Can N95 Respirators Be Reused after Disinfection? How Many Times?
The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other pers...
Uložené v:
| Vydané v: | ACS nano Ročník 14; číslo 5; s. 6348 - 6356 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
American Chemical Society
26.05.2020
American Chemical Society (ACS) |
| Predmet: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols. |
|---|---|
| AbstractList | The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols. The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols. The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols. |
| Author | Zhao, Mervin Xiao, Wang Wang, Qiqi Yu, Xuanze Chu, Steven Wang, Haotian Liao, Lei Cui, Yi |
| AuthorAffiliation | 4C Air, Inc Department of Molecular and Cellular Physiology Department of Materials Science and Engineering Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Department of Physics |
| AuthorAffiliation_xml | – name: Department of Physics – name: Department of Molecular and Cellular Physiology – name: Stanford Institute for Materials and Energy Sciences – name: SLAC National Accelerator Laboratory – name: 4C Air, Inc – name: Department of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Lei surname: Liao fullname: Liao, Lei organization: 4C Air, Inc – sequence: 2 givenname: Wang surname: Xiao fullname: Xiao, Wang organization: 4C Air, Inc – sequence: 3 givenname: Mervin orcidid: 0000-0002-7313-7150 surname: Zhao fullname: Zhao, Mervin organization: 4C Air, Inc – sequence: 4 givenname: Xuanze surname: Yu fullname: Yu, Xuanze organization: 4C Air, Inc – sequence: 5 givenname: Haotian surname: Wang fullname: Wang, Haotian organization: 4C Air, Inc – sequence: 6 givenname: Qiqi surname: Wang fullname: Wang, Qiqi organization: 4C Air, Inc – sequence: 7 givenname: Steven surname: Chu fullname: Chu, Steven organization: Department of Molecular and Cellular Physiology – sequence: 8 givenname: Yi orcidid: 0000-0002-6103-6352 surname: Cui fullname: Cui, Yi email: yicui@stanford.edu organization: SLAC National Accelerator Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32368894$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1638355$$D View this record in Osti.gov |
| BookMark | eNp1UV1LHDEUDaL41T73rQx9EmQ135O8VHT9KtgWioW-hWsmqZHZZE1mFP-9WXYVW_ApN9xzzj33nh20HlN0CH0i-IBgSg7BlggxHWCLmdDtGtommskJVvLP-mstyBbaKeUOY9GqVm6iLUaZVErzbXQ8hdj80KL55co8ZBhSLs2Jq9-xuK4BP7jcnIYSond2CCkeNZfpsfkO8am5DjNXjj6gDQ99cR9X7y76fX52Pb2cXP28-DY9vpoAV3yYaCqEB8u5ldozT63qWq49sZ0nXgJ32naKeqo4tEy32gODGwlKC894pyXbRV-XuvPxZuY66-KQoTfzHGaQn0yCYP7txHBr_qYH01JMKVdV4MtSIJUhmGLD4OytTTHWxQyRTDEhKmhvNSWn-9GVwcxCsa7vIbo0FkOZVpISgRd6n98aenXyctwKEEuAzamU7LypM2FxxOov9IZgswjRrEI0qxAr7_A_3ov0-4z9JaM2zF0ac6xJvIt-BuHCrtI |
