An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan

Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoenvironmental disasters Jg. 7; H. 1; S. 1 - 16
Hauptverfasser: Nam, Kounghoon, Wang, Fawu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 30.01.2020
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:2197-8670, 2197-8670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall. Results The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%). Conclusions This study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment.
AbstractList BackgroundLandslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall.ResultsThe prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%).ConclusionsThis study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment.
Abstract Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall. Results The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%). Conclusions This study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment.
Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall. Results The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%). Conclusions This study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment.
ArticleNumber 6
Author Nam, Kounghoon
Wang, Fawu
Author_xml – sequence: 1
  givenname: Kounghoon
  orcidid: 0000-0003-3707-4241
  surname: Nam
  fullname: Nam, Kounghoon
  email: geonamsoil@gmail.com
  organization: Department of Earth Science, Shimane University
– sequence: 2
  givenname: Fawu
  surname: Wang
  fullname: Wang, Fawu
  organization: Department of Earth Science, Shimane University
BookMark eNp9kd1qFTEUhQepYK19AO8C3jo2yWQmmctS_GkpKKjXYU-yc5rDTHJMMti-gk9tjiMqgl7tsMm31tqsp81JiAGb5jmjrxhTw0UWdJCypZy2lImulY-aU85G2apB0pM_3k-a85z3lFI2dIKNw2nz7TIQvC8JFyQJfHAwz60PdjVoyQzB5tlbJHnNBg_FT3725YFAzpjzgqGQNfuwI7CWiMFEi4mYuEw-VPyrL3dVNNi4EBcT5kJ8IB_v_AIByYeEDk1ZE74kN3CA8Kx5XN0znv-cZ83nN68_Xb1rb9-_vb66vG1BKFlaZ8ZOdhM1VE525FS5oXNqNIpJSi0AjNPolGAcesBhksIpBp10trfCuH7ozprrTddG2OtDqnHSg47g9Y9FTDsNqXgzo1YSUE09ZxakEB2fpKRCUGXFJKqPqFovNq1Dil_WeqHexzWFGl_zrsbtBVdHR7b9MinmXO_-5cqoPjaotwZ1bVAfG9SyMvIvxvgCxcdQak_zf0m-kbm6hB2m35n-DX0Hn9q0Bg
CitedBy_id crossref_primary_10_1007_s11069_021_04991_4
crossref_primary_10_3390_w15030605
crossref_primary_10_1007_s11069_025_07494_8
crossref_primary_10_3390_rs13224521
crossref_primary_10_1016_j_pce_2022_103235
crossref_primary_10_1007_s11629_024_9231_5
crossref_primary_10_3389_feart_2021_589630
crossref_primary_10_3390_app13148285
crossref_primary_10_3390_w14203320
crossref_primary_10_1016_j_asr_2021_05_018
crossref_primary_10_3390_app122412887
crossref_primary_10_1007_s10064_022_02657_4
crossref_primary_10_1007_s11629_022_7326_5
crossref_primary_10_1080_15481603_2024_2349343
crossref_primary_10_3390_rs15133345
crossref_primary_10_1080_23080477_2024_2364537
crossref_primary_10_1051_e3sconf_202019803023
crossref_primary_10_1109_TGRS_2023_3339682
crossref_primary_10_2166_wst_2020_369
crossref_primary_10_3390_ijgi11060324
crossref_primary_10_3389_fenvs_2023_1279712
crossref_primary_10_1007_s43538_024_00305_x
crossref_primary_10_1186_s40677_021_00189_9
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1016_j_earscirev_2024_104714
crossref_primary_10_3233_JIFS_234924
crossref_primary_10_3390_land11101711
crossref_primary_10_1109_ACCESS_2022_3158328
crossref_primary_10_1186_s40677_024_00284_7
crossref_primary_10_1007_s11069_025_07645_x
crossref_primary_10_1080_10106049_2020_1831623
Cites_doi 10.1007/s12665-011-1196-4
10.1016/j.enggeo.2008.03.022
10.1007/s10346-018-01127-x
10.1016/j.geomorph.2017.04.002
10.1016/j.catena.2016.06.004
10.1007/s11004-011-9379-9
10.1016/j.catena.2015.10.002
10.1186/s40677-015-0016-7
10.1007/s11063-017-9778-0
10.1016/j.geomorph.2011.12.040
10.1016/j.enggeo.2010.09.009
10.1016/j.catena.2018.08.025
10.1007/s11069-013-0770-3
10.1016/j.earscirev.2018.03.001
10.1007/s11063-013-9318-5
10.1016/j.catena.2018.03.003
10.1080/01431161.2016.1148282
10.1007/s11069-006-9104-z
10.3390/su11205659
10.1016/j.geomorph.2015.01.029
10.1016/j.geomorph.2007.01.008
10.1016/j.enggeo.2017.05.009
10.1016/j.geomorph.2014.07.026
10.1016/j.geomorph.2008.02.011
10.1126/science.1127647
10.1038/nature14539
10.1109/TNNLS.2019.2935489
10.1016/j.cageo.2015.04.007
10.1016/j.geomorph.2009.02.026
10.1023/B:NHAZ.0000007097.42735.9e
10.3390/app9050942
10.1016/j.compenvurbsys.2009.12.004
10.1016/j.neunet.2019.05.003
10.1016/j.geomorph.2015.06.001
10.1007/s12665-016-5919-4
10.1109/JSEN.2018.2870228
10.1016/j.scitotenv.2018.06.389
10.3390/app9010171
10.1016/j.geomorph.2015.07.012
10.1016/j.geomorph.2004.06.010
10.5194/nhess-14-259-2014
10.1016/j.cageo.2012.01.005
10.1007/s10346-019-01274-9
10.1155/2012/974638
10.1007/s12665-009-0394-9
10.1016/j.scitotenv.2019.02.263
10.1007/s10064-015-0759-0
10.1186/s40677-019-0125-9
10.1016/j.catena.2018.07.012
10.1016/j.jafrearsci.2016.02.019
10.1007/s10346-018-0947-7
10.1007/s00254-005-1228-z
10.1016/j.scitotenv.2018.01.124
10.1007/s11069-012-0347-6
10.1186/s40677-019-0126-8
10.1016/j.envsoft.2016.07.016
10.1016/j.geomorph.2009.09.025
10.1016/j.inffus.2017.12.007
10.1016/j.geomorph.2016.02.012
10.1016/j.geomorph.2018.06.006
ContentType Journal Article
Copyright The Author(s). 2020
Geoenvironmental Disasters is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2020
– notice: Geoenvironmental Disasters is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TN
7UA
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.1186/s40677-020-0143-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2197-8670
EndPage 16
ExternalDocumentID oai_doaj_org_article_87ae8b521da74432b7704408d4b4a9b4
10_1186_s40677_020_0143_7
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Fawu Wang
  grantid: JSPS-B-19H01980
GroupedDBID 0R~
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
C24
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PTHSS
PYCSY
RSV
SOJ
AASML
AAYXX
AFFHD
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
H97
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-a487t-fc9373b0c07bd9208f63f89c81700daaa9b9f8412a5ae6b74f81a37fd5d4cf563
IEDL.DBID M7S
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642283700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2197-8670
IngestDate Fri Oct 03 12:51:50 EDT 2025
Tue Oct 14 12:41:04 EDT 2025
Tue Nov 18 20:49:47 EST 2025
Sat Nov 29 06:07:25 EST 2025
Fri Feb 21 02:34:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stacked autoencoder
Random forest
Sparse autoencoder
Support vector machine
Landslide susceptibility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-fc9373b0c07bd9208f63f89c81700daaa9b9f8412a5ae6b74f81a37fd5d4cf563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3707-4241
OpenAccessLink https://www.proquest.com/docview/2348754286?pq-origsite=%requestingapplication%
PQID 2348754286
PQPubID 2046125
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_87ae8b521da74432b7704408d4b4a9b4
proquest_journals_2348754286
crossref_primary_10_1186_s40677_020_0143_7
crossref_citationtrail_10_1186_s40677_020_0143_7
springer_journals_10_1186_s40677_020_0143_7
PublicationCentury 2000
PublicationDate 2020-01-30
PublicationDateYYYYMMDD 2020-01-30
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-30
  day: 30
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Geoenvironmental disasters
PublicationTitleAbbrev Geoenviron Disasters
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Yilmaz, Topal, Süzen (CR59) 2012; 65
Bai, Wang, Lü, Zhou, Hou, Xu (CR8) 2010; 115
Meten, Prakash, Yatabe (CR39) 2015; 2
Xu, Dai, Xu, Lee (CR55) 2012; 145-146
Huang, Zhang, Zhou, Wang, Huang, Zhu (CR32) 2019; 17
Colkesen, Sahin, Kavzoglu (CR18) 2016; 118
Lin, Chang, Huang, Ho (CR37) 2017; 224
Park, Kim (CR42) 2019; 9
Chen, Zeng, Tang (CR12) 2015; 41
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (CR44) 2018; 14
Hong, Ilia, Tsangaratos, Chen, Xu (CR29) 2017; 290
Arnone, Francipane, Scarbaci, Puglisi, Noto (CR5) 2016; 84
Luo, Lin, Zhu, Yu, Zhang, Meng, Peng (CR38) 2019; 14
Park, Choi, Lee, Lee (CR40) 2012; 48
LeCun, Bengio, Hinton (CR35) 2015; 521
Saito, Nakayama, Matsuyama (CR47) 2009; 109
Ayinde, Inanc, Zurada (CR7) 2019; 30
Ballabio, Sterlacchini (CR9) 2012; 44
Chen, Sun, Han (CR15) 2019; 9
Hinton, Salakhutdinov (CR28) 2006; 313
Hong, Adler, Huffman (CR31) 2007; 43
Aditian, Kubota, Shinohara (CR1) 2018; 318
Fell, Corominas, Bonnard, Cascini, Leroi, Savage (CR24) 2008; 102
Xiao, Zhang, Peng (CR54) 2018; 18
Zhang, Wang (CR63) 2019; 6
Park, Hamm, Kim (CR41) 2019; 11
Chen, Panahi, Tsangaratos, Shahabi, Ilia, Panahi, Li, Jaafari, Ahmadg (CR13) 2019; 172
Zhang, Isola, Efros (CR62) 2017
Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (CR22) 2013; 65
Huang, Zhao (CR34) 2018; 165
Yang, Yin, Lacasse, Liu (CR56) 2019; 16
Yao, Tham, Dai (CR57) 2008; 101
Alessandro, Carla, Carlo, Gabriele (CR2) 2015; 249
Corominas, Van Westen, Frattini, Cascini, Malet, Fotopoulou, Catani, Van Den Eeckhaut, Mavrouli, Agliardi, Pitilakis, Winter, Pastor, Ferlisi, Tofani, Hervás, Smith (CR19) 2013; 73
Tien Bui, Pradhan, Lofman, Revhaug (CR50) 2012; 2012
Wang, Fang, Hong (CR52) 2019; 666
Althuwaynee, Pradhan, Lee (CR4) 2016; 37
Lee, Talib (CR36) 2005; 47
Yu, Príncipe (CR61) 2019; 117
Tsangaratos, Ilia (CR51) 2016; 145
Pradhan, Lee, Buchroithner (CR43) 2010; 34
Heckmann, Gegg, Gegg, Becht (CR27) 2014; 180
Sabokbar, Roodposhti, Tazik (CR46) 2014; 226
Segoni, Tofani, Rosi, Catani, Casagli (CR48) 2018; 6
Zhu, Miao, Yang, Bai, Liu, Hong (CR64) 2018; 171
Borrelli, Ciurleo, Gullà (CR10) 2018; 15
Di Martire, Tessitore, Brancato, Ciminelli, Costabile, Costantini, Graziano, Minati, Ramondini, Calcaterra (CR23) 2016; 137
Yeon, Han, Ryu (CR58) 2010; 116
Chen, Zhang, Li, Shahabi (CR16) 2018; 644
Dagdelenler, Nefeslioglu, Gokceoglu (CR20) 2016; 75
Guo, David, Zhang, Wang, Yang (CR26) 2015; 248
Hong, Pourghasemi, Pourtaghi (CR30) 2016; 259
Ciampalini, Raspini, Bianchini, Frodella, Bardi, Lagomarsino, Traglia, Moretti, Proietti, Pagliara, Onori, Corazza, Duro, Basile, Casagli (CR17) 2015; 249
Ayalew, Yamagishi (CR6) 2005; 65
Westen, Rengers, Soeters (CR53) 2003; 30
Chen, Peng, Hong, Shahabi, Pradhan, Liu, Zhu, Pei, Duan (CR14) 2018; 626
Goetz, Brenning, Petschko, Leopold (CR25) 2015; 81
Alexakis, Agapiou, Tzouvaras, Themistocleous, Neocleous, Michaelides, Hadjimitsis (CR3) 2014; 72
Demoulin, Chung (CR21) 2007; 89
Yilmaz (CR60) 2010; 61
Charte, Charte, García, Jesus, Herrera (CR11) 2018; 44
Roy, Saha (CR45) 2019; 6
Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (CR49) 2016; 75
Huang, Xiang (CR33) 2018; 48
Faming Huang (143_CR32) 2019; 17
P Tsangaratos (143_CR51) 2016; 145
BB Yang (143_CR56) 2019; 16
S Park (143_CR41) 2019; 11
H Chen (143_CR12) 2015; 41
Y LeCun (143_CR35) 2015; 521
E Arnone (143_CR5) 2016; 84
W Chen (143_CR16) 2018; 644
I Yilmaz (143_CR60) 2010; 61
D Charte (143_CR11) 2018; 44
W Chen (143_CR13) 2019; 172
I Colkesen (143_CR18) 2016; 118
Y Hong (143_CR31) 2007; 43
L Huang (143_CR33) 2018; 48
H Saito (143_CR47) 2009; 109
S Bai (143_CR8) 2010; 115
B Pradhan (143_CR43) 2010; 34
L Ayalew (143_CR6) 2005; 65
S Zhang (143_CR63) 2019; 6
KC Devkota (143_CR22) 2013; 65
H Hong (143_CR30) 2016; 259
R Fell (143_CR24) 2008; 102
R Zhang (143_CR62) 2017
D Alexakis (143_CR3) 2014; 72
T Heckmann (143_CR27) 2014; 180
Y Wang (143_CR52) 2019; 666
D Tien Bui (143_CR49) 2016; 75
JN Goetz (143_CR25) 2015; 81
S Yu (143_CR61) 2019; 117
S Lee (143_CR36) 2005; 47
L Xiao (143_CR54) 2018; 18
D Tien Bui (143_CR50) 2012; 2012
X Yao (143_CR57) 2008; 101
J Roy (143_CR45) 2019; 6
CJV Westen (143_CR53) 2003; 30
BO Ayinde (143_CR7) 2019; 30
A Demoulin (143_CR21) 2007; 89
A Ciampalini (143_CR17) 2015; 249
GF Lin (143_CR37) 2017; 224
C Ballabio (143_CR9) 2012; 44
T Alessandro (143_CR2) 2015; 249
C Guo (143_CR26) 2015; 248
I Park (143_CR40) 2012; 48
A Aditian (143_CR1) 2018; 318
HF Sabokbar (143_CR46) 2014; 226
M Meten (143_CR39) 2015; 2
Y Yeon (143_CR58) 2010; 116
P Reichenbach (143_CR44) 2018; 14
C Yilmaz (143_CR59) 2012; 65
W Chen (143_CR14) 2018; 626
C Xu (143_CR55) 2012; 145-146
G Dagdelenler (143_CR20) 2016; 75
S Segoni (143_CR48) 2018; 6
Y Huang (143_CR34) 2018; 165
OF Althuwaynee (143_CR4) 2016; 37
S Park (143_CR42) 2019; 9
X Zhu (143_CR64) 2018; 171
W Chen (143_CR15) 2019; 9
X Luo (143_CR38) 2019; 14
H Hong (143_CR29) 2017; 290
GE Hinton (143_CR28) 2006; 313
D Di Martire (143_CR23) 2016; 137
L Borrelli (143_CR10) 2018; 15
J Corominas (143_CR19) 2013; 73
References_xml – volume: 65
  start-page: 2161
  issue: 7
  year: 2012
  end-page: 2178
  ident: CR59
  article-title: GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-011-1196-4
– volume: 102
  start-page: 85
  issue: 3–4
  year: 2008
  end-page: 98
  ident: CR24
  article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.03.022
– volume: 16
  start-page: 677
  issue: 4
  year: 2019
  end-page: 694
  ident: CR56
  article-title: Time series analysis and long short-term memory neural network to predict landslide displacement
  publication-title: Landslides
  doi: 10.1007/s10346-018-01127-x
– volume: 290
  start-page: 1
  year: 2017
  end-page: 16
  ident: CR29
  article-title: A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.04.002
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: CR51
  article-title: Comparison of a logistic regression and naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– volume: 44
  start-page: 47
  issue: 1
  year: 2012
  end-page: 70
  ident: CR9
  article-title: Support vector machines for landslide susceptibility mapping: the Staffora River basin case study, Italy
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9379-9
– volume: 137
  start-page: 406
  year: 2016
  end-page: 421
  ident: CR23
  article-title: Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements
  publication-title: Catena
  doi: 10.1016/j.catena.2015.10.002
– volume: 2
  start-page: 1
  year: 2015
  end-page: 17
  ident: CR39
  article-title: Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile gorge of Central Ethiopia
  publication-title: Geoenvironmental Disasters
  doi: 10.1186/s40677-015-0016-7
– volume: 48
  start-page: 1243
  issue: 2
  year: 2018
  end-page: 1260
  ident: CR33
  article-title: Method for meteorological early warning of precipitation-induced landslides based on deep neural network
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9778-0
– volume: 145-146
  start-page: 70
  year: 2012
  end-page: 80
  ident: CR55
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– volume: 116
  start-page: 274
  year: 2010
  end-page: 283
  ident: CR58
  article-title: Landslide susceptibility mapping in Injae, Korea, using a decision tree
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2010.09.009
– volume: 172
  start-page: 212
  year: 2019
  end-page: 231
  ident: CR13
  article-title: Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2018.08.025
– volume: 72
  start-page: 119
  year: 2014
  end-page: 141
  ident: CR3
  article-title: Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0770-3
– volume: 14
  start-page: 60
  year: 2018
  end-page: 91
  ident: CR44
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 41
  start-page: 169
  issue: 2
  year: 2015
  end-page: 178
  ident: CR12
  article-title: Landslide deformation prediction based on recurrent neural network
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-013-9318-5
– volume: 165
  start-page: 520
  year: 2018
  end-page: 529
  ident: CR34
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 37
  start-page: 1190
  issue: 5
  year: 2016
  end-page: 1209
  ident: CR4
  article-title: A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2016.1148282
– volume: 43
  start-page: 245
  issue: 2
  year: 2007
  end-page: 256
  ident: CR31
  article-title: Use of satellite remote sensing data in the mapping of global landslide susceptibility
  publication-title: Nat Hazards
  doi: 10.1007/s11069-006-9104-z
– volume: 6
  start-page: 1
  issue: 85
  year: 2018
  end-page: 11
  ident: CR48
  article-title: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale
  publication-title: Front Earth Sci
– volume: 11
  start-page: 5659
  issue: 20
  year: 2019
  ident: CR41
  article-title: Performance evaluation of the GIS-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling
  publication-title: Sustainability
  doi: 10.3390/su11205659
– volume: 249
  start-page: 103
  year: 2015
  end-page: 118
  ident: CR17
  article-title: Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.01.029
– volume: 89
  start-page: 391
  year: 2007
  end-page: 404
  ident: CR21
  article-title: Mapping landslide susceptibility from small datasets: a case study in the pays de Herve (E Belgium)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.01.008
– volume: 224
  start-page: 62
  year: 2017
  end-page: 74
  ident: CR37
  article-title: Assessment of susceptibility to rainfall induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.05.009
– volume: 318
  start-page: 101
  year: 2018
  end-page: 111
  ident: CR1
  article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia
  publication-title: Geomorphology
– volume: 226
  start-page: 15
  year: 2014
  end-page: 24
  ident: CR46
  article-title: Landslide susceptibility mapping using geographically-weighted principal component analysis
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.07.026
– volume: 101
  start-page: 572
  year: 2008
  end-page: 582
  ident: CR57
  article-title: Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR28
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 521
  start-page: 436
  year: 2015
  ident: CR35
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 30
  start-page: 1
  issue: 9
  year: 2019
  end-page: 12
  ident: CR7
  article-title: Regularizing deep neural networks by enhancing diversity in feature extraction
  publication-title: IEEE Transa Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2935489
– volume: 81
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR25
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.04.007
– volume: 109
  start-page: 108
  issue: 3
  year: 2009
  end-page: 121
  ident: CR47
  article-title: Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.026
– volume: 30
  start-page: 399
  issue: 3
  year: 2003
  end-page: 419
  ident: CR53
  article-title: Use of geomorphological information in indirect landslide susceptibility assessment
  publication-title: Nat Hazards
  doi: 10.1023/B:NHAZ.0000007097.42735.9e
– volume: 9
  start-page: 942
  issue: 5
  year: 2019
  ident: CR42
  article-title: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance
  publication-title: Appl Sci
  doi: 10.3390/app9050942
– volume: 34
  start-page: 216
  year: 2010
  end-page: 235
  ident: CR43
  article-title: GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2009.12.004
– volume: 117
  start-page: 104
  year: 2019
  end-page: 123
  ident: CR61
  article-title: Understanding autoencoders with information theoretic concepts
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.05.003
– volume: 249
  start-page: 119
  year: 2015
  end-page: 136
  ident: CR2
  article-title: Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.001
– year: 2017
  ident: CR62
  publication-title: Split-brain autoencoders: unsupervised learning by cross-channel prediction
– volume: 75
  start-page: 1
  year: 2016
  end-page: 22
  ident: CR49
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, bagging, and MultiBoost ensemble frameworks
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5919-4
– volume: 18
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR54
  article-title: Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway
  publication-title: Sensors
  doi: 10.1109/JSEN.2018.2870228
– volume: 644
  start-page: 1006
  year: 2018
  end-page: 1018
  ident: CR16
  article-title: Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.389
– volume: 9
  start-page: 171
  issue: 1
  year: 2019
  ident: CR15
  article-title: Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models
  publication-title: Appl Sci
  doi: 10.3390/app9010171
– volume: 248
  start-page: 93
  year: 2015
  end-page: 110
  ident: CR26
  article-title: Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan plateau, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.07.012
– volume: 14
  start-page: 1
  issue: 4
  year: 2019
  end-page: 18
  ident: CR38
  article-title: Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors
  publication-title: Public Libr Sci
– volume: 65
  start-page: 15
  year: 2005
  end-page: 31
  ident: CR6
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 180
  start-page: 259
  year: 2014
  end-page: 278
  ident: CR27
  article-title: Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-14-259-2014
– volume: 48
  start-page: 228
  year: 2012
  end-page: 238
  ident: CR40
  article-title: Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.01.005
– volume: 17
  start-page: 217
  issue: 1
  year: 2019
  end-page: 229
  ident: CR32
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 26
  ident: CR50
  article-title: Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naïve Bayes models
  publication-title: Math Probl Eng
  doi: 10.1155/2012/974638
– volume: 61
  start-page: 821
  year: 2010
  end-page: 836
  ident: CR60
  article-title: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0394-9
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: CR52
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 75
  start-page: 575
  issue: 2
  year: 2016
  end-page: 590
  ident: CR20
  article-title: Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the eastern part of the Gallipoli peninsula (Canakkale, Turkey)
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0759-0
– volume: 6
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR63
  article-title: Three-dimensional seismic slope stability assessment with the application of Scoops3D and GIS: a case study in Atsuma, Hokkaido
  publication-title: Geoenvironmental Disasters
  doi: 10.1186/s40677-019-0125-9
– volume: 171
  start-page: 222
  year: 2018
  end-page: 233
  ident: CR64
  article-title: Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.012
– volume: 73
  start-page: 209
  issue: 2
  year: 2013
  end-page: 263
  ident: CR19
  article-title: Recommendations for the quantitative analysis of landslide risk
  publication-title: Bull Eng Geol Environ
– volume: 118
  start-page: 53
  year: 2016
  end-page: 64
  ident: CR18
  article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression
  publication-title: J Afr Earth Sci
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 15
  start-page: 1127
  issue: 6
  year: 2018
  end-page: 1142
  ident: CR10
  article-title: Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map
  publication-title: Landslides
  doi: 10.1007/s10346-018-0947-7
– volume: 47
  start-page: 982
  issue: 7
  year: 2005
  end-page: 990
  ident: CR36
  article-title: Probabilistic landslide susceptibility and factor effect analysis
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-1228-z
– volume: 626
  start-page: 1121
  year: 2018
  end-page: 1135
  ident: CR14
  article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren county, Jiangxi province, China
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.124
– volume: 65
  start-page: 135
  issue: 1
  year: 2013
  end-page: 165
  ident: CR22
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0347-6
– volume: 6
  start-page: 1
  year: 2019
  end-page: 18
  ident: CR45
  article-title: Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India
  publication-title: Geoenvironmental Disasters
  doi: 10.1186/s40677-019-0126-8
– volume: 84
  start-page: 467
  year: 2016
  end-page: 481
  ident: CR5
  article-title: Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2016.07.016
– volume: 115
  start-page: 23
  year: 2010
  end-page: 31
  ident: CR8
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three gorges area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– volume: 44
  start-page: 78
  year: 2018
  end-page: 96
  ident: CR11
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.12.007
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: CR30
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 73
  start-page: 209
  issue: 2
  year: 2013
  ident: 143_CR19
  publication-title: Bull Eng Geol Environ
– volume: 172
  start-page: 212
  year: 2019
  ident: 143_CR13
  publication-title: Catena
  doi: 10.1016/j.catena.2018.08.025
– volume: 11
  start-page: 5659
  issue: 20
  year: 2019
  ident: 143_CR41
  publication-title: Sustainability
  doi: 10.3390/su11205659
– volume: 44
  start-page: 47
  issue: 1
  year: 2012
  ident: 143_CR9
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9379-9
– volume: 145
  start-page: 164
  year: 2016
  ident: 143_CR51
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– volume: 101
  start-page: 572
  year: 2008
  ident: 143_CR57
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 145-146
  start-page: 70
  year: 2012
  ident: 143_CR55
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– volume: 65
  start-page: 135
  issue: 1
  year: 2013
  ident: 143_CR22
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0347-6
– volume: 318
  start-page: 101
  year: 2018
  ident: 143_CR1
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.06.006
– volume: 248
  start-page: 93
  year: 2015
  ident: 143_CR26
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.07.012
– volume: 44
  start-page: 78
  year: 2018
  ident: 143_CR11
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.12.007
– volume: 171
  start-page: 222
  year: 2018
  ident: 143_CR64
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.012
– volume: 666
  start-page: 975
  year: 2019
  ident: 143_CR52
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 30
  start-page: 399
  issue: 3
  year: 2003
  ident: 143_CR53
  publication-title: Nat Hazards
  doi: 10.1023/B:NHAZ.0000007097.42735.9e
– volume: 16
  start-page: 677
  issue: 4
  year: 2019
  ident: 143_CR56
  publication-title: Landslides
  doi: 10.1007/s10346-018-01127-x
– volume: 9
  start-page: 942
  issue: 5
  year: 2019
  ident: 143_CR42
  publication-title: Appl Sci
  doi: 10.3390/app9050942
– volume: 6
  start-page: 1
  year: 2019
  ident: 143_CR45
  publication-title: Geoenvironmental Disasters
  doi: 10.1186/s40677-019-0126-8
– volume: 30
  start-page: 1
  issue: 9
  year: 2019
  ident: 143_CR7
  publication-title: IEEE Transa Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2935489
– volume: 137
  start-page: 406
  year: 2016
  ident: 143_CR23
  publication-title: Catena
  doi: 10.1016/j.catena.2015.10.002
– volume: 109
  start-page: 108
  issue: 3
  year: 2009
  ident: 143_CR47
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.026
– volume: 47
  start-page: 982
  issue: 7
  year: 2005
  ident: 143_CR36
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-1228-z
– volume: 75
  start-page: 575
