 248 article-title: Limited Archaean continental emergence reflected in an early Archaean O‐enriched ocean publication-title: Nature Geoscience – volume: 40 start-page: 665 year: 1977 end-page: 708 article-title: Oceanic tides publication-title: Reports on Progress in Physics – volume: 4 start-page: 411 year: 1966 end-page: 439 article-title: History of the lunar orbit publication-title: Reviews of Geophysics – volume: 409 start-page: 1029 year: 2001 end-page: 1033 article-title: Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years publication-title: Nature – volume: 11 start-page: 291 year: 2020 end-page: 299 article-title: Back to the future II: Tidal evolution of four supercontinent scenarios publication-title: Earth System Dynamics – volume: 9 start-page: 352 year: 1968 end-page: 375 article-title: Once again‐tidal friction publication-title: The Quarterly Journal of the Royal Astronomical Society – volume: 482 start-page: 388 year: 2018 end-page: 395 article-title: Estimating the formation age of distribution of continental 494 crust by unmixing zircon ages publication-title: Earth and Planetary Science Letters – volume: 9 year: 2008 article-title: Age, spreading rates, and spreading asymmetry of the world’s ocean crust publication-title: Geochemistry, Geophysics, Geosystems – volume: B36 start-page: 245 year: 1955 end-page: 274 article-title: Über Gezeitenreibung beim Zweikörperproblem publication-title: Zeitschrift für Astrophysik – volume: 48 start-page: 291 issue: 1 year: 2020 end-page: 320 article-title: Plate tectonics and the Archean Earth publication-title: Annual Review of Earth and Planetary Sciences – volume: 45 start-page: 678 year: 2015 end-page: 689 article-title: Dynamic adjustment of the ocean circulation to self‐attraction and loading effects publication-title: Journal of Physical Oceanography – volume: A220 start-page: 1 year: 1919 end-page: 93 article-title: Tidal friction in the Irish Sea publication-title: Philosophical Transactions of the Royal Society of London – volume: 8 start-page: 543 year: 2016 end-page: 557 article-title: A global, high‐resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry publication-title: Earth System Science Data – volume: 106 start-page: 22475 year: 2001 end-page: 22502 article-title: Estimates of M tidal energy dissipation from TOPEX/Poseidon altimeter data publication-title: Journal of Geophysical Research Oceans – volume: 60 start-page: 213 issue: 1 year: 1892 article-title: The tides and kindred phenomena in the solar system publication-title: Nova – volume: 19 start-page: 183 year: 2002 end-page: 204 article-title: Efficient inverse modeling of barotropic ocean tides publication-title: Journal of Atmospheric and Oceanic Technology – volume: 30 start-page: 1907 year: 2003 article-title: Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry publication-title: Geophysical Research Letters – start-page: 165 year: 1966 end-page: 209 – volume: 93 start-page: 2195 year: 2019 end-page: 2210 article-title: Lunar laser ranging–a tool for general relativity, lunar geophysics and earth science publication-title: Journal of Geodesy – volume: 66 start-page: 515 year: 1986 end-page: 535 article-title: The origin of the Moon and the single‐impact hypothesis I publication-title: Icarus – volume: 144 start-page: 471 year: 2001 end-page: 480 article-title: Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry publication-title: Geophysical Journal International – volume: 43 start-page: 5716 year: 2016 end-page: 5724 article-title: Analysis of a Precambrian resonance‐stabilized day length publication-title: Geophysical Research Letters – volume: 340 start-page: 577 year: 2013 end-page: 582 article-title: Exoplanet habitability publication-title: Science – volume: 34 year: 2007 article-title: On the resonance and influence of the tides in Ungava Bay and Hudson Strait publication-title: Geophysical Research Letters – year: 2012 article-title: An enigma in estimates of the Earth’s dynamic ellipticity publication-title: Geophysical Journal International – volume: 190 start-page: 342 year: 1988 end-page: 352 article-title: Elp 2000‐85: A semi‐analytical lunar ephemeris adequate for historical times publication-title: Astronomy and Astrophysics – volume: 476 year: 2020 article-title: Tides: A key environmental driver of osteichthyan evolution and the fish‐tetrapod transition? publication-title: Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences – volume: 154 start-page: 970 year: 2003 end-page: 990 article-title: Climate friction and the Earth’s obliquity publication-title: Geophysical Journal International – volume: 123 start-page: 4593 year: 2018 end-page: 4609 article-title: Can we model the effect of observed sea level rise on tides? publication-title: Journal of Geophysical Research: Oceans – volume: 106 start-page: 27933 year: 2001 end-page: 27968 article-title: Lunar rotational dissipation in solid body and molten core publication-title: Journal of Geophysical Research – volume: 508 start-page: 18 year: 2019 end-page: 29 article-title: Anelasticity from seismic to tidal timescales: Theory and observations publication-title: Earth and Planetary Science Letters – volume: 34 