| CitedBy_id | crossref_primary_10_1002_cjce_24272 crossref_primary_10_1017_dmp_2020_255 crossref_primary_10_1016_j_cie_2024_109962 crossref_primary_10_3390_healthcare11020268 crossref_primary_10_1097_ACO_0000000000001065 crossref_primary_10_1002_cnma_202300570 crossref_primary_10_1002_marc_202401058 crossref_primary_10_1177_15280837221148464 crossref_primary_10_17163_ings_n27_2022_03 crossref_primary_10_1016_j_jclepro_2022_133221 crossref_primary_10_1016_j_matchemphys_2023_128134 crossref_primary_10_1002_smll_202102453 crossref_primary_10_3390_ijerph19020641 crossref_primary_10_1017_ice_2020_332 crossref_primary_10_1007_s12630_020_01770_w crossref_primary_10_1002_ange_202108951 crossref_primary_10_1089_jamp_2021_0002 crossref_primary_10_1002_app_56647 crossref_primary_10_1590_1518_8345_5135_3492 crossref_primary_10_2298_JSC230113020K crossref_primary_10_3390_su13116296 crossref_primary_10_1109_TMTT_2021_3086539 crossref_primary_10_1016_j_energy_2020_118701 crossref_primary_10_1016_j_orgel_2023_106944 crossref_primary_10_1016_j_wasman_2025_01_005 crossref_primary_10_1016_j_scitotenv_2022_154089 crossref_primary_10_1128_msphere_00303_22 crossref_primary_10_3390_microorganisms11020310 crossref_primary_10_1016_j_jhazmat_2021_127709 crossref_primary_10_1016_j_ijbiomac_2022_08_197 crossref_primary_10_1038_s43246_021_00153_y crossref_primary_10_1016_j_buildenv_2023_110136 crossref_primary_10_1016_j_memsci_2023_122354 crossref_primary_10_1136_bmjopen_2021_049690 crossref_primary_10_1002_lio2_708 crossref_primary_10_1016_j_matlet_2021_131554 crossref_primary_10_1016_j_iot_2022_100511 crossref_primary_10_1590_s0104_12902023230331en crossref_primary_10_1177_2474126420941707 crossref_primary_10_1186_s13643_021_01742_1 crossref_primary_10_1007_s12274_022_4350_2 crossref_primary_10_3390_ijerph17155616 crossref_primary_10_1177_01945998221099028 crossref_primary_10_1557_s43577_021_00173_6 crossref_primary_10_1177_24723444221132051 crossref_primary_10_1007_s11426_023_1825_7 crossref_primary_10_1007_s12046_021_01634_z crossref_primary_10_1016_j_mtchem_2023_101526 crossref_primary_10_1016_j_chemosphere_2021_132364 crossref_primary_10_1016_j_elstat_2022_103683 crossref_primary_10_1016_j_seppur_2022_122643 crossref_primary_10_3390_su141610045 crossref_primary_10_1002_adem_202402919 crossref_primary_10_1016_j_radphyschem_2022_110557 crossref_primary_10_1016_j_chempr_2025_102526 crossref_primary_10_1016_j_cegh_2021_100835 crossref_primary_10_1016_j_oneear_2020_10_014 crossref_primary_10_1016_j_jhin_2021_05_005 crossref_primary_10_1080_15440478_2023_2187507 crossref_primary_10_1093_annweh_wxab020 crossref_primary_10_3390_polym13091367 crossref_primary_10_1038_s41598_021_99129_8 crossref_primary_10_1016_j_scitotenv_2024_170286 crossref_primary_10_1371_journal_pone_0248859 crossref_primary_10_1016_j_apsusc_2022_153195 crossref_primary_10_1016_j_cjche_2020_10_022 crossref_primary_10_3390_ijerph17176117 crossref_primary_10_3390_antiox10091480 crossref_primary_10_1007_s41403_020_00153_3 crossref_primary_10_1016_j_apr_2023_101840 crossref_primary_10_1016_j_rser_2021_111026 crossref_primary_10_1007_s42765_023_00299_z crossref_primary_10_1186_s13756_020_00744_3 crossref_primary_10_1016_j_cej_2023_143709 crossref_primary_10_1007_s40032_022_00906_9 crossref_primary_10_1063_5_0065147 crossref_primary_10_1089_apb_20_0053 crossref_primary_10_1002_jbio_202100135 crossref_primary_10_3390_nano11092208 