An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan
Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of inf...
Gespeichert in:
| Veröffentlicht in: | Geoenvironmental disasters Jg. 7; H. 1; S. 1 - 16 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
30.01.2020
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 2197-8670, 2197-8670 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall.
Results
The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%).
Conclusions
This study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment. |
|---|---|
| AbstractList | BackgroundLandslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall.ResultsThe prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%).ConclusionsThis study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment. Abstract Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall. Results The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%). Conclusions This study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment. Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors. In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder (SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for susceptibility assessment and prediction of landslides triggered by extreme rainfall. Results The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%). Conclusions This study provides an example of combined classifiers giving a better predictive ratio than a single classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is promising for landslide susceptibility assessment. |
| ArticleNumber | 6 |
| Author | Nam, Kounghoon Wang, Fawu |
| Author_xml | – sequence: 1 givenname: Kounghoon orcidid: 0000-0003-3707-4241 surname: Nam fullname: Nam, Kounghoon email: geonamsoil@gmail.com organization: Department of Earth Science, Shimane University – sequence: 2 givenname: Fawu surname: Wang fullname: Wang, Fawu organization: Department of Earth Science, Shimane University |
| BookMark | eNp9kd1qFTEUhQepYK19AO8C3jo2yWQmmctS_GkpKKjXYU-yc5rDTHJMMti-gk9tjiMqgl7tsMm31tqsp81JiAGb5jmjrxhTw0UWdJCypZy2lImulY-aU85G2apB0pM_3k-a85z3lFI2dIKNw2nz7TIQvC8JFyQJfHAwz60PdjVoyQzB5tlbJHnNBg_FT3725YFAzpjzgqGQNfuwI7CWiMFEi4mYuEw-VPyrL3dVNNi4EBcT5kJ8IB_v_AIByYeEDk1ZE74kN3CA8Kx5XN0znv-cZ83nN68_Xb1rb9-_vb66vG1BKFlaZ8ZOdhM1VE525FS5oXNqNIpJSi0AjNPolGAcesBhksIpBp10trfCuH7ozprrTddG2OtDqnHSg47g9Y9FTDsNqXgzo1YSUE09ZxakEB2fpKRCUGXFJKqPqFovNq1Dil_WeqHexzWFGl_zrsbtBVdHR7b9MinmXO_-5cqoPjaotwZ1bVAfG9SyMvIvxvgCxcdQak_zf0m-kbm6hB2m35n-DX0Hn9q0Bg |
| CitedBy_id | crossref_primary_10_1007_s11069_021_04991_4 crossref_primary_10_3390_w15030605 crossref_primary_10_1007_s11069_025_07494_8 crossref_primary_10_3390_rs13224521 crossref_primary_10_1016_j_pce_2022_103235 crossref_primary_10_1007_s11629_024_9231_5 crossref_primary_10_3389_feart_2021_589630 crossref_primary_10_3390_app13148285 crossref_primary_10_3390_w14203320 crossref_primary_10_1016_j_asr_2021_05_018 crossref_primary_10_3390_app122412887 crossref_primary_10_1007_s10064_022_02657_4 crossref_primary_10_1007_s11629_022_7326_5 crossref_primary_10_1080_15481603_2024_2349343 crossref_primary_10_3390_rs15133345 crossref_primary_10_1080_23080477_2024_2364537 crossref_primary_10_1051_e3sconf_202019803023 crossref_primary_10_1109_TGRS_2023_3339682 crossref_primary_10_2166_wst_2020_369 crossref_primary_10_3390_ijgi11060324 crossref_primary_10_3389_fenvs_2023_1279712 crossref_primary_10_1007_s43538_024_00305_x crossref_primary_10_1186_s40677_021_00189_9 crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_1016_j_earscirev_2024_104714 crossref_primary_10_3233_JIFS_234924 crossref_primary_10_3390_land11101711 crossref_primary_10_1109_ACCESS_2022_3158328 crossref_primary_10_1186_s40677_024_00284_7 crossref_primary_10_1007_s11069_025_07645_x crossref_primary_10_1080_10106049_2020_1831623 |
| Cites_doi | 10.1007/s12665-011-1196-4 10.1016/j.enggeo.2008.03.022 10.1007/s10346-018-01127-x 10.1016/j.geomorph.2017.04.002 10.1016/j.catena.2016.06.004 10.1007/s11004-011-9379-9 10.1016/j.catena.2015.10.002 10.1186/s40677-015-0016-7 10.1007/s11063-017-9778-0 10.1016/j.geomorph.2011.12.040 10.1016/j.enggeo.2010.09.009 10.1016/j.catena.2018.08.025 10.1007/s11069-013-0770-3 10.1016/j.earscirev.2018.03.001 10.1007/s11063-013-9318-5 10.1016/j.catena.2018.03.003 10.1080/01431161.2016.1148282 10.1007/s11069-006-9104-z 10.3390/su11205659 10.1016/j.geomorph.2015.01.029 10.1016/j.geomorph.2007.01.008 10.1016/j.enggeo.2017.05.009 10.1016/j.geomorph.2014.07.026 10.1016/j.geomorph.2008.02.011 10.1126/science.1127647 10.1038/nature14539 10.1109/TNNLS.2019.2935489 10.1016/j.cageo.2015.04.007 10.1016/j.geomorph.2009.02.026 10.1023/B:NHAZ.0000007097.42735.9e 10.3390/app9050942 