Biorefineries and chemical processes design, integration and sustainability analysis
As the range of feedstocks, process technologies and products expand, biorefineries will become increasingly complex manufacturing systems. Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis presents process modelling and integration, and whole system life cycle an...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Newark
WILEY
2014
Wiley John Wiley & Sons, Incorporated Wiley-Blackwell |
| Vydání: | 1 |
| Témata: | |
| ISBN: | 9781119990864, 1119990866, 1118698134, 9781118698136, 9781118698167, 1118698169, 1118698126, 9781118698129 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Biorefineries and chemical processes : design, integration and sustainability analysis -- Contents -- Preface -- Acknowledgments -- About the Authors -- Companion Website -- Nomenclature -- Part I: Introduction -- 1. Introduction -- Part II: Tools -- 2. Economic Analysis -- 3. Heat Integration and Utility System Design -- 4. Life Cycle Assessment -- 5. Data Uncertainty and Multicriteria Analyses -- 6. Value Analysis -- 7. Combined Economic Value and Environmental Impact (EVEI) Analysis -- 8. Optimization -- Part III: Process Synthesis and Design -- 9. Generic Reactors: Thermochemical Processing of Biomass -- 10. Reaction Thermodynamics -- 11. Reaction and Separation Process Synthesis: Chemical Production from Biomass -- 12. Polymer Processes -- 13. Separation Processes: Carbon Capture -- Part IV: Biorefinery Systems -- 14. Bio-Oil Refining I: Fischer–Tropsch Liquid and Methanol Synthesis -- 15. Bio-Oil Refining II: Novel Membrane Reactors -- 16. Fuel Cells and Other Renewables -- 17. Algae Biorefineries -- 18. Heterogeneously Catalyzed Reaction Kinetics and Diffusion Modeling: Example of Biodiesel -- Index.
- 3.3 Analysis of Heat Exchanger Network Using Pinch Technology -- 3.3.1 Data Extraction -- 3.3.2 Construction of Temperature-Enthalpy Profiles -- 3.3.3 Application of the Graphical Approach for Energy Recovery -- 3.4 Utility System -- 3.4.1 Components in Utility System -- 3.5 Conceptual Design of Heat Recovery System for Cogeneration -- 3.5.1 Conventional Approach -- 3.5.2 Heuristic Based Approach -- 3.6 Summary -- References -- 4 Life Cycle Assessment -- 4.1 Life Cycle Thinking -- 4.2 Policy Context -- 4.3 Life Cycle Assessment (LCA) -- 4.4 LCA: Goal and Scope Definition -- 4.5 LCA: Inventory Analysis -- 4.6 LCA: Impact Assessment -- 4.6.1 Global Warming Potential -- 4.6.2 Land Use -- 4.6.3 Resource Use -- 4.6.4 Ozone Layer Depletion -- 4.6.5 Acidification Potential -- 4.6.6 Photochemical Oxidant Creation Potential -- 4.6.7 Aquatic Ecotoxicity -- 4.6.8 Eutrophication Potential -- 4.6.9 Biodiversity -- 4.7 LCA: Interpretation -- 4.7.1 Stand-Alone LCA -- 4.7.2 Accounting LCA -- 4.7.3 Change Oriented LCA -- 4.7.4 Allocation Method -- 4.8 LCIA Methods -- 4.9 Future R& -- D Needs -- References -- 5 Data Uncertainty and Multicriteria Analyses -- 5.1 Data Uncertainty Analysis -- 5.1.1 Dominance Analysis -- 5.1.2 Contribution Analysis -- 5.1.3 Scenario Analysis -- 5.1.4 Sensitivity Analysis -- 5.1.5 Monte Carlo Simulation -- 5.2 Multicriteria Analysis -- 5.2.1 Economic Value and Environmental Impact Analysis of Biorefinery Systems -- 5.2.2 Socioeconomic Analysis -- 5.3 Summary -- References -- 6 Value Analysis -- 6.1 Value on Processing (VOP) and Cost of Production (COP) of Process Network Streams -- 6.2 Value Analysis Heuristics -- 6.2.1 Discounted Cash Flow Analysis -- 6.3 Stream Economic Profile -- 6.4 Concept of Boundary and Evaluation of Economic Margin of a Process Network -- 6.5 Stream Profitability Analysis
- 14.5 Modeling, Integration and Analysis of Thermochemical Processes of Bio-Oil