crossref_primary_10_1016_j_apenergy_2021_116441 crossref_primary_10_1021_acs_chas_1c00016 crossref_primary_10_3390_membranes11040250 crossref_primary_10_1002_admi_202201952 crossref_primary_10_1097_QCO_0000000000000738 crossref_primary_10_1590_s0104_12902023230331pt crossref_primary_10_1016_j_bpj_2021_02_039 crossref_primary_10_1063_5_0021270 crossref_primary_10_1002_adma_202101262 crossref_primary_10_1002_advs_202102189 crossref_primary_10_1016_j_cej_2023_146415 crossref_primary_10_1016_j_jece_2023_111816 crossref_primary_10_1002_advs_202003155 crossref_primary_10_3390_su132212474 crossref_primary_10_3390_toxics12010003 crossref_primary_10_1007_s11356_023_30570_0 crossref_primary_10_3390_nano13172455 crossref_primary_10_4103_ijmr_IJMR_3842_20 crossref_primary_10_1016_j_envres_2021_111309 crossref_primary_10_1016_j_cej_2021_129152 crossref_primary_10_1021_acs_chas_1c00026 crossref_primary_10_1177_00405175231194792 crossref_primary_10_1039_D4RA02174F crossref_primary_10_3390_polym12102341 crossref_primary_10_1016_j_cej_2023_144224 crossref_primary_10_1016_j_ajic_2020_07_004 crossref_primary_10_1177_00405175221131065 crossref_primary_10_3389_fpubh_2021_673536 crossref_primary_10_1016_j_ajic_2021_09_017 crossref_primary_10_1016_j_jhin_2022_06_016 crossref_primary_10_1002_smll_202105570 crossref_primary_10_1177_00405175241228227 crossref_primary_10_1039_D5TA02341F crossref_primary_10_1016_j_jaerosci_2021_105914 crossref_primary_10_1016_j_scitotenv_2020_144274 crossref_primary_10_1002_nano_202200101 crossref_primary_10_20473_ijtid_v10i3_37427 crossref_primary_10_4103_ijmr_IJMR_2709_20 crossref_primary_10_1007_s12274_021_3831_z crossref_primary_10_1038_s41598_021_91706_1 crossref_primary_10_1186_s42833_020_00015_w crossref_primary_10_1016_j_scitotenv_2021_148548 crossref_primary_10_1371_journal_pone_0291679 crossref_primary_10_1371_journal_pone_0255338 crossref_primary_10_1038_s41598_021_94810_4 crossref_primary_10_1039_D0EN01230K crossref_primary_10_1002_cben_202000039 crossref_primary_10_1016_j_cis_2025_103635 crossref_primary_10_1016_j_ijid_2023_09_016 crossref_primary_10_3390_ijerph19127167 crossref_primary_10_1016_j_apmt_2023_101833 crossref_primary_10_1016_j_ajic_2020_07_022 crossref_primary_10_1177_10482911251334843 crossref_primary_10_1007_s40032_023_00978_1 crossref_primary_10_1016_j_mtcomm_2024_110530 crossref_primary_10_1038_s41578_020_00247_y crossref_primary_10_1063_5_0023940 crossref_primary_10_1007_s12221_023_00178_9 crossref_primary_10_1177_0748233720964652 crossref_primary_10_1016_j_cej_2022_139956 crossref_primary_10_1016_j_cis_2021_102435 crossref_primary_10_1016_j_jhin_2022_11_023 crossref_primary_10_1016_j_mtcomm_2022_105192 crossref_primary_10_1021_acs_chas_0c00069 crossref_primary_10_1038_s41598_022_05738_2 crossref_primary_10_1080_02786826_2021_2003291 crossref_primary_10_1016_j_chemosphere_2022_137178 crossref_primary_10_1016_j_elstat_2022_103782 crossref_primary_10_1213_ANE_0000000000005254 crossref_primary_10_1080_00405167_2020_1824468 crossref_primary_10_1140_epjp_s13360_024_05756_1 crossref_primary_10_2166_wst_2020_537 crossref_primary_10_1111_dth_14528 