year: 2007 article-title: The free oscillations of the World Ocean in the period range 8 to 165 hours including the full loading effect publication-title: Geophysical Research Letters – volume: 101 start-page: 108 year: 1993 end-page: 128 article-title: Habitable zones around main sequence stars publication-title: Icarus – volume: 214 year: 2021 article-title: Extending full‐plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic publication-title: Earth‐Science Reviews – volume: 22 start-page: 2905 year: 2009 end-page: 2924 article-title: Modeling of polar ocean tides at the Last Glacial Maximum: Amplification, sensitivity, and climatological implications publication-title: Journal of Climate – volume: 38 start-page: 179 year: 1996 end-page: 266 article-title: Dissipation of tidal energy, paleotides, and evolution of the Earth‐Moon system – volume: 25 start-page: 539 year: 1998 end-page: 542 article-title: Neoproterozoic Earth‐Moon dynamics: Rework of the 900 Ma Big Cottonwood Canyon tidal laminae publication-title: Geophysical Research Letters – volume: 71 start-page: 30 year: 1987 end-page: 45 article-title: The origin of the Moon and the single‐impact hypothesis II publication-title: Icarus – volume: 7 start-page: 2077 year: 2014 end-page: 2090 article-title: A suite of early Eocene (∼55 Ma) climate model boundary conditions publication-title: Geoscientific Model Development – volume: 238 start-page: 441 year: 1972 end-page: 443 article-title: Tidal resonance in the Bay of Fundy and Gulf of Maine publication-title: Nature – volume: 211 start-page: 676 year: 1966 end-page: 681 article-title: Did the Atlantic close and then re‐open? publication-title: Nature – volume: 126 start-page: 89 year: 2016 end-page: 129 article-title: Secular tidal changes in lunar orbit and Earth rotation publication-title: Celestial Mechanics and Dynamical Astronomy – volume: 38 start-page: 493 year: 1971 end-page: 503 article-title: The age of the tide and “Q” of the oceans publication-title: Deep‐Sea Research – volume: 20 start-page: 457 year: 1982 end-page: 480 article-title: Secular effects of oceanic tidal dissipation on the Moon’s orbit and the Earth’s rotation publication-title: Reviews of Geophysics – volume: 28 start-page: 811 year: 2001 end-page: 814 article-title: Parameterizing tidal dissipation over rough topography publication-title: Geophysical Research Letters – volume: 6 year: 2020 article-title: A long‐lived magma ocean on a young Moon publication-title: Science Advances – volume: 5 start-page: 943 year: 1978 end-page: 946 article-title: Tidal acceleration of the Moon publication-title: Geophysical Research Letters – volume: 428 start-page: 261 year: 2004 end-page: 285 article-title: A long‐term numerical solution for the insolation quantities of the Earth publication-title: Astronomy and Astrophysics – year: 2010 – volume: 122 start-page: 1686 year: 2010 end-page: 1699 article-title: Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia publication-title: The Geological Society of America Bulletin – volume: 82 start-page: 171 year: 1987 end-page: 185 article-title: Better bootstrap confidence intervals publication-title: Journal of the American Statistical Association – volume: 189 start-page: 377 year: 1975 end-page: 379 article-title: Past orientation of the lunar spin axis publication-title: Science – volume: 165 start-page: 128 year: 2018 end-page: 136 article-title: Long‐term cyclicities in Phanerozoic sea‐level sedimentary record and their potential drivers publication-title: Global and Planetary Change – volume: 60 start-page: 1243 year: 2010 end-page: 1253 article-title: Ocean tides and resonance publication-title: Ocean Dynamics – volume: 44 start-page: 107 year: 2016 end-page: 138 article-title: Ocean basin evolution and global‐scale plate reorganization events since Pangea breakup publication-title: Annual Review of Earth and Planetary Sciences – volume: 41 start-page: 117 year: 2013 end-page: 151 article-title: Initiation and evolution of plate tectonics on Earth: Theories and observations publication-title: Annual Review of Earth and Planetary Sciences – volume: 123 start-page: 910 year: 2018 end-page: 951 article-title: The origin of the Moon within a terrestrial synestia publication-title: Journal of Geophysical Research: Planets – volume: 119 start-page: 1546 year: 2014 end-page: 1578 article-title: Lunar interior properties from the GRAIL mission publication-title: Journal of Geophysical Research: Planets – volume: 11 start-page: 6227 year: 2020 article-title: Weak tides during Cryogenian glaciations publication-title: Nature Communications – volume: 361 start-page: 615 year: 1993 end-page: 617 article-title: Stabilization of the Earth’s obliquity by the Moon publication-title: Nature – volume: 38 start-page: 475 year: 1990 end-page: 491 article-title: Tidal rhythmites: Key to the history of the Earth’s rotation and the lunar orbit publication-title: Journal of Physics of the Earth – volume: 38 start-page: 37 year: 2000 end-page: 59 article-title: Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit publication-title: Reviews of Geophysics – volume: 125 start-page: 1735 issue: 11–12 year: 2013 end-page: 1751 article-title: Reconstructing pre‐Pangean supercontinents publication-title: The Geological Society of America Bulletin – volume: 4 start-page: 439 year: 2013 end-page: 448 article-title: Origins of the supercontinent cycle publication-title: Geoscience Frontiers – volume: 117 start-page: 15460 year: 2020 end-page: 15464 article-title: Vertical angular momentum constraint on lunar formation and orbital history publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 467 year: 1964 end-page: 541 article-title: Tidal friction publication-title: Reviews of Geophysics – volume: 26 start-page: 3045 year: 1999 end-page: 3048 article-title: Lunar orbital evolution: A synthesis of recent results publication-title: Geophysical Research Letters – volume: 252 start-page: 398 year: 2006 end-page: 412 article-title: The core–mantle friction effect on the secular spin evolution of terrestrial planets publication-title: Earth and Planetary Science Letters – volume: 208 start-page: 368 year: 2017 end-page: 384 article-title: Anelasticity across seismic to tidal timescales: A self‐consistent approach publication-title: Geophysical Journal International – volume: 37 start-page: 333 year: 2017 end-page: 344 article-title: Lunar recession encoded in tidal rhythmites: A selective overview with examples from Argentina publication-title: Geo‐Marine Letters – volume: 10 start-page: 1 year: 1972 end-page: 49 article-title: Bermuda sea level in relation to tides, weather, and baroclinic fluctuations publication-title: Reviews of Geophysics – volume: 45 start-page: 1977 year: 1998 end-page: 2010 article-title: Abyssal recipes II: Energetics of tidal and wind mixing publication-title: Deep Sea Research Part I: Oceanographic Research Papers – volume: 69 start-page: 1154 year: 1999 end-page: 1168 article-title: Calculating lunar retreat rates using tidal rhythmites publication-title: Journal of Sedimentary Research – volume: 51 start-page: 3069 year: 2004 end-page: 3101 article-title: The accuracy of surface elevations in forward global barotropic and baroclinic tide models publication-title: Deep Sea Research Part II: Topical Studies in Oceanography – volume: 47 start-page: 239 year: 2009 end-page: 266 article-title: On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides publication-title: Atmosphere‐Ocean – volume: 85 start-page: 990 year: 2015 end-page: 998 article-title: Milankovitch period uncertainties and their impact on cyclostratigraphy publication-title: Journal of Sedimentary Research – volume: 265 start-page: 482 year: 1994 end-page: 490 article-title: Lunar laser ranging: A continuing legacy of the Apollo program publication-title: Science – start-page: 171 year: 1994 end-page: 185 – volume: 92 start-page: 204 year: 1991 end-page: 216 article-title: The origin of the Moon and the single‐impact hypothesis IV publication-title: Icarus – volume: 216 start-page: 109 year: 2020 article-title: Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities publication-title: Space Science Reviews – volume: 43 start-page: 459 year: 2015 end-page: 462 article-title: A cryogenian chronology: Two long‐lasting synchronous Neoproterozoic glaciations publication-title: Geology – volume: 2004 start-page: 445 issue: IAUC197 year: 2004 end-page: 452 article-title: Numerical modelling of the paleotidal evolution of the Earth‐Moon system publication-title: Proceedings of the International Astronomical Union – year: 2008b – volume: 92 start-page: 234 year: 1989 end-page: 246 article-title: Crustal volumes of the continents and of oceanic and continental submarine plateaus publication-title: Earth and Planetary Science Letters – volume: 112 start-page: E1406 year: 2015 end-page: E1413 article-title: Orbital forcing of climate 1.4 billion years ago publication-title: Proceedings of the National Academy of the United States of America – volume: 475 start-page: 15 year: 2017 end-page: 24 article-title: Tungsten isotopes and the origin of the Moon publication-title: Earth and Planetary Science Letters – volume: 612 start-page: A68 year: 2018 article-title: Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST‐1 planets publication-title: Astronomy and Astrophysics – volume: 10 start-page: 761 year: 1972 end-page: 797 article-title: Deformation of the Earth by surface loads publication-title: Reviews of Geophysics and Space Physics – year: 2021 – volume: 23 start-page: 1 year: 1976 end-page: 15 article-title: A model of continental‐shelf resonances – volume: 47 year: 2020 article-title: Tides on other Earths: Implications for exoplanet and palaeo‐tidal simulations publication-title: Geophysical Research Letters – volume: 37 start-page: 345 year: 1989 end-page: 355 article-title: Effects of configuration and bathymetry of the oceans on the tidal dissipation of the Earth's rotation publication-title: Journal of Physics of the Earth – volume: 461 start-page: 46 year: 2017 end-page: 53 article-title: Explicitly modelled deep‐time tidal dissipation and its implication for lunar history publication-title: Earth and Planetary Science Letters – volume: 66 start-page: 173 year: 1994 end-page: 188 article-title: A stochastic model of the Earth‐Moon tidal evolution accounting for cyclic variations