- 12.4.1 Plug Flow Reactor (PFR) Design for Reaction in Gaseous Phase -- 12.4.2 Bioreactor Design for Biopolymer Production- An Example of Polyhydroxyalkanoates -- 12.4.3 Catalytic Reactor Design -- 12.4.4 Energy Transfer Models of Reactors -- 12.5 Synthesis of Unit Operations Combining Reaction and Separation Functionalities -- 12.5.1 Reactive Distillation Column -- 12.5.2 An Example of a Novel Reactor Arrangement -- 12.6 Integrated Biopolymer Production in Biorefineries -- 12.6.1 Polyesters -- 12.6.2 Polyurethanes -- 12.6.3 Polyamides -- 12.6.4 Polycarbonates -- 12.7 Summary -- References -- 13 Separation Processes: Carbon Capture -- 13.1 Absorption -- 13.2 Absorption Process Flowsheet Synthesis -- 13.3 The RectisolTM Technology -- 13.3.1 Design and Operating Regions of RectisolTM Process -- 13.3.2 Energy Consumption of a RectisolTM Process -- 13.4 The SelexolTM Technology -- 13.4.1 SelexolTM Process Parametric Analysis -- 13.5 Adsorption Process -- 13.5.1 Kinetic Modeling of SMR Reactions -- 13.5.2 Adsorption Modeling of Carbon Dioxide -- 13.5.3 Sorption Enhanced Reaction (SER) Process Dynamic Modeling Framework -- 13.6 Chemical Looping Combustion -- 13.7 Low Temperature Separation -- 13.8 Summary -- References -- Part IV Biorefinery Systems -- 14 Bio-Oil Refining I: Fischer-Tropsch Liquid and Methanol Synthesis -- 14.1 Introduction -- 14.2 Bio-Oil Upgrading -- 14.2.1 Physical Upgrading -- 14.2.2 Chemical Upgrading -- 14.2.3 Biological Upgrading -- 14.3 Distributed and Centralized Bio-Oil Processing Concept -- 14.3.1 The Concept -- 14.3.2 The Economics of Local Distribution of Bio-Oil -- 14.3.3 The Economics of Importing Bio-Oil from Other Countries -- 14.4 Integrated Thermochemical Processing of Bio-Oil into Fuels -- 14.4.1 Synthetic Fuel Production -- 14.4.2 Methanol Production
- Intro -- Biorefineries and Chemical Processes -- Contents -- Preface -- Part I: Introduction -- Part II: Tools -- Part III: Process Synthesis and Design -- Part IV: Biorefinery Systems -- Part V: Interacting Systems of Biorefineries (available on the companion website) -- Case Studies (available on the companion website) -- Acknowledgments -- About the Authors -- Companion Website -- Nomenclature -- Part I Introduction -- 1 Introduction -- 1.1 Fundamentals of the Biorefinery Concept -- 1.1.1 Biorefinery Principles -- 1.1.2 Biorefinery Types and Development -- 1.2 Biorefinery Features and Nomenclature -- 1.3 Biorefinery Feedstock: Biomass -- 1.3.1 Chemical Nature of Biorefinery Feedstocks -- 1.3.2 Feedstock Characterization -- 1.4 Processes and Platforms -- 1.5 Biorefinery Products -- 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing -- 1.6.1 Background of Lignin -- 1.7 Electrochemistry Application in Biorefineries -- 1.8 Introduction to Energy and Water Systems -- 1.9 Evaluating Biorefinery Performances -- 1.9.1 Performance Indicators -- 1.9.2 Life Cycle Analysis -- 1.10 Chapters -- 1.11 Summary -- References -- Part II Tools -- 2 Economic Analysis -- 2.1 Introduction -- 2.2 General Economic Concepts and Terminology -- 2.2.1 Capital Cost and Battery Limits -- 2.2.2 Cost Index -- 2.2.3 Economies of Scale -- 2.2.4 Operating Cost -- 2.2.5 Cash Flows -- 2.2.6 Time Value of Money -- 2.2.7 Discounted Cash Flow Analysis and Net Present Value -- 2.2.8 Profitability Analysis -- 2.2.9 Learning Effect -- 2.3 Methodology -- 2.3.1 Capital Cost Estimation -- 2.3.2 Profitability Analysis -- 2.4 Cost Estimation and Correlation -- 2.4.1 Capital Cost -- 2.4.2 Operating Cost -- 2.5 Summary -- 2.6 Exercises -- References -- 3 Heat Integration and Utility System Design -- 3.1 Introduction -- 3.2 Process Integration