crossref_primary_10_1016_j_jcis_2022_08_077 crossref_primary_10_1063_5_0020782 crossref_primary_10_1007_s10163_025_02269_6 crossref_primary_10_1038_s41598_021_02744_8 crossref_primary_10_1364_AO_401602 crossref_primary_10_1007_s12034_022_02850_x crossref_primary_10_1002_anie_202108951 crossref_primary_10_1016_j_matlet_2021_131270 crossref_primary_10_1111_ijac_13852 crossref_primary_10_3390_su13020797 crossref_primary_10_1136_jim_2021_001908 crossref_primary_10_1177_0734242X231198424 crossref_primary_10_1016_j_scitotenv_2021_150754 crossref_primary_10_1136_bmjgh_2020_003110 crossref_primary_10_1001_jama_2021_2531 crossref_primary_10_1002_smll_202400531 crossref_primary_10_1007_s43630_022_00268_2 crossref_primary_10_1016_j_seppur_2025_131776 crossref_primary_10_1093_annweh_wxab079 crossref_primary_10_1089_hs_2020_0173 crossref_primary_10_2147_IJN_S301212 crossref_primary_10_3390_app13042377 crossref_primary_10_1093_cid_ciaa1063 crossref_primary_10_3390_polym13234165 crossref_primary_10_1039_D4EE00482E crossref_primary_10_1016_j_jclepro_2023_135854 crossref_primary_10_1371_journal_pone_0280426 crossref_primary_10_3390_ijerph20032575 crossref_primary_10_1016_j_pnsc_2022_11_003 crossref_primary_10_3390_polym13050801 crossref_primary_10_4103_cmi_cmi_9_22 crossref_primary_10_1016_j_mtphys_2020_100249 crossref_primary_10_2147_IJN_S396669 crossref_primary_10_1371_journal_pone_0257963 crossref_primary_10_1016_j_colcom_2023_100760 crossref_primary_10_1108_RJTA_04_2022_0041 crossref_primary_10_1186_s12889_024_20127_2 crossref_primary_10_1186_s13756_021_00921_y crossref_primary_10_3390_ijerph19095032 crossref_primary_10_1093_rb_rbad044 crossref_primary_10_1186_s13756_021_01028_0 crossref_primary_10_1016_j_oneear_2024_02_012 crossref_primary_10_1039_D4NR02368D crossref_primary_10_1016_j_jhazmat_2021_126783 crossref_primary_10_1136_bmjopen_2021_048687 crossref_primary_10_1007_s10570_023_05070_6 crossref_primary_10_3390_ijerph18168662 crossref_primary_10_1177_1535370220977819 crossref_primary_10_4491_eer_2023_003 crossref_primary_10_1002_adhm_202403061 crossref_primary_10_1016_j_cej_2022_135830 crossref_primary_10_1007_s11356_021_14429_w crossref_primary_10_1016_j_micpath_2024_107059 crossref_primary_10_1002_smll_202205010 crossref_primary_10_1038_s41598_021_03862_z crossref_primary_10_1111_odi_13460 crossref_primary_10_1371_journal_pone_0264933 crossref_primary_10_1016_j_mtsust_2021_100067 crossref_primary_10_1108_BFJ_09_2022_0773 crossref_primary_10_1016_j_jhazmat_2020_124955 crossref_primary_10_1002_slct_202100127 crossref_primary_10_1002_adfm_202113040 crossref_primary_10_1016_j_apenergy_2021_117848 crossref_primary_10_1016_j_jece_2024_112713 crossref_primary_10_1016_j_healthpol_2023_104857 crossref_primary_10_1097_TA_0000000000003073 crossref_primary_10_1007_s11814_024_00233_y crossref_primary_10_1038_s41598_022_08150_y crossref_primary_10_3390_polym15214335 crossref_primary_10_1016_j_apmt_2023_101856 crossref_primary_10_12688_f1000research_24651_1 crossref_primary_10_1128_cmr_00124_23 crossref_primary_10_12688_f1000research_24651_2 