10.1016/j.compenvurbsys.2009.12.004 10.1016/j.neunet.2019.05.003 10.1016/j.geomorph.2015.06.001 10.1007/s12665-016-5919-4 10.1109/JSEN.2018.2870228 10.1016/j.scitotenv.2018.06.389 10.3390/app9010171 10.1016/j.geomorph.2015.07.012 10.1016/j.geomorph.2004.06.010 10.5194/nhess-14-259-2014 10.1016/j.cageo.2012.01.005 10.1007/s10346-019-01274-9 10.1155/2012/974638 10.1007/s12665-009-0394-9 10.1016/j.scitotenv.2019.02.263 10.1007/s10064-015-0759-0 10.1186/s40677-019-0125-9 10.1016/j.catena.2018.07.012 10.1016/j.jafrearsci.2016.02.019 10.1007/s10346-018-0947-7 10.1007/s00254-005-1228-z 10.1016/j.scitotenv.2018.01.124 10.1007/s11069-012-0347-6 10.1186/s40677-019-0126-8 10.1016/j.envsoft.2016.07.016 10.1016/j.geomorph.2009.09.025 10.1016/j.inffus.2017.12.007 10.1016/j.geomorph.2016.02.012 10.1016/j.geomorph.2018.06.006 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2020 Geoenvironmental Disasters is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2020 – notice: Geoenvironmental Disasters is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7TN 7UA 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
| DOI | 10.1186/s40677-020-0143-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2197-8670 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_87ae8b521da74432b7704408d4b4a9b4 10_1186_s40677_020_0143_7 |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: Fawu Wang grantid: JSPS-B-19H01980 |
| GroupedDBID | 0R~ 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ HCIFZ IAO IEP ITC KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PIMPY PROAC PTHSS PYCSY RSV SOJ AASML AAYXX AFFHD BANNL CITATION PHGZM PHGZT PQGLB 7TN 7UA ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 H97 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-a487t-fc9373b0c07bd9208f63f89c81700daaa9b9f8412a5ae6b74f81a37fd5d4cf563 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642283700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2197-8670 |
| IngestDate | Fri Oct 03 12:51:50 EDT 2025 Tue Oct 14 12:41:04 EDT 2025 Tue Nov 18 20:49:47 EST 2025 Sat Nov 29 06:07:25 EST 2025 Fri Feb 21 02:34:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stacked autoencoder Random forest Sparse autoencoder Support vector machine Landslide susceptibility |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a487t-fc9373b0c07bd9208f63f89c81700daaa9b9f8412a5ae6b74f81a37fd5d4cf563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3707-4241 |
| OpenAccessLink | https://www.proquest.com/docview/2348754286?pq-origsite=%requestingapplication% |
| PQID | 2348754286 |
| PQPubID | 2046125 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_87ae8b521da74432b7704408d4b4a9b4 proquest_journals_2348754286 crossref_primary_10_1186_s40677_020_0143_7 crossref_citationtrail_10_1186_s40677_020_0143_7 springer_journals_10_1186_s40677_020_0143_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-30 |
| PublicationDateYYYYMMDD | 2020-01-30 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Geoenvironmental disasters |
| PublicationTitleAbbrev | Geoenviron Disasters |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Yilmaz, Topal, Süzen (CR59) 2012; 65 Bai, Wang, Lü, Zhou, Hou, Xu (CR8) 2010; 115 Meten, Prakash, Yatabe (CR39) 2015; 2 Xu, Dai, Xu, Lee (CR55) 2012; 145-146 Huang, Zhang, Zhou, Wang, Huang, Zhu (CR32) 2019; 17 Colkesen, Sahin, Kavzoglu (CR18) 2016; 118 Lin, Chang, Huang, Ho (CR37) 2017; 224 Park, Kim (CR42) 2019; 9 Chen, Zeng, Tang (CR12) 2015; 41 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (CR44) 2018; 14 Hong, Ilia, Tsangaratos, Chen, Xu (CR29) 2017; 290 Arnone, Francipane, Scarbaci, Puglisi, Noto (CR5) 2016; 84 Luo, Lin, Zhu, Yu, Zhang, Meng, Peng (CR38) 2019; 14 Park, Choi, Lee, Lee (CR40) 2012; 48 LeCun, Bengio, Hinton (CR35) 2015; 521 Saito, Nakayama, Matsuyama (CR47) 2009; 109 Ayinde, Inanc, Zurada (CR7) 2019; 30 Ballabio, Sterlacchini (CR9) 2012; 44 Chen, Sun, Han (CR15) 2019; 9 Hinton, Salakhutdinov (CR28) 2006; 313 Hong, Adler, Huffman (CR31) 2007; 43 Aditian, Kubota, Shinohara (CR1) 2018; 318 Fell, Corominas, Bonnard, Cascini, Leroi, Savage (CR24) 2008; 102 Xiao, Zhang, Peng (CR54) 2018; 18 Zhang, Wang (CR63) 2019; 6 Park, Hamm, Kim (CR41) 2019; 11 Chen, Panahi, Tsangaratos, Shahabi, Ilia, Panahi, Li, Jaafari, Ahmadg (CR13) 2019; 172 Zhang, Isola, Efros (CR62) 2017 Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (CR22) 2013; 65 Huang, Zhao (CR34) 2018; 165 Yang, Yin, Lacasse, Liu (CR56) 2019; 16 Yao, Tham, Dai (CR57) 2008; 101 Alessandro, Carla, Carlo, Gabriele (CR2) 2015; 249 Corominas, Van Westen, Frattini, Cascini, Malet, Fotopoulou, Catani, Van Den Eeckhaut, Mavrouli, Agliardi, Pitilakis, Winter, Pastor, Ferlisi, Tofani, Hervás, Smith (CR19) 2013; 73 Tien Bui, Pradhan, Lofman, Revhaug (CR50) 2012; 2012 Wang, Fang, Hong (CR52) 2019; 666 Althuwaynee, Pradhan, Lee (CR4) 2016; 37 Lee, Talib (CR36) 2005; 47 Yu, Príncipe (CR61) 2019; 117 Tsangaratos, Ilia (CR51) 2016; 145 Pradhan, Lee, Buchroithner (CR43) 2010; 34 Heckmann, Gegg, Gegg, Becht (CR27) 2014; 180 Sabokbar, Roodposhti, Tazik (CR46) 2014; 226 Segoni, Tofani, Rosi, Catani, Casagli (CR48) 2018; 6 Zhu, Miao, Yang, Bai, Liu, Hong (CR64) 2018; 171 Borrelli, Ciurleo, Gullà (CR10) 2018; 15 Di Martire, Tessitore, Brancato, Ciminelli, Costabile, Costantini, Graziano, Minati, Ramondini, Calcaterra (CR23) 2016; 137 Yeon, Han, Ryu (CR58) 2010; 116 Chen, Zhang, Li, Shahabi (CR16) 2018; 644 Dagdelenler, Nefeslioglu, Gokceoglu (CR20) 2016; 75 Guo, David, Zhang, Wang, Yang (CR26) 2015; 248 Hong, Pourghasemi, Pourtaghi (CR30) 2016; 259 Ciampalini, Raspini, Bianchini, Frodella, Bardi, Lagomarsino, Traglia, Moretti, Proietti, Pagliara, Onori, Corazza, Duro, Basile, Casagli (CR17) 2015; 249 Ayalew, Yamagishi (CR6) 2005; 65 Westen, Rengers, Soeters (CR53) 2003; 30 Chen, Peng, Hong, Shahabi, Pradhan, Liu, Zhu, Pei, Duan (CR14) 2018; 626 Goetz, Brenning, Petschko, Leopold (CR25) 2015; 81 Alexakis, Agapiou, Tzouvaras, Themistocleous, Neocleous, Michaelides, Hadjimitsis (CR3) 2014; 72 Demoulin, Chung (CR21) 2007; 89 Yilmaz (CR60) 2010; 61 Charte, Charte, García, Jesus, Herrera (CR11) 2018; 44 Roy, Saha (CR45) 2019; 6 Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (CR49) 2016; 75 Huang, Xiang (CR33) 2018; 48 Faming Huang (143_CR32) 2019; 17 P Tsangaratos (143_CR51) 2016; 145 BB Yang (143_CR56) 2019; 16 S Park (143_CR41) 2019; 11 H Chen (143_CR12) 2015; 41 Y LeCun (143_CR35) 2015; 521 E Arnone (143_CR5) 2016; 84 W Chen (143_CR16) 2018; 644 I Yilmaz (143_CR60) 2010; 61 D Charte (143_CR11) 2018; 44 W Chen (143_CR13) 2019; 172 I Colkesen (143_CR18) 2016; 118 Y Hong (143_CR31) 2007; 43 L Huang (143_CR33) 2018; 48 H Saito (143_CR47) 2009; 109 S Bai (143_CR8) 2010; 115 B Pradhan (143_CR43) 2010; 34 L Ayalew (143_CR6) 2005; 65 S Zhang (143_CR63) 2019; 6 KC Devkota (143_CR22) 2013; 65 H Hong (143_CR30) 2016; 259 R Fell (143_CR24) 2008; 102 R Zhang (143_CR62) 2017 D Alexakis (143_CR3) 2014; 72 T Heckmann (143_CR27) 2014; 180 Y Wang (143_CR52) 2019; 666 D Tien Bui (143_CR49) 2016; 75 JN Goetz (143_CR25) 2015; 81 S Yu (143_CR61) 2019; 117 S Lee (143_CR36) 2005; 47 L Xiao (143_CR54) 2018; 18 D Tien Bui (143_CR50) 2012; 2012 X Yao (143_CR57) 2008; 101 J Roy (143_CR45) 2019; 6 CJV Westen (143_CR53) 2003; 30 BO Ayinde (143_CR7) 2019; 30 A Demoulin (143_CR21) 2007; 89 A Ciampalini (143_CR17) 2015; 249 GF Lin (143_CR37) 2017; 224 C Ballabio (143_CR9) 2012; 44 T Alessandro (143_CR2) 2015; 249 C Guo (143_CR26) 2015; 248 I Park (143_CR40) 2012; 48 A Aditian (143_CR1) 2018; 318 HF Sabokbar (143_CR46) 2014; 226 M Meten (143_CR39) 2015; 2 Y Yeon (143_CR58) 2010; 116 P Reichenbach (143_CR44) 2018; 14 C Yilmaz (143_CR59) 2012; 65 W Chen (143_CR14) 2018; 626 C Xu (143_CR55) 2012; 145-146 G Dagdelenler (143_CR20) 2016; 75 S Segoni (143_CR48) 2018; 6 Y Huang (143_CR34) 2018; 165 OF Althuwaynee (143_CR4) 2016; 37 S Park (143_CR42) 2019; 9 X Zhu (143_CR64) 2018; 171 W Chen (143_CR15) 2019; 9 X Luo (143_CR38) 2019; 14 H Hong (143_CR29) 2017; 290 GE Hinton (143_CR28) 2006; 313 D Di Martire (143_CR23) 2016; 137 L Borrelli (143_CR10) 2018; 15 J Corominas (143_CR19) 2013; 73 |
| References_xml | – volume: 65 start-page: 2161 issue: 7 year: 2012 end-page: 2178 ident: CR59 article-title: GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey) publication-title: Environ Earth Sci doi: 10.1007/s12665-011-1196-4 – volume: 102 start-page: 85 issue: 3–4 year: 2008 end-page: 98 ident: CR24 article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.03.022 – volume: 16 start-page: 677 issue: 4 year: 2019 end-page: 694 ident: CR56 article-title: Time series analysis and long short-term memory neural network to predict landslide displacement publication-title: Landslides doi: 10.1007/s10346-018-01127-x – volume: 290 start-page: 1 year: 2017 end-page: 16 ident: CR29 article-title: A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.04.002 – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: CR51 article-title: Comparison of a logistic regression and naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 44 start-page: 47 issue: 1 year: 2012 end-page: 70 ident: CR9 article-title: Support vector machines for landslide susceptibility mapping: the Staffora River basin case study, Italy publication-title: Math Geosci doi: 10.1007/s11004-011-9379-9 – volume: 137 start-page: 406 year: 2016 end-page: 421 ident: CR23 article-title: Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements publication-title: Catena doi: 10.1016/j.catena.2015.10.002 – volume: 2 start-page: 1 year: 2015 end-page: 17 ident: CR39 article-title: Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile gorge of Central Ethiopia publication-title: Geoenvironmental Disasters doi: 10.1186/s40677-015-0016-7 – volume: 48 start-page: 1243 issue: 2 year: 2018 end-page: 1260 ident: CR33 article-title: Method for meteorological early warning of precipitation-induced landslides based on deep neural network publication-title: Neural Process Lett doi: 10.1007/s11063-017-9778-0 – volume: 145-146 start-page: 70 year: 2012 end-page: 80 ident: CR55 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – volume: 116 start-page: 274 year: 2010 end-page: 283 ident: CR58 article-title: Landslide susceptibility mapping in Injae, Korea, using a decision tree publication-title: Eng Geol doi: 10.1016/j.enggeo.2010.09.009 – volume: 172 start-page: 212 year: 2019 end-page: 231 ident: CR13 article-title: Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2018.08.025 – volume: 72 start-page: 119 year: 2014 end-page: 141 ident: CR3 article-title: Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus publication-title: Nat Hazards doi: 10.1007/s11069-013-0770-3 – volume: 14 start-page: 60 year: 2018 end-page: 91 ident: CR44 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 41 start-page: 169 issue: 2 year: 2015 end-page: 178 ident: CR12 article-title: Landslide deformation prediction based on recurrent neural network publication-title: Neural Process Lett doi: 10.1007/s11063-013-9318-5 – volume: 165 start-page: 520 year: 2018 end-page: 529 ident: CR34 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 37 start-page: 1190 issue: 5 year: 2016 end-page: 1209 ident: CR4 article-title: A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison publication-title: Int J Remote Sens doi: 10.1080/01431161.2016.1148282 – volume: 43 start-page: 245 issue: 2 year: 2007 end-page: 256 ident: CR31 article-title: Use of satellite remote sensing data in the mapping of global landslide susceptibility publication-title: Nat Hazards doi: 10.1007/s11069-006-9104-z – volume: 6 start-page: 1 issue: 85 year: 2018 end-page: 11 ident: CR48 article-title: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale publication-title: Front Earth Sci – volume: 11 start-page: 5659 issue: 20 year: 2019 ident: CR41 article-title: Performance evaluation of the GIS-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling publication-title: Sustainability doi: 10.3390/su11205659 – volume: 249 start-page: 103 year: 2015 end-page: 118 ident: CR17 article-title: Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.01.029 – volume: 89 start-page: 391 year: 2007 end-page: 404 ident: CR21 article-title: Mapping landslide susceptibility from small datasets: a case study in the pays de Herve (E Belgium) publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.01.008 – volume: 224 start-page: 62 year: 2017 end-page: 74 ident: CR37 article-title: Assessment of susceptibility to rainfall induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.05.009 – volume: 318 start-page: 101 year: 2018 end-page: 111 ident: CR1 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology – volume: 226 start-page: 15 year: 2014 end-page: 24 ident: CR46 article-title: Landslide susceptibility mapping using geographically-weighted principal component analysis publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.07.026 – volume: 101 start-page: 572 year: 2008 end-page: 582 ident: CR57 article-title: Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR28 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 521 start-page: 436 year: 2015 ident: CR35 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 30 start-page: 1 issue: 9 year: 2019 end-page: 12 ident: CR7 article-title: Regularizing deep neural networks by enhancing diversity in feature extraction publication-title: IEEE Transa Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2935489 – volume: 81 start-page: 1 year: 2015 end-page: 11 ident: CR25 article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.04.007 – volume: 109 start-page: 108 issue: 3 year: 2009 end-page: 121 ident: CR47 article-title: Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.02.026 – volume: 30 start-page: 399 issue: 3 year: 2003 end-page: 419 ident: CR53 article-title: Use of geomorphological information in indirect landslide susceptibility assessment publication-title: Nat Hazards doi: 10.1023/B:NHAZ.0000007097.42735.9e – volume: 9 start-page: 942 issue: 5 year: 2019 ident: CR42 article-title: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance publication-title: Appl Sci doi: 10.3390/app9050942 – volume: 34 start-page: 216 year: 2010 end-page: 235 ident: CR43 article-title: GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2009.12.004 – volume: 117 start-page: 104 year: 2019 end-page: 123 ident: CR61 article-title: Understanding autoencoders with information theoretic concepts publication-title: Neural Netw doi: 10.1016/j.neunet.2019.05.003 – volume: 249 start-page: 119 year: 2015 end-page: 136 ident: CR2 article-title: Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.001 – year: 2017 ident: CR62 publication-title: Split-brain autoencoders: unsupervised learning by cross-channel prediction – volume: 75 start-page: 1 year: 2016 end-page: 22 ident: CR49 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, bagging, and MultiBoost ensemble frameworks publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5919-4 – volume: 18 start-page: 1 year: 2018 end-page: 13 ident: CR54 article-title: Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway publication-title: Sensors doi: 10.1109/JSEN.2018.2870228 – volume: 644 start-page: 1006 year: 2018 end-page: 1018 ident: CR16 article-title: Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.389 – volume: 9 start-page: 171 issue: 1 year: 2019 ident: CR15 article-title: Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models publication-title: Appl Sci doi: 10.3390/app9010171 – volume: 248 start-page: 93 year: 2015 end-page: 110 ident: CR26 article-title: Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan plateau, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.07.012 – volume: 14 start-page: 1 issue: 4 year: 2019 end-page: 18 ident: CR38 article-title: Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors publication-title: Public Libr Sci – volume: 65 start-page: 15 year: 2005 end-page: 31 ident: CR6 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 180 start-page: 259 year: 2014 end-page: 278 ident: CR27 article-title: Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-14-259-2014 – volume: 48 start-page: 228 year: 2012 end-page: 238 ident: CR40 article-title: Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.01.005 – volume: 17 start-page: 217 issue: 1 year: 2019 end-page: 229 ident: CR32 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides doi: 10.1007/s10346-019-01274-9 – volume: 2012 start-page: 1 year: 2012 end-page: 26 ident: CR50 article-title: Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naïve Bayes models publication-title: Math Probl Eng doi: 10.1155/2012/974638 – volume: 61 start-page: 821 year: 2010 end-page: 836 ident: CR60 article-title: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0394-9 – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: CR52 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.263 – volume: 75 start-page: 575 issue: 2 year: 2016 end-page: 590 ident: CR20 article-title: Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the eastern part of the Gallipoli peninsula (Canakkale, Turkey) publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0759-0 – volume: 6 start-page: 1 year: 2019 end-page: 14 ident: CR63 article-title: Three-dimensional seismic slope stability assessment with the application of Scoops3D and GIS: a case study in Atsuma, Hokkaido publication-title: Geoenvironmental Disasters doi: 10.1186/s40677-019-0125-9 – volume: 171 start-page: 222 year: 2018 end-page: 233 ident: CR64 article-title: Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2018.07.012 – volume: 73 start-page: 209 issue: 2 year: 2013 end-page: 263 ident: CR19 article-title: Recommendations for the quantitative analysis of landslide risk publication-title: Bull Eng Geol Environ – volume: 118 start-page: 53 year: 2016 end-page: 64 ident: CR18 article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression publication-title: J Afr Earth Sci doi: 10.1016/j.jafrearsci.2016.02.019 – volume: 15 start-page: 1127 issue: 6 year: 2018 end-page: 1142 ident: CR10 article-title: Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map publication-title: Landslides doi: 10.1007/s10346-018-0947-7 – volume: 47 start-page: 982 issue: 7 year: 2005 end-page: 990 ident: CR36 article-title: Probabilistic landslide susceptibility and factor effect analysis publication-title: Environ Geol doi: 10.1007/s00254-005-1228-z – volume: 626 start-page: 1121 year: 2018 end-page: 1135 ident: CR14 article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren county, Jiangxi province, China publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.124 – volume: 65 start-page: 135 issue: 1 year: 2013 end-page: 165 ident: CR22 article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya publication-title: Nat Hazards doi: 10.1007/s11069-012-0347-6 – volume: 6 start-page: 1 year: 2019 end-page: 18 ident: CR45 article-title: Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India publication-title: Geoenvironmental Disasters doi: 10.1186/s40677-019-0126-8 – volume: 84 start-page: 467 year: 2016 end-page: 481 ident: CR5 article-title: Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2016.07.016 – volume: 115 start-page: 23 year: 2010 end-page: 31 ident: CR8 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three gorges area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – volume: 44 start-page: 78 year: 2018 end-page: 96 ident: CR11 article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.12.007 – volume: 259 start-page: 105 year: 2016 end-page: 118 ident: CR30 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 73 start-page: 209 issue: 2 year: 2013 ident: 143_CR19 publication-title: Bull Eng Geol Environ – volume: 172 start-page: 212 year: 2019 ident: 143_CR13 publication-title: Catena doi: 10.1016/j.catena.2018.08.025 – volume: 11 start-page: 5659 issue: 20 year: 2019 ident: 143_CR41 publication-title: Sustainability doi: 10.3390/su11205659 – volume: 44 start-page: 47 issue: 1 year: 2012 ident: 143_CR9 publication-title: Math Geosci doi: 10.1007/s11004-011-9379-9 – volume: 145 start-page: 164 year: 2016 ident: 143_CR51 publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 101 start-page: 572 year: 2008 ident: 143_CR57 publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 145-146 start-page: 70 year: 2012 ident: 143_CR55 publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – volume: 65 start-page: 135 issue: 1 year: 2013 ident: 143_CR22 publication-title: Nat Hazards doi: 10.1007/s11069-012-0347-6 – volume: 318 start-page: 101 year: 2018 ident: 143_CR1 publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – volume: 248 start-page: 93 year: 2015 ident: 143_CR26 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.07.012 – volume: 44 start-page: 78 year: 2018 ident: 143_CR11 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.12.007 – volume: 171 start-page: 222 year: 2018 ident: 143_CR64 publication-title: Catena doi: 10.1016/j.catena.2018.07.012 – volume: 666 start-page: 975 year: 2019 ident: 143_CR52 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.263 – volume: 30 start-page: 399 issue: 3 year: 2003 ident: 143_CR53 publication-title: Nat Hazards doi: 10.1023/B:NHAZ.0000007097.42735.9e – volume: 16 start-page: 677 issue: 4 year: 2019 ident: 143_CR56 publication-title: Landslides doi: 10.1007/s10346-018-01127-x – volume: 9 start-page: 942 issue: 5 year: 2019 ident: 143_CR42 publication-title: Appl Sci doi: 10.3390/app9050942 – volume: 6 start-page: 1 year: 2019 ident: 143_CR45 publication-title: Geoenvironmental Disasters doi: 10.1186/s40677-019-0126-8 – volume: 30 start-page: 1 issue: 9 year: 2019 ident: 143_CR7 publication-title: IEEE Transa Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2935489 – volume: 137 start-page: 406 year: 2016 ident: 143_CR23 publication-title: Catena doi: 10.1016/j.catena.2015.10.002 – volume: 109 start-page: 108 issue: 3 year: 2009 ident: 143_CR47 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.02.026 – volume: 47 start-page: 982 issue: 7 year: 2005 ident: 143_CR36 publication-title: Environ Geol doi: 10.1007/s00254-005-1228-z – volume: 75 start-page: 575 issue: 2 year: 2016 ident: 143_CR20 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0759-0 – volume-title: Split-brain autoencoders: unsupervised learning by cross-channel prediction year: 2017 ident: 143_CR62 – volume: 259 start-page: 105 year: 2016 ident: 143_CR30 publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 15 start-page: 1127 issue: 6 year: 2018 ident: 143_CR10 publication-title: Landslides doi: 10.1007/s10346-018-0947-7 – volume: 81 start-page: 1 year: 2015 ident: 143_CR25 publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.04.007 – volume: 6 start-page: 1 year: 2019 ident: 143_CR63 publication-title: Geoenvironmental Disasters doi: 10.1186/s40677-019-0125-9 – volume: 165 start-page: 520 year: 2018 ident: 143_CR34 publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 14 start-page: 1 issue: 4 year: 2019 ident: 143_CR38 publication-title: Public Libr Sci – volume: 18 start-page: 1 year: 2018 ident: 143_CR54 publication-title: Sensors doi: 10.1109/JSEN.2018.2870228 – volume: 249 start-page: 119 year: 2015 ident: 143_CR2 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.001 – volume: 84 start-page: 467 year: 2016 ident: 143_CR5 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2016.07.016 – volume: 102 start-page: 85 issue: 3–4 year: 2008 