- 10.2.3 Adiabatic Flame Temperature -- 10.2.4 Theoretical Air-to-Fuel Ratio -- 10.2.5 Cold Gas Efficiency -- 10.2.6 Hot Gas Efficiency -- 10.2.7 Equivalence Ratio -- 10.2.8 Carbon Conversion -- 10.2.9 Heat of Reaction -- 10.3 Process Design: Synthesis and Modeling -- 10.3.1 Combustion Model -- 10.3.2 Gasification Model -- 10.3.3 Pyrolysis Model -- 10.4 Summary -- Exercises -- References -- 11 Reaction and Separation Process Synthesis: Chemical Production from Biomass -- 11.1 Chemicals from Biomass: An Overview -- 11.2 Bioreactor and Kinetics -- 11.2.1 An Example of Lactic Acid Production -- 11.2.2 An Example of Succinic Acid Production -- 11.2.3 Heat Transfer Strategies for Reactors -- 11.2.4 An Example of Ethylene Production -- 11.2.5 An Example of Catalytic Fast Pyrolysis -- 11.3 Controlled Acid Hydrolysis Reactions -- 11.4 Advanced Separation and Reactive Separation -- 11.4.1 Membrane Based Separations -- 11.4.2 Membrane Filtration -- 11.4.3 Electrodialysis -- 11.4.4 Ion Exchange -- 11.4.5 Integrated Processes -- 11.4.6 Reactive Extraction -- 11.4.7 Reactive Distillation -- 11.4.8 Crystallization -- 11.4.9 Precipitation -- 11.5 Guidelines for Integrated Biorefinery Design -- 11.5.1 An Example of Levulinic Acid Production: The Biofine Process -- 11.6 Summary -- References -- 12 Polymer Processes -- 12.1 Polymer Concepts -- 12.1.1 Polymer Classification -- 12.1.2 Polymer Properties -- 12.1.3 From Petrochemical Based Polymers to Biopolymers -- 12.2 Modified Natural Biopolymers -- 12.2.1 Starch Polymers -- 12.2.2 Cellulose Polymers -- 12.2.3 Natural Fiber and Lignin Composites -- 12.3 Modeling of Polymerization Reaction Kinetics -- 12.3.1 Chain-Growth or Addition Polymerization -- 12.3.2 Step-Growth Polymerization -- 12.3.3 Copolymerization -- 12.4 Reactor Design for Biomass Based Monomers and Biopolymers
- 6.5.1 Value Analysis to Determine Necessary and Sufficient Condition for Streams to be Profitable or Nonprofitable -- 6.6 Summary -- References -- 7 Combined Economic Value and Environmental Impact (EVEI) Analysis -- 7.1 Introduction -- 7.2 Equivalency Between Economic and Environmental Impact Concepts -- 7.3 Evaluation of Streams -- 7.4 Environmental Impact Profile -- 7.5 Product Economic Value and Environmental Impact (EVEI) Profile -- 7.6 Summary -- References -- 8 Optimization -- 8.1 Introduction -- 8.2 Linear Optimization -- 8.2.1 Step 1: Rewriting in Standard LP Format -- 8.2.2 Step 2: Initializing the Simplex Method -- 8.2.3 Step 3: Obtaining an Initial Basic Solution -- 8.2.4 Step 4: Determining Simplex Directions -- 8.2.5 Step 5: Determining the Maximum Step Size by the Minimum Ratio Rule -- 8.2.6 Step 6: Updating the Basic Variables -- 8.3 Nonlinear Optimization -- 8.3.1 Gradient Based Methods -- 8.3.2 Generalized Reduced Gradient (GRG) Algorithm -- 8.4 Mixed Integer Linear or Nonlinear Optimization -- 8.4.1 Branch and Bound Method -- 8.5 Stochastic Method -- 8.5.1 Genetic Algorithm (GA) -- 8.5.2 Non-dominated Sorting Genetic Algorithm (NSGA) Optimization -- 8.5.3 GA in MATLAB -- 8.6 Summary -- References -- Part III Process Synthesis and Design -- 9 Generic Reactors: Thermochemical Processing of Biomass -- 9.1 Introduction -- 9.2 General Features of Thermochemical Conversion Processes -- 9.3 Combustion -- 9.4 Gasification -- 9.4.1 The Process -- 9.4.2 Types of Gasifier -- 9.4.3 Design Considerations -- 9.5 Pyrolysis -- 9.5.1 What is Bio-Oil? -- 9.5.2 How Is Bio-Oil Obtained from Biomass? -- 9.5.3 How Fast Pyrolysis Works -- 9.6 Summary -- Exercises -- References -- 10 Reaction Thermodynamics -- 10.1 Introduction -- 10.2 Fundamentals of Design Calculation -- 10.2.1 Heat of Combustion -- 10.2.2 Higher and Lower Heating Values