crossref_primary_10_1002_eom2_12045 crossref_primary_10_1016_j_cej_2024_148722 crossref_primary_10_1016_j_nanoen_2023_109075 crossref_primary_10_1002_aesr_202100005 crossref_primary_10_1002_adfm_202008054 crossref_primary_10_1016_j_ijbiomac_2023_127729 crossref_primary_10_2217_3dp_2020_0018 crossref_primary_10_1016_j_envint_2023_107994 crossref_primary_10_1097_MCG_0000000000001411 crossref_primary_10_1021_acs_jchemed_0c00753 crossref_primary_10_1016_j_psep_2022_08_007 crossref_primary_10_1016_j_scitotenv_2020_142259 crossref_primary_10_1039_D1EN00369K crossref_primary_10_1109_TRPMS_2021_3130746 crossref_primary_10_1002_hsr2_1042 crossref_primary_10_1039_D0RA09769A crossref_primary_10_1016_j_cej_2021_132723 crossref_primary_10_1002_gch2_202100030 |
| Cites_doi | 10.1001/jama.2020.2565 10.1101/2020.04.14.20062810 10.1086/647174 10.1056/NEJMc2004973 10.1016/j.ajic.2011.05.003 10.1177/155892501000500405 10.1093/annhyg/mep070 10.1016/S2666-5247(20)30003-3 10.1073/pnas.2002589117 10.3201/eid1211.060426 10.1056/NEJMp2006141 10.1038/s41423-020-0407-x 10.1371/journal.pone.0015100 10.1056/NEJMoa2001191 10.1016/S1473-3099(20)30120-1 10.1038/s41586-020-2008-3 10.1016/j.ajic.2005.08.018 10.1016/j.polymer.2016.01.013 10.1080/15428119891010703 10.1038/s41564-020-0688-y 10.1038/s41586-020-2012-7 10.1073/pnas.1716561115 10.1016/j.jviromet.2004.06.006 10.1080/15459624.2015.1018518 10.1007/s00430-004-0219-0 10.1016/j.elstat.2014.05.006 10.1016/S0140-6736(20)30300-7 10.1056/NEJMoa2001017 10.1016/S1473-3099(20)30195-X 10.1056/NEJMoa2002032 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 American Chemical Society 2020 American Chemical Society |
| Copyright_xml | – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
| CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
| CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
| DOI | 10.1021/acsnano.0c03597 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 6356 |
| ExternalDocumentID | PMC7202248 1638355 32368894 10_1021_acsnano_0c03597 b330234248 |
| Genre | Journal Article |
| GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 ABFRP OIOZB OTOTI 5PM |
| ID | FETCH-LOGICAL-a484t-9255fac44c69f3f2c8d749f1cdf1f6a4e9cd82f284a73979fa3ab6a895f34d963 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 340 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537682300117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Tue Sep 30 16:46:22 EDT 2025 Thu May 18 22:26:45 EDT 2023 Thu Jul 10 18:25:40 EDT 2025 Thu Apr 03 07:00:11 EDT 2025 Tue Nov 18 22:31:01 EST 2025 Sat Nov 29 03:37:59 EST 2025 Tue Nov 17 11:53:54 EST 2020 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | COVID-19 personal protective equipment disinfection N95 reuse aerosol |
| Language | English |
| License | https://doi.org/10.15223/policy-017 https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a484t-9255fac44c69f3f2c8d749f1cdf1f6a4e9cd82f284a73979fa3ab6a895f34d963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC02-76SF00515 |
| ORCID | 0000-0002-6103-6352 0000-0002-7313-7150 0000000273137150 0000000261036352 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7202248 |