ident: 143_CR24 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.03.022 – volume: 226 start-page: 15 year: 2014 ident: 143_CR46 publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.07.026 – volume: 6 start-page: 1 issue: 85 year: 2018 ident: 143_CR48 publication-title: Front Earth Sci – volume: 65 start-page: 15 year: 2005 ident: 143_CR6 publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 626 start-page: 1121 year: 2018 ident: 143_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.124 – volume: 644 start-page: 1006 year: 2018 ident: 143_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.389 – volume: 118 start-page: 53 year: 2016 ident: 143_CR18 publication-title: J Afr Earth Sci doi: 10.1016/j.jafrearsci.2016.02.019 – volume: 180 start-page: 259 year: 2014 ident: 143_CR27 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-14-259-2014 – volume: 17 start-page: 217 issue: 1 year: 2019 ident: 143_CR32 publication-title: Landslides doi: 10.1007/s10346-019-01274-9 – volume: 48 start-page: 1243 issue: 2 year: 2018 ident: 143_CR33 publication-title: Neural Process Lett doi: 10.1007/s11063-017-9778-0 – volume: 34 start-page: 216 year: 2010 ident: 143_CR43 publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2009.12.004 – volume: 75 start-page: 1 year: 2016 ident: 143_CR49 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5919-4 – volume: 9 start-page: 171 issue: 1 year: 2019 ident: 143_CR15 publication-title: Appl Sci doi: 10.3390/app9010171 – volume: 117 start-page: 104 year: 2019 ident: 143_CR61 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.05.003 – volume: 48 start-page: 228 year: 2012 ident: 143_CR40 publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.01.005 – volume: 224 start-page: 62 year: 2017 ident: 143_CR37 publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.05.009 – volume: 249 start-page: 103 year: 2015 ident: 143_CR17 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.01.029 – volume: 2012 start-page: 1 year: 2012 ident: 143_CR50 publication-title: Math Probl Eng doi: 10.1155/2012/974638 – volume: 37 start-page: 1190 issue: 5 year: 2016 ident: 143_CR4 publication-title: Int J Remote Sens doi: 10.1080/01431161.2016.1148282 – volume: 2 start-page: 1 year: 2015 ident: 143_CR39 publication-title: Geoenvironmental Disasters doi: 10.1186/s40677-015-0016-7 – volume: 72 start-page: 119 year: 2014 ident: 143_CR3 publication-title: Nat Hazards doi: 10.1007/s11069-013-0770-3 – volume: 43 start-page: 245 issue: 2 year: 2007 ident: 143_CR31 publication-title: Nat Hazards doi: 10.1007/s11069-006-9104-z – volume: 521 start-page: 436 year: 2015 ident: 143_CR35 publication-title: Nature doi: 10.1038/nature14539 – volume: 89 start-page: 391 year: 2007 ident: 143_CR21 publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.01.008 – volume: 115 start-page: 23 year: 2010 ident: 143_CR8 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – volume: 61 start-page: 821 year: 2010 ident: 143_CR60 publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0394-9 – volume: 41 start-page: 169 issue: 2 year: 2015 ident: 143_CR12 publication-title: Neural Process Lett doi: 10.1007/s11063-013-9318-5 – volume: 14 start-page: 60 year: 2018 ident: 143_CR44 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 116 start-page: 274 year: 2010 ident: 143_CR58 publication-title: Eng Geol doi: 10.1016/j.enggeo.2010.09.009 – volume: 313 start-page: 504 year: 2006 ident: 143_CR28 publication-title: Science doi: 10.1126/science.1127647 – volume: 65 start-page: 2161 issue: 7 year: 2012 ident: 143_CR59 publication-title: Environ Earth Sci doi: 10.1007/s12665-011-1196-4 – volume: 290 start-page: 1 year: 2017 ident: 143_CR29 publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.04.002 |
| SSID | ssj0001634196 |
| Score | 2.299118 |
| Snippet | Background
Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods... BackgroundLandslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods... Abstract Background Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Classifiers Deep learning Earth and Environmental Science Earth Sciences Environment Environmental Science and Engineering Extreme weather Feature extraction Geoecology/Natural Processes Geography Landslide susceptibility Landslides Learning algorithms Machine learning Modelling of fast landslides Natural Hazards Performance prediction Rain Rainfall Random forest Sparse autoencoder Stacked autoencoder Support vector