  issue: 2
  year: 2016
  ident: 143_CR20
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0759-0
– volume-title: Split-brain autoencoders: unsupervised learning by cross-channel prediction
  year: 2017
  ident: 143_CR62
– volume: 259
  start-page: 105
  year: 2016
  ident: 143_CR30
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 15
  start-page: 1127
  issue: 6
  year: 2018
  ident: 143_CR10
  publication-title: Landslides
  doi: 10.1007/s10346-018-0947-7
– volume: 81
  start-page: 1
  year: 2015
  ident: 143_CR25
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.04.007
– volume: 6
  start-page: 1
  year: 2019
  ident: 143_CR63
  publication-title: Geoenvironmental Disasters
  doi: 10.1186/s40677-019-0125-9
– volume: 165
  start-page: 520
  year: 2018
  ident: 143_CR34
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 14
  start-page: 1
  issue: 4
  year: 2019
  ident: 143_CR38
  publication-title: Public Libr Sci
– volume: 18
  start-page: 1
  year: 2018
  ident: 143_CR54
  publication-title: Sensors
  doi: 10.1109/JSEN.2018.2870228
– volume: 249
  start-page: 119
  year: 2015
  ident: 143_CR2
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.001
– volume: 84
  start-page: 467
  year: 2016
  ident: 143_CR5
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2016.07.016
– volume: 102
  start-page: 85
  issue: 3–4
  year: 2008
  ident: 143_CR24
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.03.022
– volume: 226
  start-page: 15
  year: 2014
  ident: 143_CR46
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.07.026
– volume: 6
  start-page: 1
  issue: 85
  year: 2018
  ident: 143_CR48
  publication-title: Front Earth Sci
– volume: 65
  start-page: 15
  year: 2005
  ident: 143_CR6
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 626
  start-page: 1121
  year: 2018
  ident: 143_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.124
– volume: 644
  start-page: 1006
  year: 2018
  ident: 143_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.389
– volume: 118
  start-page: 53
  year: 2016
  ident: 143_CR18
  publication-title: J Afr Earth Sci
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 180
  start-page: 259
  year: 2014
  ident: 143_CR27
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-14-259-2014
– volume: 17
  start-page: 217
  issue: 1
  year: 2019
  ident: 143_CR32
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– volume: 48
  start-page: 1243
  issue: 2
  year: 2018
  ident: 143_CR33
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9778-0
– volume: 34
  start-page: 216
  year: 2010
  ident: 143_CR43
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2009.12.004
– volume: 75
  start-page: 1
  year: 2016
  ident: 143_CR49
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5919-4
– volume: 9
  start-page: 171
  issue: 1
  year: 2019
  ident: 143_CR15
  publication-title: Appl Sci
  doi: 10.3390/app9010171
– volume: 117
  start-page: 104
  year: 2019
  ident: 143_CR61
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.05.003
– volume: 48
  start-page: 228
  year: 2012
  ident: 143_CR40
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.01.005
– volume: 224
  start-page: 62
  year: 2017
  ident: 143_CR37
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.05.009
– volume: 249
  start-page: 103
  year: 2015
  ident: 143_CR17
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.01.029
– volume: 2012
  start-page: 1
  year: 2012
  ident: 143_CR50
  publication-title: Math Probl Eng
  doi: 10.1155/2012/974638
– volume: 37
  start-page: 1190
  issue: 5
  year: 2016
  ident: 143_CR4
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2016.1148282
– volume: 2
  start-page: 1
  year: 2015
  ident: 143_CR39
  publication-title: Geoenvironmental Disasters
  doi: 10.1186/s40677-015-0016-7
– volume: 72
  start-page: 119
  year: 2014
  ident: 143_CR3
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0770-3
– volume: 43
  start-page: 245
  issue: 2
  year: 2007
  ident: 143_CR31
  publication-title: Nat Hazards
  doi: 10.1007/s11069-006-9104-z
– volume: 521
  start-page: 436
  year: 2015
  ident: 143_CR35
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 89
  start-page: 391
  year: 2007
  ident: 143_CR21
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.01.008
– volume: 115
  start-page: 23
  year: 2010
  ident: 143_CR8
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– volume: 61
  start-page: 821
  year: 2010
  ident: 143_CR60
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0394-9
– volume: 41
  start-page: 169
  issue: 2
  year: 2015
  ident: 143_CR12
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-013-9318-5
– volume: 14
  start-page: 60
  year: 2018
  ident: 143_CR44
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 116
  start-page: 274
  year: 2010
  ident: 143_CR58
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2010.09.009
– volume: 313
  start-page: 504
  year: 2006
  ident: 143_CR28
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 65
  start-page: 2161
  issue: 7
  year: 2012
  ident: 143_CR59
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-011-1196-4
– volume: 290
  start-page: 1
  year: 2017
  ident: 143_CR29
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.04.002
SSID ssj0001634196
Score 2.299118
Snippet Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods...
BackgroundLandslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods...
Abstract Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classifiers
Deep learning
Earth and Environmental Science
Earth Sciences
Environment
Environmental Science and Engineering
Extreme weather
Feature extraction
Geoecology/Natural Processes
Geography
Landslide susceptibility
Landslides
Learning algorithms
Machine learning
Modelling of fast landslides
Natural Hazards
Performance prediction
Rain
Rainfall
Random forest
Sparse autoencoder
Stacked autoencoder
Support vector machine
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ64vcvCkBrtNmqRHFUU8iKCCt5CnLqxd2e4K_gV_tZO0uz5AvXjpoU1KyEwz8yXT70Noz-XCUek4MVIzwjilRNogiLUc0mdPM182YhPi6kre35fXn6S-Yk1YQw_cTNyRFNpLA0HGacEYzY0QSSXZMcN0aRITaCbKT2Aq7a7wyFPG22PMruRHNYtcaSSipUhpR8SXQJT4-r8kmd_ORVO4OV9Ci22eiI-b8S2jGV-toPlWsvzxdRW9HVcYFta4vYejzEPQ_T4BgA2mcjj9wNvvOY_rcZ0KV1IN7CvWUyJOHCveH7AejwaRy9L5IQbnA5wM3ePmLLy0coMnDEktjBT3Knzz2HvSlcfXUZoknTwc4kuItdUaujs_uz29IK2wAtGAT0YkWEhKqMlsJowr80wGToMsbSLrc1rDvJZBsm6uC-25ESzIrqYiuMIxGwpO19FsNaj8BsKygIgPjz1cmQvSuKKQsGx0cye1taGDssksK9uyjkfxi75K6ENy1RhGgWFUNIwSHbQ_7fLcUG781vgkmm7aMLJlpxvgQ6r1IfWXD3XQ9sTwqv2Ea5XTiOUAnfEOOpg4w8fjH0e0-R8j2kILeeOqhGbbaHY0HPsdNGdfRr16uJt8_R3WcgIb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFgkuUF5ioVQ-cCpYZGPHdo6lokI9VJVKpd4sP9uVtlm02UXqX-BXM3acRUWABJccEjvyY8aezzP-BuCtr6VnygtqleGUC8aoclFS5wSaz4FVoR2STcjTU3V52Z6Ve9z9GO0-uiTzSp3VWokPPU9kZzTBncRJR-U92Gmmqk1xfEflikM-WBGJokwUD-Zva97ZgzJV_x378heXaN5pjh__Vxt34VExLMnhIAlPYCt0T-FByXF-ffsMvh92BFfidB5IUl6IaOZziogc59aTfON3PvOB9Os-R7rkoNlbYjbMnSSFyF8Rs14tEvmlD0uCjUJgjdXTaS7-tPOLG4JWMPaPzDpyfj27MV0gZymXSXZVvCcnuDl3z-Hi-NOXo8-0ZGKgBgHNikaHVgyzlauk9W1dqShYVK3L7H7eGNPaNio-rU1jgrCSRzU1TEbfeO5iI9gL2O4WXXgJRDVoIuDngE_uo7K-aRSuM9PaK-NcnEA1zo12haY8ZcuY6wxXlNDDIGscZJ0GWcsJHGyqfB04Ov5W-GOa8E3BRK-dXyyWV7poq1bSBGXRsvFGcs5qK2VOze255dhXPoG9UVx00fle1yyBP4RzYgLvRvH4-fmPLXr1T6Vfw8N6kC_Kqj3YXi3X4Q3cd99Ws365n1XhB4QeBbQ
  priority: 102
  providerName: Springer Nature
Title An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan
URI https://link.springer.com/article/10.1186/s40677-020-0143-7
https://www.proquest.com/docview/2348754286
https://doaj.org/article/87ae8b521da74432b7704408d4b4a9b4
Volume 7
WOSCitedRecordID wos000642283700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: PCBAR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: M7S
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: PATMY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2197-8670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634196
  issn: 2197-8670
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoiwQXvhFbysoHToDVJHZs54TaqhUgsYooSOVkOf5oV9omZbNbqX-BX83Y8e6qSPTCJYc4jhzNePw8nryH0FtbCEul5aSRmhHGKSXSeEGM4QCfHc1cNYhNiMlEnp1VdUq49amschUTY6C2nQk58v2CBmgNYJl_vPpFgmpUOF1NEhpbaCewJOSxdO90k2Phga2Mp8PMXPL9ngXGNBL2TIHYjohby1Fk7b8FNf86HY2Lzsnj_x3uE_QowU18MPjHU3TPtc_Qg6R8fnHzHP0-aDHE55AlxEEtwuvZjMA-HSxucfwPeDa1DvfLPta_xFLaG6zXfJ44FM6fY71cdIES07o5hgHCdhu6hxwvvLS13SUGbAyDx9MWn15ML3XrcB0UTuIBxgf8BZbs9gX6cXL8_egTSfoMRMPHLYg3gG1ok5lMNLYqMuk59bIykfPPaq2rpvKS5YUuteONYF7mmgpvS8uMLzl9ibbbrnWvEJYlAAdodnBl1svGlqWE6JMXVmpj_AhlKzMpk8jLg4bGTMVNjORqsKwCy6pgWSVG6N26y9XA3HHXw4fB9usHA-l2vNHNz1Waw0oK7WQDeMdqwRgtGiGiYLdlDYNvZSO0t_IFlSJBrzaOMELvV960af7niHbvftlr9LAYvJjQbA9tL-ZL9wbdN9eLaT8fo53D40n9bYy2jgo2jnmGcZwa0FJ__lr__ANpZhYA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGhzQu41t0DPABLoC1NHZs54DQ-JhWtlWVGNI4GccfW6UuHU0L6l_gx_Abee0krYbEbjtwySF2rMR5_Prx1_Mg9NymwlJpOSmkZoRxSok0XhBjONBnRxOX12YTYjCQJyf5cA39bs_ChG2VbUyMgdpOTJgj30lpoNZAlvnbi-8kuEaF1dXWQqOGxYFb_IQhW_Wm_wH-74s03ft4_H6fNK4CREMJM-IN9Mi0SEwiCpunifScepmbqFRntdZ5kXvJeqnOtOOFYF72NBXeZpYZn3EK5d5A6yyAvYPWh_2j4dfVrA4P-mi8WT7tSb5TsaDRRsIoLUjpEXGpA4w-AZfI7V_rsbGb27v9v1XQHbTZEGq8W7eAu2jNlffQRuPtfra4j37tlhh6oDAPioMfhtfjMRmVFjBtcTzpPB5Zh6t5FXf4xM3CC6yXiqU4HA04xXo-mwTRT-umGCqkAHZucZjFhkJLOznHwP6hsvCoxJ_PRue6dHgYPFziEs1r_AlISfkAfbmWqniIOuWkdI8QlhlQI0h2cGXWy8JmmYT42kut1Mb4LkpaWCjTyLMHl5CxisM0yVWNJAVIUgFJSnTRy-UjF7U2yVWZ3wWsLTMGWfF4YzI9VU2UUlJoJwtgdFYLxmhaCBEtyS0rGHwr66LtFnuqiXWVWgGvi1616F0l__ONtq4u7Bna2D8-OlSH_cHBY3QrrVsQock26symc_cE3TQ_ZqNq-rRphBh9u25Y_wEaC3Bh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINoLb9SFAj5wAqxmY8d2jqWw4qXVSoDUm-X40a609VabbKX-hf7qjh1nUREgIS45-BH5MbZnPOPvQ-iVLYWl0nLSSM0I45QSabwgxnBQnx0tXN2TTYjpVB4d1bPMc9oO0e6DS7J_0xBRmkK3f2Z9v8Ql329ZBD4j0fSJ-HRE3ES3okMqivhhfu6QLll4hCvj2Zv525rXzqME239N1_zFPZpOncm9_27vfXQ3K5z4oJeQB-iGCw_RduY-P7l4hC4PAoYdOt4T4sgX4fViQcBShzm3OL0EXsytw-26TREwKZj2AusNoieOofPHWK-7ZQTFtG6FoYFgcEP1eMsLPw12eYpBO4a-4nnA307mpzo4PIscJ8mF8RZ_hkM7PEY_Jh--H34kmaGBaDB0OuINaDe0KUwhGluXhfScelmbhPpntdZ1U3vJxqWutOONYF6ONRXeVpYZX3H6BG2FZXC7CMsKVAfIdvBl1svGVpWE_WdcWqmN8SNUDPOkTIYvjywaC5XMGMlVP8gKBlnFQVZihF5vqpz12B1_K_wuTv6mYITdTgnL1bHKq1hJoZ1sQOOxWjBGy0aIRNltWcOgr2yE9gbRUXkvaFVJo1EIZh4foTeDqPzM_mOLnv5T6Zfozuz9RH39NP3yDO2UvagRWuyhrW61ds_RbXPezdvVi7RCrgAmZBF9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extreme+rainfall-induced+landslide+susceptibility+assessment+using+autoencoder+combined+with+random+forest+in+Shimane+Prefecture%2C+Japan&rft.jtitle=Geoenvironmental+disasters&rft.au=Nam+Kounghoon&rft.au=Wang%2C+Fawu&rft.date=2020-01-30&rft.pub=Springer+Nature+B.V&rft.eissn=2197-8670&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs40677-020-0143-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-8670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-8670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-8670&client=summon