| PMID | 32368894 |
| PQID | 2398621508 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7202248 osti_scitechconnect_1638355 proquest_miscellaneous_2398621508 pubmed_primary_32368894 crossref_citationtrail_10_1021_acsnano_0c03597 crossref_primary_10_1021_acsnano_0c03597 acs_journals_10_1021_acsnano_0c03597 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-26 |
| PublicationDateYYYYMMDD | 2020-05-26 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2020 |
| Publisher | American Chemical Society American Chemical Society (ACS) |
| Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref10/cit10 Loudon R. G. (ref14/cit14) 1968; 98 ref26/cit26 NIOSH (ref17/cit17) 2009; 71 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 CDC (ref15/cit15) 1998; 47 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
| References_xml | – ident: ref9/cit9 doi: 10.1001/jama.2020.2565 – ident: ref38/cit38 doi: 10.1101/2020.04.14.20062810 – ident: ref16/cit16 doi: 10.1086/647174 – ident: ref26/cit26 doi: 10.1056/NEJMc2004973 – ident: ref20/cit20 – ident: ref39/cit39 doi: 10.1016/j.ajic.2011.05.003 – ident: ref31/cit31 doi: 10.1177/155892501000500405 – ident: ref37/cit37 – ident: ref34/cit34 doi: 10.1093/annhyg/mep070 – ident: ref30/cit30 doi: 10.1016/S2666-5247(20)30003-3 – ident: ref18/cit18 doi: 10.1073/pnas.2002589117 – ident: ref11/cit11 doi: 10.3201/eid1211.060426 – ident: ref25/cit25 doi: 10.1056/NEJMp2006141 – ident: ref35/cit35 doi: 10.1038/s41423-020-0407-x – ident: ref13/cit13 doi: 10.1371/journal.pone.0015100 – ident: ref6/cit6 doi: 10.1056/NEJMoa2001191 – ident: ref1/cit1 doi: 10.1016/S1473-3099(20)30120-1 – ident: ref3/cit3 doi: 10.1038/s41586-020-2008-3 – ident: ref19/cit19 doi: 10.1016/j.ajic.2005.08.018 – ident: ref21/cit21 doi: 10.1016/j.polymer.2016.01.013 – ident: ref24/cit24 doi: 10.1080/15428119891010703 – ident: ref4/cit4 doi: 10.1038/s41564-020-0688-y – ident: ref33/cit33 – ident: ref2/cit2 doi: 10.1038/s41586-020-2012-7 – ident: ref12/cit12 doi: 10.1073/pnas.1716561115 – ident: ref22/cit22 – ident: ref28/cit28 doi: 10.1016/j.jviromet.2004.06.006 – volume: 71 start-page: 13 year: 2009 ident: ref17/cit17 publication-title: Miss. RN – volume: 98 start-page: 297 year: 1968 ident: ref14/cit14 publication-title: Am. Rev. Respir. Dis. – volume: 47 start-page: 1045 year: 1998 ident: ref15/cit15 publication-title: Morb. Mortal. Wkly. Rep. – ident: ref36/cit36 doi: 10.1080/15459624.2015.1018518 – ident: ref29/cit29 doi: 10.1007/s00430-004-0219-0 – ident: ref23/cit23 – ident: ref32/cit32 doi: 10.1016/j.elstat.2014.05.006 – ident: ref8/cit8 doi: 10.1016/S0140-6736(20)30300-7 – ident: ref27/cit27 – ident: ref7/cit7 doi: 10.1056/NEJMoa2001017 – ident: ref10/cit10 doi: 10.1016/S1473-3099(20)30195-X – ident: ref5/cit5 doi: 10.1056/NEJMoa2002032 |
| SSID | ssj0057876 |
| Score | 2.7031093 |
| Snippet | The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals... The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals... |
| SourceID | pubmedcentral osti proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6348 |