machine Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ64vcvCkBrtNmqRHFUU8iKCCt5CnLqxd2e4K_gV_tZO0uz5AvXjpoU1KyEwz8yXT70Noz-XCUek4MVIzwjilRNogiLUc0mdPM182YhPi6kre35fXn6S-Yk1YQw_cTNyRFNpLA0HGacEYzY0QSSXZMcN0aRITaCbKT2Aq7a7wyFPG22PMruRHNYtcaSSipUhpR8SXQJT4-r8kmd_ORVO4OV9Ci22eiI-b8S2jGV-toPlWsvzxdRW9HVcYFta4vYejzEPQ_T4BgA2mcjj9wNvvOY_rcZ0KV1IN7CvWUyJOHCveH7AejwaRy9L5IQbnA5wM3ePmLLy0coMnDEktjBT3Knzz2HvSlcfXUZoknTwc4kuItdUaujs_uz29IK2wAtGAT0YkWEhKqMlsJowr80wGToMsbSLrc1rDvJZBsm6uC-25ESzIrqYiuMIxGwpO19FsNaj8BsKygIgPjz1cmQvSuKKQsGx0cye1taGDssksK9uyjkfxi75K6ENy1RhGgWFUNIwSHbQ_7fLcUG781vgkmm7aMLJlpxvgQ6r1IfWXD3XQ9sTwqv2Ea5XTiOUAnfEOOpg4w8fjH0e0-R8j2kILeeOqhGbbaHY0HPsdNGdfRr16uJt8_R3WcgIb priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFgkuUF5ioVQ-cCpYZGPHdo6lokI9VJVKpd4sP9uVtlm02UXqX-BXM3acRUWABJccEjvyY8aezzP-BuCtr6VnygtqleGUC8aoclFS5wSaz4FVoR2STcjTU3V52Z6Ve9z9GO0-uiTzSp3VWokPPU9kZzTBncRJR-U92Gmmqk1xfEflikM-WBGJokwUD-Zva97ZgzJV_x378heXaN5pjh__Vxt34VExLMnhIAlPYCt0T-FByXF-ffsMvh92BFfidB5IUl6IaOZziogc59aTfON3PvOB9Os-R7rkoNlbYjbMnSSFyF8Rs14tEvmlD0uCjUJgjdXTaS7-tPOLG4JWMPaPzDpyfj27MV0gZymXSXZVvCcnuDl3z-Hi-NOXo8-0ZGKgBgHNikaHVgyzlauk9W1dqShYVK3L7H7eGNPaNio-rU1jgrCSRzU1TEbfeO5iI9gL2O4WXXgJRDVoIuDngE_uo7K-aRSuM9PaK-NcnEA1zo12haY8ZcuY6wxXlNDDIGscZJ0GWcsJHGyqfB04Ov5W-GOa8E3BRK-dXyyWV7poq1bSBGXRsvFGcs5qK2VOze255dhXPoG9UVx00fle1yyBP4RzYgLvRvH4-fmPLXr1T6Vfw8N6kC_Kqj3YXi3X4Q3cd99Ws365n1XhB4QeBbQ priority: 102 providerName: Springer Nature |
| Title | An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan |
| URI | https://link.springer.com/article/10.1186/s40677-020-0143-7 https://www.proquest.com/docview/2348754286 https://doaj.org/article/87ae8b521da74432b7704408d4b4a9b4 |
| Volume | 7 |
| WOSCitedRecordID | wos000642283700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: PCBAR dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: M7S dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: PATMY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2197-8670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634196 issn: 2197-8670 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoiwQXvhFbysoHToDVJHZs54TaqhUgsYooSOVkOf5oV9omZbNbqX-BX83Y8e6qSPTCJYc4jhzNePw8nryH0FtbCEul5aSRmhHGKSXSeEGM4QCfHc1cNYhNiMlEnp1VdUq49amschUTY6C2nQk58v2CBmgNYJl_vPpFgmpUOF1NEhpbaCewJOSxdO90k2Phga2Mp8PMXPL9ngXGNBL2TIHYjohby1Fk7b8FNf86HY2Lzsnj_x3uE_QowU18MPjHU3TPtc_Qg6R8fnHzHP0-aDHE55AlxEEtwuvZjMA-HSxucfwPeDa1DvfLPta_xFLaG6zXfJ44FM6fY71cdIES07o5hgHCdhu6hxwvvLS13SUGbAyDx9MWn15ML3XrcB0UTuIBxgf8BZbs9gX6cXL8_egTSfoMRMPHLYg3gG1ok5lMNLYqMuk59bIykfPPaq2rpvKS5YUuteONYF7mmgpvS8uMLzl9ibbbrnWvEJYlAAdodnBl1svGlqWE6JMXVmpj_AhlKzMpk8jLg4bGTMVNjORqsKwCy6pgWSVG6N26y9XA3HHXw4fB9usHA-l2vNHNz1Waw0oK7WQDeMdqwRgtGiGiYLdlDYNvZSO0t_IFlSJBrzaOMELvV960af7niHbvftlr9LAYvJjQbA9tL-ZL9wbdN9eLaT8fo53D40n9bYy2jgo2jnmGcZwa0FJ__lr__ANpZhYA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGhzQu41t0DPABLoC1NHZs54DQ-JhWtlWVGNI4GccfW6UuHU0L6l_gx_Abee0krYbEbjtwySF2rMR5_Prx1_Mg9NymwlJpOSmkZoRxSok0XhBjONBnRxOX12YTYjCQJyf5cA39bs_ChG2VbUyMgdpOTJgj30lpoNZAlvnbi-8kuEaF1dXWQqOGxYFb_IQhW_Wm_wH-74s03ft4_H6fNK4CREMJM-IN9Mi0SEwiCpunifScepmbqFRntdZ5kXvJeqnOtOOFYF72NBXeZpYZn3EK5d5A6yyAvYPWh_2j4dfVrA4P-mi8WT7tSb5TsaDRRsIoLUjpEXGpA4w-AZfI7V_rsbGb27v9v1XQHbTZEGq8W7eAu2jNlffQRuPtfra4j37tlhh6oDAPioMfhtfjMRmVFjBtcTzpPB5Zh6t5FXf4xM3CC6yXiqU4HA04xXo-mwTRT-umGCqkAHZucZjFhkJLOznHwP6hsvCoxJ_PRue6dHgYPFziEs1r_AlISfkAfbmWqniIOuWkdI8QlhlQI0h2cGXWy8JmmYT42kut1Mb4LkpaWCjTyLMHl5CxisM0yVWNJAVIUgFJSnTRy-UjF7U2yVWZ3wWsLTMGWfF4YzI9VU2UUlJoJwtgdFYLxmhaCBEtyS0rGHwr66LtFnuqiXWVWgGvi1616F0l__ONtq4u7Bna2D8-OlSH_cHBY3QrrVsQock26symc_cE3TQ_ZqNq-rRphBh9u25Y_wEaC3Bh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINoLb9SFAj5wAqxmY8d2jqWw4qXVSoDUm-X40a609VabbKX-hf7qjh1nUREgIS45-BH5MbZnPOPvQ-iVLYWl0nLSSM0I45QSabwgxnBQnx0tXN2TTYjpVB4d1bPMc9oO0e6DS7J_0xBRmkK3f2Z9v8Ql329ZBD4j0fSJ-HRE3ES3okMqivhhfu6QLll4hCvj2Zv525rXzqME239N1_zFPZpOncm9_27vfXQ3K5z4oJeQB-iGCw_RduY-P7l4hC4PAoYdOt4T4sgX4fViQcBShzm3OL0EXsytw-26TREwKZj2AusNoieOofPHWK-7ZQTFtG6FoYFgcEP1eMsLPw12eYpBO4a-4nnA307mpzo4PIscJ8mF8RZ_hkM7PEY_Jh--H34kmaGBaDB0OuINaDe0KUwhGluXhfScelmbhPpntdZ1U3vJxqWutOONYF6ONRXeVpYZX3H6BG2FZXC7CMsKVAfIdvBl1svGVpWE_WdcWqmN8SNUDPOkTIYvjywaC5XMGMlVP8gKBlnFQVZihF5vqpz12B1_K_wuTv6mYITdTgnL1bHKq1hJoZ1sQOOxWjBGy0aIRNltWcOgr2yE9gbRUXkvaFVJo1EIZh4foTeDqPzM_mOLnv5T6Zfozuz9RH39NP3yDO2UvagRWuyhrW61ds_RbXPezdvVi7RCrgAmZBF9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extreme+rainfall-induced+landslide+susceptibility+assessment+using+autoencoder+combined+with+random+forest+in+Shimane+Prefecture%2C+Japan&rft.jtitle=Geoenvironmental+disasters&rft.au=Nam+Kounghoon&rft.au=Wang%2C+Fawu&rft.date=2020-01-30&rft.pub=Springer+Nature+B.V&rft.eissn=2197-8670&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs40677-020-0143-7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-8670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-8670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-8670&client=summon |