of resonant properties of the ocean: An asymptotic solution publication-title: Earth, Moon, and Planets – volume: 94 start-page: 9533 year: 1989 end-page: 9544 article-title: Evolution of the lunar orbit with temperature‐and frequency‐dependent dissipation publication-title: Journal of Geophysical Research Solid Earth – volume: 46 start-page: 363 year: 1976 end-page: 406 article-title: The passive influence of the oceans upon the rotation of the Earth publication-title: Geophysical Journal of the Royal Astronomical Society – volume: 45 start-page: 3568 year: 2018 end-page: 3576 article-title: Is there a tectonically driven super‐tidal cycle? publication-title: Geophysical Research Letters – volume: 64 start-page: 747 year: 1981 end-page: 765 article-title: A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free “core nutation” publication-title: Geophysical Journal of the Royal Astronomical Society – volume: 129 start-page: 509 year: 2017 end-page: 536 article-title: Tidal locking of habitable exoplanets publication-title: Celestial Mechanics and Dynamical Astronomy – volume: 412 start-page: 708 year: 2001 end-page: 712 article-title: Origin of the Moon in a giant impact near the end of the Earth’s formation publication-title: Nature – volume: 266 start-page: 24 year: 2016 end-page: 43 article-title: Tidal friction in the Earth‐Moon system and Laplace planes: Darwin redux publication-title: Icarus – volume: 359 start-page: 123 year: 1992 end-page: 129 article-title: A model for the global variation in oceanic depth and heat flow with lithospheric age publication-title: Nature – volume: 81 start-page: 113 year: 1989 end-page: 131 article-title: The origin of the Moon and the single‐impact hypothesis III publication-title: Icarus – volume: 67 start-page: 165 year: 2017 end-page: 189 article-title: Time‐domain modeling of global ocean tides generated by the full lunisolar potential publication-title: Ocean Dynamics – volume: 29 start-page: 389 year: 1972 end-page: 402 article-title: The effects of solid Earth deformation on global ocean tides publication-title: Geophysical Journal International – volume: 361 start-page: 608 year: 1993 end-page: 612 article-title: The chaotic obliquity of the planets publication-title: Nature – volume: 114 start-page: 5653 issue: 22 year: 2017 end-page: 5658 article-title: Plate tectonic regulation of global marine animal diversity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 70 start-page: 261 year: 1982 end-page: 271 article-title: Tides and the evolution of the Earth‐Moon system publication-title: Geophysical Journal International – volume: 7 start-page: 120 year: 1976 end-page: 122 article-title: The origin of the Moon – start-page: 100 year: 1993 end-page: 141 – volume: 876 start-page: L22 year: 2019 article-title: Consequences of tidal dissipation in a putative Venusian ocean publication-title: The Astrophysical Journal Letters – volume: 11 start-page: 189 year: 1969 end-page: 207 article-title: The earliest past of the Earth‐Moon system publication-title: Icarus – volume: 40 start-page: 2707 year: 2013 end-page: 2713 article-title: Tidal dissipation in the early Eocene and implications for ocean mixing publication-title: Geophysical Research Letters – volume: 9 start-page: 61 issue: 1 year: 2018 end-page: 89 article-title: Dominant Lid Tectonics behaviour of continental lithosphere in Precambrian times: Palaeomagnetism confirms prolonged quasi‐integrity and absence of supercontinent cycles publication-title: Geoscience Frontiers – start-page: 307 year: 2018 end-page: 392 – volume: 2 start-page: 70 year: 2021 article-title: On the tidal history and future of the Earth–Moon orbital system publication-title: The Planetary Science Journal – volume: 319 start-page: 1357 year: 2008 end-page: 1362 article-title: Long‐term sea‐level fluctuations driven by ocean basin dynamics publication-title: Science – volume: 21 start-page: 181 year: 1998 end-page: 192 article-title: Ocean self‐attraction and loading in numerical tidal models publication-title: Marine Geodesy – volume: 124 start-page: 549 year: 2012 end-page: 577 article-title: Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian—Early Permian (Cisuralian) time scale and pan‐Euramerican chronostratigraphic correlation publication-title: The Geological Society of America Bulletin – volume: 14 start-page: 1532 year: 1984 end-page: 1550 article-title: Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides publication-title: Journal of Physical Oceanography – volume: 787 year: 2014 article-title: Strong dependence of the inner edge of the habitable zone on planetary rotation rate publication-title: The Astrophysical Journal Letters – volume: 3 year: 2017 article-title: Early formation of the Moon 4.51 billion years ago publication-title: Science Advances – year: 1960 – volume: 23 start-page: 2279 year: 1996 end-page: 2282 article-title: Gravitational oscillations in the length of day publication-title: Geophysical Research Letters – volume: 115 start-page: 6363 year: 2018 end-page: 6368 article-title: Proterozoic Milankovitch cycles and the history of the solar system publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 43 start-page: 1301 year: 2013 end-page: 1324 article-title: On the resonance and shelf/open‐ocean coupling of the global diurnal tides publication-title: Journal of Physical Oceanography – volume: 14 start-page: 751 year: 2013 end-page: 758 article-title: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations publication-title: Geochemistry, Geophysics, Geosystems – start-page: 292 year: 1981 end-page: 341 – volume: 37 start-page: 95 year: 1987 end-page: 105 article-title: A constant daylength during the Precambrian Era? publication-title: Precambrian Research – volume: 220–221 start-page: 23 year: 2012 end-page: 44 article-title: Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt publication-title: Precambrian Research – volume: 53 start-page: 409 year: 2015 end-page: 447 article-title: The occurrence and architecture of exoplanetary systems publication-title: Annual Review of Astronomy and Astrophysics – volume: 247 start-page: 341 year: 2008 end-page: 352 article-title: The Puncoviscana Formation of northwest Argentina: U‐Pb geochronology of detrital zircons and Rb‐Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting publication-title: Neues Jahrbuch für Geologie und Paläontologie ‐ Abhandlungen – volume: 43 start-page: 8376 year: 2016 end-page: 8383 article-title: Was Venus the first habitable world of our solar system? publication-title: Geophysical Research Letters – volume: 49 start-page: 190 year: 2012 end-page: 199 article-title: Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0 publication-title: Computational Geosciences – volume: 7 start-page: 160 year: 1967 end-page: 167 article-title: On the controversy over the effect of tidal friction upon the history of the Earth‐Moon system publication-title: Icarus – volume: 30 year: 1982 – volume: 202 start-page: 1392 year: 2015 end-page: 1406 article-title: A normal mode treatment of semi‐diurnal body tides on an aspherical, rotating and anelastic Earth publication-title: Geophysical Journal International – volume: 3 year: 2017 article-title: A two‐billion‐year history for the lunar dynamo publication-title: Science Advances – volume: 369 start-page: 1110 year: 2020 end-page: 1113 article-title: Earth’s water may have been inherited from material similar to enstatite chondrite meteorites publication-title: Science – volume: 24 start-page: 504 year: 1975 end-page: 515 article-title: Satellite‐sized planetesimals and lunar origin publication-title: Icarus – volume: 108 start-page: 1943 year: 1994 end-page: 1961 article-title: Evolution of the Earth‐Moon system publication-title: The Astronomical Journal – volume: 23 start-page: PA3211 year: 2008 article-title: On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events publication-title: Paleoceanography – volume: 109 year: 2004 article-title: Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation publication-title: Journal of Geophysical Research – volume: 385 start-page: 55 year: 1997 end-page: 58 article-title: Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago publication-title: Nature – volume: 19 start-page: 99 year: 2018 end-page: 125 article-title: Habitable climate scenarios for Proxima Centauri b with a dynamic ocean publication-title: Astrobiology – volume: 181 start-page: 806 year: 2010 end-page: 817 article-title: Inner core–mantle gravitational locking and the super‐rotation of the inner core publication-title: Geophysical Journal International – year: 1991 – volume: 20 start-page: 685 year: 1989 end-page: 686 article-title: Giant impact theory of the Moon’s origin: First 3‐D hydrocode results – volume: 64 start-page: 677 year: 1981 end-page: 703 article-title: Body tides on an elliptical, rotating, elastic and oceanless Earth publication-title: Geophysical Journal of the Royal Astronomical Society – volume: 30 start-page: 564 year: 2010 end-page: 574 article-title: A coupled oscillator model of shelf and ocean tides publication-title: Continental Shelf Research – volume: 532 start-page: A89 year: 2011 article-title: La2010: A new orbital solution for the long‐term motion of the Earth publication-title: Astronomy and Astrophysics – volume: 124 start-page: 2917 year: 2019 end-page: 2928 article-title: Early dynamics of the lunar core publication-title: Journal of Geophysical Research: Planets – volume: 286 start-page: 1707 year: 1999 end-page: 1709 article-title: Core rotational dynamics and geological events publication-title: Science – ident: e_1_2_11_13_1 doi: 10.1007/s10569-017-9783-7 – ident: e_1_2_11_15_1 doi: 10.1016/0019-1035(86)90088-6 – ident: e_1_2_11_75_1 doi: 10.5194/gmd-7-2077-2014 – ident: e_1_2_11_7_1 doi: 10.1038/432460a – ident: e_1_2_11_140_1 doi: 10.1175/jpo-d-12-054.1 – ident: e_1_2_11_16_1 doi: 10.1016/0019-1035(87)90160-6 – volume-title: The rotation of the Earth year: 1960 ident: e_1_2_11_117_1 – volume-title: DE440 lunar orbit, physical librations, and surface coordinates year: 2021 ident: e_1_2_11_165_1 – ident: e_1_2_11_157_1 doi: 10.1002/2016GL069790 – ident: e_1_2_11_128_1 doi: 10.1080/01490419809388134 – ident: e_1_2_11_8_1 doi: 10.1029/2007PA001573 – ident: e_1_2_11_155_1 doi: 10.1016/j.cageo.2012.06.022 – ident: e_1_2_11_90_1 doi: 10.1038/361608a0 – ident: e_1_2_11_4_1 doi: 10.1016/j.csr.2009.07.008 – ident: e_1_2_11_49_1 doi: 10.1029/2003GL017676 – ident: e_1_2_11_130_1 doi: 10.1130/G36511.1 – ident: e_1_2_11_96_1 doi: 10.1046/j.1365-246X.2003.02021.x – ident: e_1_2_11_133_1 doi: 10.1002/ggge.20071 – ident: e_1_2_11_125_1 doi: 10.1175/1520-0485(1984)014<1532:nmotwo>2.0.co;2 – ident: e_1_2_11_135_1 doi: 10.1029/2018JC013959 – ident: e_1_2_11_23_1 doi: 10.1029/96GL02083 – ident: e_1_2_11_91_1 doi: 10.1051/0004-6361:20041335 – ident: e_1_2_11_124_1 doi: 10.1016/j.gsf.2017.07.009 – ident: e_1_2_11_116_1 doi: 10.1016/s0967-0637(98)00070-3 – ident: e_1_2_11_61_1 doi: 10.1007/s10236-010-0331-1 – ident: e_1_2_11_95_1 doi: 10.1038/nature10565 – ident: e_1_2_11_174_1 doi: 10.1016/0301-9268(87)90073-8 – ident: e_1_2_11_131_1 doi: 10.1029/jb094ib07p09533 – ident: e_1_2_11_148_1 doi: 10.1051/0004-6361/201731620 – ident: e_1_2_11_153_1 doi: 10.1038/320600a0 – ident: e_1_2_11_94_1 doi: 10.1093/gji/ggv227 – ident: e_1_2_11_70_1 doi: 10.1029/rg020i003p00457 – ident: e_1_2_11_118_1 doi: 10.1016/j.gsf.2012.12.007 – ident: e_1_2_11_39_1 doi: 10.5194/esd-11-291-2020 – ident: e_1_2_11_42_1 doi: 10.1089/ast.2017.1760 – ident: e_1_2_11_20_1 doi: 10.1038/nature10328 – ident: e_1_2_11_50_1 doi: 10.1029/2003JC001973 – ident: e_1_2_11_134_1 doi: 10.5194/essd-8-543-2016 – ident: e_1_2_11_169_1 doi: 10.1038/211676a0 – ident: e_1_2_11_81_1 doi: 10.1029/RG002i004p00661 – volume-title: Hamburg studies on maritime affairs year: 2008 ident: e_1_2_11_111_1 – ident: e_1_2_11_11_1 doi: 10.1126/sciadv.1602365 – ident: e_1_2_11_77_1 doi: 10.1038/s41561-020-0538-9 – ident: e_1_2_11_88_1 doi: 10.1051/0004-6361/201116836 – ident: e_1_2_11_34_1 doi: 10.1016/j.epsl.2006.10.007 – ident: e_1_2_11_154_1 doi: 10.2110/jsr.2015.66 – ident: e_1_2_11_120_1 doi: 10.4294/jpe1952.37.345 – ident: e_1_2_11_146_1 doi: 10.1126/sciadv.1700207 – ident: e_1_2_11_30_1 doi: 10.1007/BFb0117927 – ident: e_1_2_11_164_1 doi: 10.1007/s10569-016-9702-3 – ident: e_1_2_11_175_1 doi: 10.1073/pnas.1502239112 – volume-title: Lunar tables and programs from 4000 B.C. to A.D. 8000 year: 1991 ident: e_1_2_11_33_1 – ident: e_1_2_11_18_1 doi: 10.1029/1999GL008348 – ident: e_1_2_11_112_1 doi: 10.1029/2007gc001743 – ident: e_1_2_11_145_1 doi: 10.1073/pnas.2003496117 – ident: e_1_2_11_10_1 doi: 10.1029/2007GL030845 – ident: e_1_2_11_159_1 doi: 10.1111/j.1365-246x.1982.tb06404.x – ident: e_1_2_11_106_1 doi: 10.1073/pnas.1717689115 – ident: e_1_2_11_5_1 doi: 10.1016/j.dsr2.2004.09.014 – ident: e_1_2_11_46_1 doi: 10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2 – ident: e_1_2_11_62_1 doi: 10.1038/s41467-020-20008-3 – ident: e_1_2_11_110_1 doi: 10.1016/j.ocemod.2007.09.001 – ident: e_1_2_11_147_1 doi: 10.1086/117209 – ident: e_1_2_11_60_1 doi: 10.1029/RG004i004p00411 – volume: 190 start-page: 342 year: 1988 ident: e_1_2_11_32_1 article-title: Elp 2000‐85: A semi‐analytical lunar ephemeris adequate for historical times publication-title: Astronomy and Astrophysics – ident: e_1_2_11_162_1 doi: 10.1029/1999rg900016 – ident: e_1_2_11_25_1 doi: 10.1006/icar.1996.5642 – start-page: 34 volume-title: Paleogeographic atlas: PALEOMAP progress report. Progress report 20‐0692 year: 1992 ident: e_1_2_11_138_1 – ident: e_1_2_11_137_1 doi: 10.1016/0012-821x(89)90049-6 – ident: e_1_2_11_168_1 doi: 10.1029/GL005i011p00943 – ident: e_1_2_11_21_1 doi: 10.1016/j.gloplacha.2018.03.004 – ident: e_1_2_11_105_1 doi: 10.1016/j.earscirev.2020.103477 – start-page: 685 year: 1989 ident: e_1_2_11_104_1 – ident: e_1_2_11_40_1 doi: 10.1007/s00367-017-0500-z – ident: e_1_2_11_143_1 doi: 10.1029/2003JC002034 – start-page: 120 year: 1976 ident: e_1_2_11_27_1 – ident: e_1_2_11_22_1 doi: 10.1146/annurev-earth-081619-052705 – ident: e_1_2_11_170_1 doi: 10.1146/annurev-astro-082214-122246 – volume: 60 start-page: 213 issue: 1 year: 1892 ident: e_1_2_11_38_1 article-title: The tides and kindred phenomena in the solar system publication-title: Nova – ident: e_1_2_11_123_1 doi: 10.1126/science.aba1948 – ident: e_1_2_11_80_1 doi: 10.1006/icar.1993.1010 – ident: e_1_2_11_100_1 doi: 10.1038/35059062 – ident: e_1_2_11_68_1 doi: 10.1175/2008JCLI2540.1 – ident: e_1_2_11_17_1 doi: 10.1016/0019-1035(89)90129-2 – ident: e_1_2_11_87_1 doi: 10.1098/rsta.1977.0159 – ident: e_1_2_11_121_1 doi: 10.3847/1538-3881/abd414 – ident: e_1_2_11_152_1 doi: 10.1111/j.1365-246x.1981.tb02693.x – ident: e_1_2_11_92_1 doi: 10.1016/j.epsl.2018.12.009 – ident: e_1_2_11_114_1 doi: 10.1146/annurev-earth-060115-012211 – ident: e_1_2_11_98_1 doi: 10.1007/s11214-020-00729-z – ident: e_1_2_11_72_1 doi: 10.1016/0198-0149(81)90139-4 – start-page: 171 volume-title: The oceans year: 1994 ident: e_1_2_11_127_1 – ident: e_1_2_11_102_1 doi: 10.1007/978-1-4684-8401-4_12 – ident: e_1_2_11_171_1 doi: 10.1029/rg010i001p00001 – start-page: 1 year: 1976 ident: e_1_2_11_158_1 – ident: e_1_2_11_9_1 doi: 10.7302/ZCK4-0058 – ident: e_1_2_11_161_1 doi: 10.4294/jpe1952.38.475 – ident: e_1_2_11_97_1 doi: 10.1016/j.icarus.2011.10.013 – ident: e_1_2_11_103_1 doi: 10.1126/sciadv.aba8949 – ident: e_1_2_11_45_1 doi: 10.1080/01621459.1987.10478410 – volume-title: Theory of satellite geodesy: Applications of satellites to geodesy year: 1966 ident: e_1_2_11_82_1 – ident: e_1_2_11_144_1 doi: 10.1098/rspa.1919.0059 – ident: e_1_2_11_69_1 doi: 10.1051/0004-6361/201732233 – ident: e_1_2_11_73_1 doi: 10.1111/j.1365-246x.1972.tb06167.x – ident: e_1_2_11_172_1 doi: 10.1088/2041-8205/787/1/L2 – ident: e_1_2_11_14_1 doi: 10.1002/2016GL068912 – ident: e_1_2_11_113_1 doi: 10.1126/science.1151540 – ident: e_1_2_11_71_1 doi: 10.1016/0019-1035(75)90070-6 – ident: e_1_2_11_101_1 doi: 10.1029/RG002i003p00467 – volume: 36 start-page: 245 year: 1955 ident: e_1_2_11_56_1 article-title: Über Gezeitenreibung beim Zweikörperproblem publication-title: Zeitschrift für Astrophysik – ident: e_1_2_11_83_1 doi: 10.1146/annurev-earth-050212-124208 – ident: e_1_2_11_58_1 doi: 10.1016/0019-1035(69)90044-x – ident: e_1_2_11_136_1 doi: 10.1130/B30385.1 – ident: e_1_2_11_108_1 doi: 10.1007/s00190-019-01296-0 – ident: e_1_2_11_149_1 doi: 10.3847/PSJ/abe53f – ident: e_1_2_11_84_1 doi: 10.1016/j.epsl.2017.11.039 – ident: e_1_2_11_85_1 doi: 10.1016/j.epsl.2017.07.021 – ident: e_1_2_11_156_1 doi: 10.1126/science.189.4200.377 – ident: e_1_2_11_52_1 doi: 10.1130/B30950.1 – ident: e_1_2_11_139_1 doi: 10.1126/science.1232226 – ident: e_1_2_11_12_1 doi: 10.1038/385055a0 – ident: e_1_2_11_57_1 doi: 10.1016/0019-1035(67)90060-7 – ident: e_1_2_11_41_1 doi: 10.1130/B30094.1 – ident: e_1_2_11_99_1 doi: 10.1002/2017JE005333 – ident: e_1_2_11_126_1 doi: 10.1017/s174392130400897x – ident: e_1_2_11_43_1 doi: 10.1126/science.265.5171.482 – volume-title: Atmosphere‐ocean dynamics. International Geophysics Series year: 1982 ident: e_1_2_11_59_1 – ident: e_1_2_11_54_1 doi: 10.1038/238441a0 – ident: e_1_2_11_76_1 doi: 10.1029/2000gl012044 – ident: e_1_2_11_51_1 doi: 10.1007/s10236-016-1016-1 – ident: e_1_2_11_86_1 doi: 10.2110/jsr.69.1154 – ident: e_1_2_11_109_1 doi: 10.1029/2006gl028870 – ident: e_1_2_11_44_1 doi: 10.1111/j.1365-246X.2010.04563.x – ident: e_1_2_11_3_1 doi: 10.17125/gov2018.ch13 – ident: e_1_2_11_151_1 doi: 10.1111/j.1365-246x.1981.tb02690.x – ident: e_1_2_11_47_1 doi: 10.1038/35015531 – ident: e_1_2_11_132_1 doi: 10.1016/j.icarus.2015.10.024 – ident: e_1_2_11_78_1 doi: 10.1007/bf00644130 – ident: e_1_2_11_35_1 doi: 10.1038/nature19846 – ident: e_1_2_11_55_1 doi: 10.1016/0011-7471(71)90073-8 – ident: e_1_2_11_66_1 doi: 10.3847/2041-8213/ab133b – ident: e_1_2_11_167_1 doi: 10.1002/2013JE004559 – ident: e_1_2_11_2_1 doi: 10.1127/0077-7749/2008/0247-0341 – ident: e_1_2_11_19_1 doi: 10.1029/2019GL085746 – ident: e_1_2_11_160_1 doi: 10.1144/gsjgs.146.1.0097 – ident: e_1_2_11_173_1 doi: 10.1073/pnas.1702297114 – ident: e_1_2_11_141_1 doi: 10.1029/98GL00048 – ident: e_1_2_11_26_1 doi: 10.1016/0019-1035(91)90046-V – start-page: 179 year: 1996 ident: e_1_2_11_79_1 doi: 10.1016/S0065-2687(08)60021-7 – ident: e_1_2_11_166_1 doi: 10.1029/2000JE001396 – start-page: 292 volume-title: Evolution of physical oceanography year: 1981 ident: e_1_2_11_74_1 – ident: e_1_2_11_63_1 doi: 10.1002/grl.50510 – volume: 9 start-page: 352 year: 1968 ident: e_1_2_11_115_1 article-title: Once again‐tidal friction publication-title: The Quarterly Journal of the Royal Astronomical Society – ident: e_1_2_11_36_1 doi: 10.1029/2019JE006016 – ident: e_1_2_11_53_1 doi: 10.1029/rg010i003p00761 – ident: e_1_2_11_67_1 doi: 10.1126/science.286.5445.1707 – ident: e_1_2_11_29_1 doi: 10.1088/0034-4885/40/6/002 – ident: e_1_2_11_48_1 doi: 10.1029/2000jc000699 – ident: e_1_2_11_142_1 doi: 10.1038/359123a0 – ident: e_1_2_11_119_1 doi: 10.1016/j.precamres.2012.07.009 – ident: e_1_2_11_129_1 doi: 10.1046/j.1365-246x.2001.00356.x – volume-title: IERS conventions (2010), IERS Technical Note No. 36, International Earth Rotation and Reference Systems Service (IERS) year: 2010 ident: e_1_2_11_122_1 – ident: e_1_2_11_64_1 doi: 10.1016/j.epsl.2016.12.038 – ident: e_1_2_11_65_1 doi: 10.1002/2017GL076695 – ident: e_1_2_11_24_1 doi: 10.1098/rspa.2020.0355 – ident: e_1_2_11_150_1 doi: 10.1175/JPO-D-14-0150.1 – ident: e_1_2_11_37_1 doi: 10.1111/j.1365-246x.1976.tb04163.x – ident: e_1_2_11_89_1 doi: 10.1038/361615a0 – ident: e_1_2_11_28_1 doi: 10.1038/35089010 – ident: e_1_2_11_6_1 doi: 10.3137/OC311.2009 – ident: e_1_2_11_31_1 doi: 10.1016/j.epsl.2006.11.034 – ident: e_1_2_11_107_1 doi: 10.1111/j.1365-246X.2012.05703.x – ident: e_1_2_11_93_1 doi: 10.1093/gji/ggw401 – ident: e_1_2_11_163_1 doi: 10.1002/2014JE004755 |
| SSID | ssj0000816913 |
| Score | 2.4222867 |
| Snippet | Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity,... Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows rotation rate, increases obliquity, lunar orbit... Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s... Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases... |
| SourceID | pubmedcentral proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2021JE006875 |
| SubjectTerms | Abrupt/Rapid Climate Change Air/Sea Constituent Fluxes Air/Sea Interactions Atmospheric Atmospheric Composition and Structure Atmospheric Effects Atmospheric Processes Avalanches Basin geometry Benefit‐cost Analysis Biogeosciences Celestial bodies Climate and Interannual Variability Climate Change and Variability Climate Dynamics Climate Impact Climate Impacts Climate Variability Climatology Computational Geophysics Continents Cryosphere Decadal Ocean Variability Disaster Risk Analysis and Assessment Earth rotation Earth System Modeling Earth-Moon system Earthquake Ground Motions and Engineering Seismology Earth‐Moon history Effusive Volcanism Energy absorption Energy dissipation Equator Explosive Volcanism General Circulation Geodesy and Gravity Geological Geological time Global Change Global Change from Geodesy Gravitational Fields Gravity and Isostasy Hydrological Cycles and Budgets Hydrology Ice caps Impacts of Global Change Inclination Informatics Land/Atmosphere Interactions Lunar and Planetary Geodesy and Gravity lunar orbit Lunar orbits Lunar rotation Marine Geology and Geophysics Mass Balance Mean sea level Modeling Monte Carlo simulation Moon Mud Volcanism Natural Hazards Numerical Modeling Numerical Solutions Obliquity Ocean basins Ocean circulation Ocean currents Ocean influence of Earth rotation Ocean models Ocean Monitoring with Geodetic Techniques Ocean tides Ocean/Atmosphere Interactions Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions Oceanic Oceanography: General Oceanography: Physical Oceans Orbital and Rotational Dynamics Orbital mechanics Origin and Evolution Paleoceanography Parameters Physical Modeling Planetary Sciences: Comets and Small Bodies Planetary Sciences: Fluid Planets Planetary Sciences: Solar System Objects Planetary Sciences: Solid Surface Planets Plate tectonics Plates (tectonics) Policy Sciences Radio Oceanography Radio Science Regional Climate Change Regional Modeling Risk Sea level Sea Level Change Sea Level: Variations and Mean Seismology Solid Earth Surface Waves and Tides Theoretical Modeling Tidal energy Tidal power Tides Tsunamis and Storm Surges Volcanic Effects Volcanic Hazards and Risks Volcano Monitoring Volcano Seismology Volcano/Climate Interactions Volcanology Water circulation Water Cycles |
| Title | Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021JE006875 https://www.proquest.com/docview/2614178525 https://www.proquest.com/docview/2691458017 https://pubmed.ncbi.nlm.nih.gov/PMC9285098 |
| Volume | 126 |
| WOSCitedRecordID | wos000735886200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2169-9100 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816913 issn: 2169-9097 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2169-9100 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816913 issn: 2169-9097 databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELag5cCF8qsulMpIwAUikqwdx8cKskC1bFfVVt1b5PiHjdQm1WZbqTcegWfkSZhx0rCLBBLiEjkaK7HiGfubyfgbQl4moVQaYEFgnEwCNkxtoBTngbOwfTipeWg8Zf5YTCbpfC6nXcANz8K0_BB9wA0tw6_XaOCqaDqyAeTIBK89OszwiIPgt8l2FA0FanXMpn2MBYtKSF8hOYZGIEMputx3eMS79Qds7kq_oObviZLrANbvQKOd_x37fXKvw570oFWWB-SWrR6S3YMGo-H1-TV9TX27DXY0j8h0XFdff3z7PoPVm2agYwu4-VLXFc2uOo2lp-VqQTFZBERjTECiR8uiXFFVGXqkrarorDSWYsm1s-YxORlls_efgq4CQ6CYDENwLrlJAHMYrqxkNkpDKxLOlMLv6qRhTAC-Yk4Crii4EYmSLjbgEQ1BJpQdPiFbVV3ZXUJNIZDsrSiUS5nmqlCJdoKzwmmdAAYdkDc3M5Drjp4cq2Sc5f43eSzz9Y82IK_63hctLccf-u3dTGbeGWeTg9PIIpHyGMQvejGYFf4rUZWtL7GPjBiH7VsMiNhQgv59SMy9KanKhSfolnEKOCwdkLdeCf46wvzw43GGfmH49N-6PyN3UdCm1uyRrdXy0j4nd_TVqmyW-94Q4Crm6T7Z_nA8OhnD3ennyU_3LQxr |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BFgku_KNuKWAk4AJRs1k7jo8VZCkl3VbVVvQWObbDRipJtdlW4sYj8Iw8CTNJGnaRQELcHM0osZyZ-Jvx5BuAF6GvtEFY4NlchR4fR87TWggvd7h95MoI3zaU-YmcTqPTU3XU9Tmlf2Fafog-4Uae0XyvycEpId2xDRBJJobto_2Y_nGQ4jpscLQkMYCNd8eTk6RPs1BfCdU0SQ5w4Clfya78HW-ys3qL9Y3pF9r8vVZyFcM2m9Dkzn9P_y7c7vAn220N5h5cc-V92NytKSNeffnKXrFm3CY86gdwlFTl5x_fvs_wC85itLM5XhxUVcniy85q2adiOWdUMIKihIqQ2OEiK5ZMl5YdGqdLNiusY9R27ax-CCeTePZ2z-u6MHiaK9_HAFPYEHGHFdop7kaR72QouNa0sLmynEvEWDxXiC0yYWWoVR5YjIrGKJPajR_BoKxKtwnMZpII37JM5xE3Qmc6NLkUPMuNCRGHDuH11StITUdRTp0yztLmqDxQ6eqiDeFlr33eUnP8QW_76m2mnYPWKQaOfCQjEaD4eS9G16LzEl266oJ01IgL3MLlEOSaFfTPI3LudUlZzBuSbhVEiMWiIbxprOCvM0z33x_HFBv6W_-m_gxu7s0OkjT5MP34GG6RUltqsw2D5eLCPYEb5nJZ1IunnV_8BMRnDlE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagIMSl_KtbChgJuEDUbNaO42MFWaAs2xVaRG-R4x82UnGqzbYSNx6BZ-RJmHHSsIsEEuKWaEZJ5MzY34zH3xDyJI2l0gALIuNkGrFRZiOlOI-cheXDSc1jEyjzJ2I6zY6P5azrc4pnYVp-iD7hhp4R5mt0cHtqXMc2gCSZELYPD3M84yD4ZXKFcZhmkdqZzfokC3aVkKFFcgIXkYyl6Irf4RH76w_YXJZ-Yc3fKyXXEWxYgsY3_vvjb5LtDn3Sg9ZcbpFL1t8mOwcN5sPrL1_pMxqu23RHc4fMJrX__OPb9znM3zQHK1vAzfu69jQ_72yWfqpWC4rlIiCaYAkSPVqW1Yoqb-iRtsrTeWUsxaZrJ81d8nGcz1--iboeDJFiMo4hvOQmBdRhuLKS2WEWW5FyphQOrJOGMQEIizkJyKLkRqRKusRATDQCmVB2dI9s-drbHUJNKZDurSyVy5jmqlSpdoKz0mmdAgodkOcXv6DQHUE59sk4KcJGeSKL9UEbkKe99mlLzPEHvb2Lv1l07tkUEDayoch4AuLHvRgcC3dLlLf1GerIIeOwgIsBERtW0L8Pqbk3Jb5aBIpumWSAxLIBeRGs4K9fWBy-_pBjZBjv_pv6I3Jt9mpcTN5O390n11GnrbPZI1ur5Zl9QK7q81XVLB8Gp_gJbDwMOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long%E2%80%90Term+Earth%E2%80%90Moon+Evolution+With+High%E2%80%90Level+Orbit+and+Ocean+Tide+Models&rft.jtitle=Journal+of+geophysical+research.+Planets&rft.au=Daher%2C+Houraa&rft.au=Arbic%2C+Brian+K&rft.au=Williams%2C+James+G&rft.au=Ansong%2C+Joseph+K&rft.date=2021-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9097&rft.eissn=2169-9100&rft.volume=126&rft.issue=12&rft_id=info:doi/10.1029%2F2021JE006875&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9097&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9097&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9097&client=summon |