| SubjectTerms | 60 APPLIED LIFE SCIENCES Disinfection - methods Disinfection - standards Heating - methods Masks - standards Respiratory Protective Devices - standards Textiles - standards |
| Title | Can N95 Respirators Be Reused after Disinfection? How Many Times? |
| URI | http://dx.doi.org/10.1021/acsnano.0c03597 https://www.ncbi.nlm.nih.gov/pubmed/32368894 https://www.proquest.com/docview/2398621508 https://www.osti.gov/servlets/purl/1638355 https://pubmed.ncbi.nlm.nih.gov/PMC7202248 |
| Volume | 14 |
| WOSCitedRecordID | wos000537682300117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-Cbgc4wBiDBQYyEoddAo3j-uOESgfiABWCTerNcpxYVEIOIu32788vTQNlII1jFNtJ3off7-m9_AxwmFvFHFXBvzMnYpbkKs4U-hWXXZ4xY6ipeWYvxXAoRyN1_UQW_bKCT5NjYytvfHnUtcg2J5bhAw0gF425P7idb7pod3xWQA4JckARLYvPPwtgGLLVQhjqlMGdXoOYLzsln4We8_V3vPQnWGvwJenPDGIDlgr_GVafsQ5uQn9gPBmqHrlpy-wVOS3C5bQqclKfGk5-jKt5n5Y_IRflH3IVtg1S_zFy8gV-nZ_9HFzEzUkKsWGSTWIVEgdnLGOWK5c6amUumHKJzV3iuGGFsrmkLoQqI7DQ50xqMm6k6rmU5cFHt6DjS198BWJZJnouEwkiKceMSi0teMAFYXXRzUUEh-HjdeMJla6L3DTRjUR0I5EIjuby17ZhI8dDMe7fnvC9nfAwI-J4e-guKlQHDIFEuBY7huxEI_IM6CqCg7medXAlrI8YX5TTSiMVIqdIkB_B9kzv7aNSmnIpFYtALFhEOwBpuhfv-PFdTdctKOIkufN_gtmFFYopfRebD79BZ_I4Lfbgo_09GVeP-7AsRnK_Nv2_utD-JQ |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VBQk48H6E8jBSD1zSJo43tk_VslAtYrtCUKTeLMeJxUpVUtW78PeZySahC1SCYxLbsT0zns-a8WeAvdJp4blG-y68jEVa6rjQZFe5SvJCWMttyzM7l4uFOj3Vn3Yg6c_CYCcCthTaIP4vdoH0AN_Vtm72E0ekc_IaXB-jcyXNnky_9GsvqV--iSPjPhnBxEDm80cD5I1c2PJGowat6m9I8_eEyUse6Oju__f9Htzp0CabbNTjPuxU9QO4fYmD8CFMprZmCz1mn4ege2BvK3xch6pk7R3i7N0y9Flb9SGbNT_YMS4irD0_cvgIvh69P5nO4u5ehdgKJVaxxm2Et04Il2ufee5UKYX2qSt96nMrKu1KxT06Lisp7OdtZovcKj32mSjRYh_DqG7q6ikwJwo59oVMCVd5YXXmeJUjSsDWZVLKCPZw8Kazi2DakDdPTTcjppuRCPZ7MRjXcZPTFRlnV1d4M1Q439ByXF10l-RqEFEQLa6j_CG3MoRDEWtF8LoXt0HDomiJratmHQwRI-ac6PIjeLIR__CrjGe5UlpEILcUYyhApN3bX-rlt5a8W3JCTerZv03MK7g5Ozmem_mHxcdduMVps59QWuJzGK0u1tULuOG-r5bh4mVrBz8BijMFsg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BglB74F0I5WGkHrikbBxvHJ-qZcuqiLKqeEi9WY4dqytVTlXvlr_PTDYbdYFKiGMS23Hs-TKfNePPAHvOKuG5QnxXXqYicyqtFOGqKIdFJYzhptWZPZazWXl6qk66TWG0FwY7EbGl2AbxCdUXzncKA9l7vB9MaPaHloTn5G24M0J3TtY9nnxb_3_JBItVLBnXykgoekGfPxogj2TjhkcaNIisv7HN35Mmr3mh6YP_6_9DuN-xTjZemckjuFWHx7B9TYvwCYwnJrCZGrGvffA9sg81Xi5j7Vh7ljg7nMd19lY4YEfNT_YFfyas3Udy8BR-TD9-nxyl3fkKqRGlWKQKlxPeWCFsoXzuuS2dFMpn1vnMF0bUyrqSe3RgRlL4z5vcVIUp1cjnwiFyd2AQmlA_B2ZFJUe-khnxKy-Myi2vC2QL2LocOpnAHn687vARdRv65pnuRkR3I5LA_noqtO00yumojPObK7zrK1ys5DluLrpLc6uRWZA8rqU8IrvQxEeRcyXwdj3lGgFGURMT6mYZNQkkFpxk8xN4tjKB_lU5z4uyVCIBuWEcfQES7958EuZnrYi35MSeyhf_NjBv4N7J4VQff5p93oUtTmv-IWUnvoTB4nJZv4K79moxj5evWyj8AutLCCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+N95+Respirators+Be+Reused+after+Disinfection%3F+How+Many+Times%3F&rft.jtitle=ACS+nano&rft.au=Liao%2C+Lei&rft.au=Xiao%2C+Wang&rft.au=Zhao%2C+Mervin&rft.au=Yu%2C+Xuanze&rft.date=2020-05-26&rft.eissn=1936-086X&rft.volume=14&rft.issue=5&rft.spage=6348&rft_id=info:doi/10.1021%2Facsnano.0c03597&rft_id=info%3Apmid%2F32368894&rft.externalDocID=32368894 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |