Can N95 Respirators Be Reused after Disinfection? How Many Times?

The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other pers...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ACS nano Ročník 14; číslo 5; s. 6348 - 6356
Hlavní autori: Liao, Lei, Xiao, Wang, Zhao, Mervin, Yu, Xuanze, Wang, Haotian, Wang, Qiqi, Chu, Steven, Cui, Yi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Chemical Society 26.05.2020
American Chemical Society (ACS)
Predmet:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.
AbstractList The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.
The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.
The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.
Author Zhao, Mervin
Xiao, Wang
Wang, Qiqi
Yu, Xuanze
Chu, Steven
Wang, Haotian
Liao, Lei
Cui, Yi
AuthorAffiliation 4C Air, Inc
Department of Molecular and Cellular Physiology
Department of Materials Science and Engineering
Stanford Institute for Materials and Energy Sciences
SLAC National Accelerator Laboratory
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Department of Molecular and Cellular Physiology
– name: Stanford Institute for Materials and Energy Sciences
– name: SLAC National Accelerator Laboratory
– name: 4C Air, Inc
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Lei
  surname: Liao
  fullname: Liao, Lei
  organization: 4C Air, Inc
– sequence: 2
  givenname: Wang
  surname: Xiao
  fullname: Xiao, Wang
  organization: 4C Air, Inc
– sequence: 3
  givenname: Mervin
  orcidid: 0000-0002-7313-7150
  surname: Zhao
  fullname: Zhao, Mervin
  organization: 4C Air, Inc
– sequence: 4
  givenname: Xuanze
  surname: Yu
  fullname: Yu, Xuanze
  organization: 4C Air, Inc
– sequence: 5
  givenname: Haotian
  surname: Wang
  fullname: Wang, Haotian
  organization: 4C Air, Inc
– sequence: 6
  givenname: Qiqi
  surname: Wang
  fullname: Wang, Qiqi
  organization: 4C Air, Inc
– sequence: 7
  givenname: Steven
  surname: Chu
  fullname: Chu, Steven
  organization: Department of Molecular and Cellular Physiology
– sequence: 8
  givenname: Yi
  orcidid: 0000-0002-6103-6352
  surname: Cui
  fullname: Cui, Yi
  email: yicui@stanford.edu
  organization: SLAC National Accelerator Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32368894$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1638355$$D View this record in Osti.gov
BookMark eNp1UV1LHDEUDaL41T73rQx9EmQ135O8VHT9KtgWioW-hWsmqZHZZE1mFP-9WXYVW_ApN9xzzj33nh20HlN0CH0i-IBgSg7BlggxHWCLmdDtGtommskJVvLP-mstyBbaKeUOY9GqVm6iLUaZVErzbXQ8hdj80KL55co8ZBhSLs2Jq9-xuK4BP7jcnIYSond2CCkeNZfpsfkO8am5DjNXjj6gDQ99cR9X7y76fX52Pb2cXP28-DY9vpoAV3yYaCqEB8u5ldozT63qWq49sZ0nXgJ32naKeqo4tEy32gODGwlKC894pyXbRV-XuvPxZuY66-KQoTfzHGaQn0yCYP7txHBr_qYH01JMKVdV4MtSIJUhmGLD4OytTTHWxQyRTDEhKmhvNSWn-9GVwcxCsa7vIbo0FkOZVpISgRd6n98aenXyctwKEEuAzamU7LypM2FxxOov9IZgswjRrEI0qxAr7_A_3ov0-4z9JaM2zF0ac6xJvIt-BuHCrtI
CitedBy_id crossref_primary_10_1002_cjce_24272
crossref_primary_10_1017_dmp_2020_255
crossref_primary_10_1016_j_cie_2024_109962
crossref_primary_10_3390_healthcare11020268
crossref_primary_10_1097_ACO_0000000000001065
crossref_primary_10_1002_cnma_202300570
crossref_primary_10_1002_marc_202401058
crossref_primary_10_1177_15280837221148464
crossref_primary_10_17163_ings_n27_2022_03
crossref_primary_10_1016_j_jclepro_2022_133221
crossref_primary_10_1016_j_matchemphys_2023_128134
crossref_primary_10_1002_smll_202102453
crossref_primary_10_3390_ijerph19020641
crossref_primary_10_1017_ice_2020_332
crossref_primary_10_1007_s12630_020_01770_w
crossref_primary_10_1002_ange_202108951
crossref_primary_10_1089_jamp_2021_0002
crossref_primary_10_1002_app_56647
crossref_primary_10_1590_1518_8345_5135_3492
crossref_primary_10_2298_JSC230113020K
crossref_primary_10_3390_su13116296
crossref_primary_10_1109_TMTT_2021_3086539
crossref_primary_10_1016_j_energy_2020_118701
crossref_primary_10_1016_j_orgel_2023_106944
crossref_primary_10_1016_j_wasman_2025_01_005
crossref_primary_10_1016_j_scitotenv_2022_154089
crossref_primary_10_1128_msphere_00303_22
crossref_primary_10_3390_microorganisms11020310
crossref_primary_10_1016_j_jhazmat_2021_127709
crossref_primary_10_1016_j_ijbiomac_2022_08_197
crossref_primary_10_1038_s43246_021_00153_y
crossref_primary_10_1016_j_buildenv_2023_110136
crossref_primary_10_1016_j_memsci_2023_122354
crossref_primary_10_1136_bmjopen_2021_049690
crossref_primary_10_1002_lio2_708
crossref_primary_10_1016_j_matlet_2021_131554
crossref_primary_10_1016_j_iot_2022_100511
crossref_primary_10_1590_s0104_12902023230331en
crossref_primary_10_1177_2474126420941707
crossref_primary_10_1186_s13643_021_01742_1
crossref_primary_10_1007_s12274_022_4350_2
crossref_primary_10_3390_ijerph17155616
crossref_primary_10_1177_01945998221099028
crossref_primary_10_1557_s43577_021_00173_6
crossref_primary_10_1177_24723444221132051
crossref_primary_10_1007_s11426_023_1825_7
crossref_primary_10_1007_s12046_021_01634_z
crossref_primary_10_1016_j_mtchem_2023_101526
crossref_primary_10_1016_j_chemosphere_2021_132364
crossref_primary_10_1016_j_elstat_2022_103683
crossref_primary_10_1016_j_seppur_2022_122643
crossref_primary_10_3390_su141610045
crossref_primary_10_1002_adem_202402919
crossref_primary_10_1016_j_radphyschem_2022_110557
crossref_primary_10_1016_j_chempr_2025_102526
crossref_primary_10_1016_j_cegh_2021_100835
crossref_primary_10_1016_j_oneear_2020_10_014
crossref_primary_10_1016_j_jhin_2021_05_005
crossref_primary_10_1080_15440478_2023_2187507
crossref_primary_10_1093_annweh_wxab020
crossref_primary_10_3390_polym13091367
crossref_primary_10_1038_s41598_021_99129_8
crossref_primary_10_1016_j_scitotenv_2024_170286
crossref_primary_10_1371_journal_pone_0248859
crossref_primary_10_1016_j_apsusc_2022_153195
crossref_primary_10_1016_j_cjche_2020_10_022
crossref_primary_10_3390_ijerph17176117
crossref_primary_10_3390_antiox10091480
crossref_primary_10_1007_s41403_020_00153_3
crossref_primary_10_1016_j_apr_2023_101840
crossref_primary_10_1016_j_rser_2021_111026
crossref_primary_10_1007_s42765_023_00299_z
crossref_primary_10_1186_s13756_020_00744_3
crossref_primary_10_1016_j_cej_2023_143709
crossref_primary_10_1007_s40032_022_00906_9
crossref_primary_10_1063_5_0065147
crossref_primary_10_1089_apb_20_0053
crossref_primary_10_1002_jbio_202100135
crossref_primary_10_3390_nano11092208
crossref_primary_10_1016_j_apenergy_2021_116441
crossref_primary_10_1021_acs_chas_1c00016
crossref_primary_10_3390_membranes11040250
crossref_primary_10_1002_admi_202201952
crossref_primary_10_1097_QCO_0000000000000738
crossref_primary_10_1590_s0104_12902023230331pt
crossref_primary_10_1016_j_bpj_2021_02_039
crossref_primary_10_1063_5_0021270
crossref_primary_10_1002_adma_202101262
crossref_primary_10_1002_advs_202102189
crossref_primary_10_1016_j_cej_2023_146415
crossref_primary_10_1016_j_jece_2023_111816
crossref_primary_10_1002_advs_202003155
crossref_primary_10_3390_su132212474
crossref_primary_10_3390_toxics12010003
crossref_primary_10_1007_s11356_023_30570_0
crossref_primary_10_3390_nano13172455
crossref_primary_10_4103_ijmr_IJMR_3842_20
crossref_primary_10_1016_j_envres_2021_111309
crossref_primary_10_1016_j_cej_2021_129152
crossref_primary_10_1021_acs_chas_1c00026
crossref_primary_10_1177_00405175231194792
crossref_primary_10_1039_D4RA02174F
crossref_primary_10_3390_polym12102341
crossref_primary_10_1016_j_cej_2023_144224
crossref_primary_10_1016_j_ajic_2020_07_004
crossref_primary_10_1177_00405175221131065
crossref_primary_10_3389_fpubh_2021_673536
crossref_primary_10_1016_j_ajic_2021_09_017
crossref_primary_10_1016_j_jhin_2022_06_016
crossref_primary_10_1002_smll_202105570
crossref_primary_10_1177_00405175241228227
crossref_primary_10_1039_D5TA02341F
crossref_primary_10_1016_j_jaerosci_2021_105914
crossref_primary_10_1016_j_scitotenv_2020_144274
crossref_primary_10_1002_nano_202200101
crossref_primary_10_20473_ijtid_v10i3_37427
crossref_primary_10_4103_ijmr_IJMR_2709_20
crossref_primary_10_1007_s12274_021_3831_z
crossref_primary_10_1038_s41598_021_91706_1
crossref_primary_10_1186_s42833_020_00015_w
crossref_primary_10_1016_j_scitotenv_2021_148548
crossref_primary_10_1371_journal_pone_0291679
crossref_primary_10_1371_journal_pone_0255338
crossref_primary_10_1038_s41598_021_94810_4
crossref_primary_10_1039_D0EN01230K
crossref_primary_10_1002_cben_202000039
crossref_primary_10_1016_j_cis_2025_103635
crossref_primary_10_1016_j_ijid_2023_09_016
crossref_primary_10_3390_ijerph19127167
crossref_primary_10_1016_j_apmt_2023_101833
crossref_primary_10_1016_j_ajic_2020_07_022
crossref_primary_10_1177_10482911251334843
crossref_primary_10_1007_s40032_023_00978_1
crossref_primary_10_1016_j_mtcomm_2024_110530
crossref_primary_10_1038_s41578_020_00247_y
crossref_primary_10_1063_5_0023940
crossref_primary_10_1007_s12221_023_00178_9
crossref_primary_10_1177_0748233720964652
crossref_primary_10_1016_j_cej_2022_139956
crossref_primary_10_1016_j_cis_2021_102435
crossref_primary_10_1016_j_jhin_2022_11_023
crossref_primary_10_1016_j_mtcomm_2022_105192
crossref_primary_10_1021_acs_chas_0c00069
crossref_primary_10_1038_s41598_022_05738_2
crossref_primary_10_1080_02786826_2021_2003291
crossref_primary_10_1016_j_chemosphere_2022_137178
crossref_primary_10_1016_j_elstat_2022_103782
crossref_primary_10_1213_ANE_0000000000005254
crossref_primary_10_1080_00405167_2020_1824468
crossref_primary_10_1140_epjp_s13360_024_05756_1
crossref_primary_10_2166_wst_2020_537
crossref_primary_10_1111_dth_14528
crossref_primary_10_1016_j_jcis_2022_08_077
crossref_primary_10_1063_5_0020782
crossref_primary_10_1007_s10163_025_02269_6
crossref_primary_10_1038_s41598_021_02744_8
crossref_primary_10_1364_AO_401602
crossref_primary_10_1007_s12034_022_02850_x
crossref_primary_10_1002_anie_202108951
crossref_primary_10_1016_j_matlet_2021_131270
crossref_primary_10_1111_ijac_13852
crossref_primary_10_3390_su13020797
crossref_primary_10_1136_jim_2021_001908
crossref_primary_10_1177_0734242X231198424
crossref_primary_10_1016_j_scitotenv_2021_150754
crossref_primary_10_1136_bmjgh_2020_003110
crossref_primary_10_1001_jama_2021_2531
crossref_primary_10_1002_smll_202400531
crossref_primary_10_1007_s43630_022_00268_2
crossref_primary_10_1016_j_seppur_2025_131776
crossref_primary_10_1093_annweh_wxab079
crossref_primary_10_1089_hs_2020_0173
crossref_primary_10_2147_IJN_S301212
crossref_primary_10_3390_app13042377
crossref_primary_10_1093_cid_ciaa1063
crossref_primary_10_3390_polym13234165
crossref_primary_10_1039_D4EE00482E
crossref_primary_10_1016_j_jclepro_2023_135854
crossref_primary_10_1371_journal_pone_0280426
crossref_primary_10_3390_ijerph20032575
crossref_primary_10_1016_j_pnsc_2022_11_003
crossref_primary_10_3390_polym13050801
crossref_primary_10_4103_cmi_cmi_9_22
crossref_primary_10_1016_j_mtphys_2020_100249
crossref_primary_10_2147_IJN_S396669
crossref_primary_10_1371_journal_pone_0257963
crossref_primary_10_1016_j_colcom_2023_100760
crossref_primary_10_1108_RJTA_04_2022_0041
crossref_primary_10_1186_s12889_024_20127_2
crossref_primary_10_1186_s13756_021_00921_y
crossref_primary_10_3390_ijerph19095032
crossref_primary_10_1093_rb_rbad044
crossref_primary_10_1186_s13756_021_01028_0
crossref_primary_10_1016_j_oneear_2024_02_012
crossref_primary_10_1039_D4NR02368D
crossref_primary_10_1016_j_jhazmat_2021_126783
crossref_primary_10_1136_bmjopen_2021_048687
crossref_primary_10_1007_s10570_023_05070_6
crossref_primary_10_3390_ijerph18168662
crossref_primary_10_1177_1535370220977819
crossref_primary_10_4491_eer_2023_003
crossref_primary_10_1002_adhm_202403061
crossref_primary_10_1016_j_cej_2022_135830
crossref_primary_10_1007_s11356_021_14429_w
crossref_primary_10_1016_j_micpath_2024_107059
crossref_primary_10_1002_smll_202205010
crossref_primary_10_1038_s41598_021_03862_z
crossref_primary_10_1111_odi_13460
crossref_primary_10_1371_journal_pone_0264933
crossref_primary_10_1016_j_mtsust_2021_100067
crossref_primary_10_1108_BFJ_09_2022_0773
crossref_primary_10_1016_j_jhazmat_2020_124955
crossref_primary_10_1002_slct_202100127
crossref_primary_10_1002_adfm_202113040
crossref_primary_10_1016_j_apenergy_2021_117848
crossref_primary_10_1016_j_jece_2024_112713
crossref_primary_10_1016_j_healthpol_2023_104857
crossref_primary_10_1097_TA_0000000000003073
crossref_primary_10_1007_s11814_024_00233_y
crossref_primary_10_1038_s41598_022_08150_y
crossref_primary_10_3390_polym15214335
crossref_primary_10_1016_j_apmt_2023_101856
crossref_primary_10_12688_f1000research_24651_1
crossref_primary_10_1128_cmr_00124_23
crossref_primary_10_12688_f1000research_24651_2
crossref_primary_10_1002_eom2_12045
crossref_primary_10_1016_j_cej_2024_148722
crossref_primary_10_1016_j_nanoen_2023_109075
crossref_primary_10_1002_aesr_202100005
crossref_primary_10_1002_adfm_202008054
crossref_primary_10_1016_j_ijbiomac_2023_127729
crossref_primary_10_2217_3dp_2020_0018
crossref_primary_10_1016_j_envint_2023_107994
crossref_primary_10_1097_MCG_0000000000001411
crossref_primary_10_1021_acs_jchemed_0c00753
crossref_primary_10_1016_j_psep_2022_08_007
crossref_primary_10_1016_j_scitotenv_2020_142259
crossref_primary_10_1039_D1EN00369K
crossref_primary_10_1109_TRPMS_2021_3130746
crossref_primary_10_1002_hsr2_1042
crossref_primary_10_1039_D0RA09769A
crossref_primary_10_1016_j_cej_2021_132723
crossref_primary_10_1002_gch2_202100030
Cites_doi 10.1001/jama.2020.2565
10.1101/2020.04.14.20062810
10.1086/647174
10.1056/NEJMc2004973
10.1016/j.ajic.2011.05.003
10.1177/155892501000500405
10.1093/annhyg/mep070
10.1016/S2666-5247(20)30003-3
10.1073/pnas.2002589117
10.3201/eid1211.060426
10.1056/NEJMp2006141
10.1038/s41423-020-0407-x
10.1371/journal.pone.0015100
10.1056/NEJMoa2001191
10.1016/S1473-3099(20)30120-1
10.1038/s41586-020-2008-3
10.1016/j.ajic.2005.08.018
10.1016/j.polymer.2016.01.013
10.1080/15428119891010703
10.1038/s41564-020-0688-y
10.1038/s41586-020-2012-7
10.1073/pnas.1716561115
10.1016/j.jviromet.2004.06.006
10.1080/15459624.2015.1018518
10.1007/s00430-004-0219-0
10.1016/j.elstat.2014.05.006
10.1016/S0140-6736(20)30300-7
10.1056/NEJMoa2001017
10.1016/S1473-3099(20)30195-X
10.1056/NEJMoa2002032
ContentType Journal Article
Copyright Copyright © 2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1021/acsnano.0c03597
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 6356
ExternalDocumentID PMC7202248
1638355
32368894
10_1021_acsnano_0c03597
b330234248
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABFRP
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-a484t-9255fac44c69f3f2c8d749f1cdf1f6a4e9cd82f284a73979fa3ab6a895f34d963
IEDL.DBID ACS
ISICitedReferencesCount 340
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537682300117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Tue Sep 30 16:46:22 EDT 2025
Thu May 18 22:26:45 EDT 2023
Thu Jul 10 18:25:40 EDT 2025
Thu Apr 03 07:00:11 EDT 2025
Tue Nov 18 22:31:01 EST 2025
Sat Nov 29 03:37:59 EST 2025
Tue Nov 17 11:53:54 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
personal protective equipment
disinfection
N95 reuse
aerosol
Language English
License https://doi.org/10.15223/policy-017
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a484t-9255fac44c69f3f2c8d749f1cdf1f6a4e9cd82f284a73979fa3ab6a895f34d963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC02-76SF00515
ORCID 0000-0002-6103-6352
0000-0002-7313-7150
0000000273137150
0000000261036352
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7202248
PMID 32368894
PQID 2398621508
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7202248
osti_scitechconnect_1638355
proquest_miscellaneous_2398621508
pubmed_primary_32368894
crossref_citationtrail_10_1021_acsnano_0c03597
crossref_primary_10_1021_acsnano_0c03597
acs_journals_10_1021_acsnano_0c03597
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-05-26
PublicationDateYYYYMMDD 2020-05-26
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref10/cit10
Loudon R. G. (ref14/cit14) 1968; 98
ref26/cit26
NIOSH (ref17/cit17) 2009; 71
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
CDC (ref15/cit15) 1998; 47
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1001/jama.2020.2565
– ident: ref38/cit38
  doi: 10.1101/2020.04.14.20062810
– ident: ref16/cit16
  doi: 10.1086/647174
– ident: ref26/cit26
  doi: 10.1056/NEJMc2004973
– ident: ref20/cit20
– ident: ref39/cit39
  doi: 10.1016/j.ajic.2011.05.003
– ident: ref31/cit31
  doi: 10.1177/155892501000500405
– ident: ref37/cit37
– ident: ref34/cit34
  doi: 10.1093/annhyg/mep070
– ident: ref30/cit30
  doi: 10.1016/S2666-5247(20)30003-3
– ident: ref18/cit18
  doi: 10.1073/pnas.2002589117
– ident: ref11/cit11
  doi: 10.3201/eid1211.060426
– ident: ref25/cit25
  doi: 10.1056/NEJMp2006141
– ident: ref35/cit35
  doi: 10.1038/s41423-020-0407-x
– ident: ref13/cit13
  doi: 10.1371/journal.pone.0015100
– ident: ref6/cit6
  doi: 10.1056/NEJMoa2001191
– ident: ref1/cit1
  doi: 10.1016/S1473-3099(20)30120-1
– ident: ref3/cit3
  doi: 10.1038/s41586-020-2008-3
– ident: ref19/cit19
  doi: 10.1016/j.ajic.2005.08.018
– ident: ref21/cit21
  doi: 10.1016/j.polymer.2016.01.013
– ident: ref24/cit24
  doi: 10.1080/15428119891010703
– ident: ref4/cit4
  doi: 10.1038/s41564-020-0688-y
– ident: ref33/cit33
– ident: ref2/cit2
  doi: 10.1038/s41586-020-2012-7
– ident: ref12/cit12
  doi: 10.1073/pnas.1716561115
– ident: ref22/cit22
– ident: ref28/cit28
  doi: 10.1016/j.jviromet.2004.06.006
– volume: 71
  start-page: 13
  year: 2009
  ident: ref17/cit17
  publication-title: Miss. RN
– volume: 98
  start-page: 297
  year: 1968
  ident: ref14/cit14
  publication-title: Am. Rev. Respir. Dis.
– volume: 47
  start-page: 1045
  year: 1998
  ident: ref15/cit15
  publication-title: Morb. Mortal. Wkly. Rep.
– ident: ref36/cit36
  doi: 10.1080/15459624.2015.1018518
– ident: ref29/cit29
  doi: 10.1007/s00430-004-0219-0
– ident: ref23/cit23
– ident: ref32/cit32
  doi: 10.1016/j.elstat.2014.05.006
– ident: ref8/cit8
  doi: 10.1016/S0140-6736(20)30300-7
– ident: ref27/cit27
– ident: ref7/cit7
  doi: 10.1056/NEJMoa2001017
– ident: ref10/cit10
  doi: 10.1016/S1473-3099(20)30195-X
– ident: ref5/cit5
  doi: 10.1056/NEJMoa2002032
SSID ssj0057876
Score 2.7031093
Snippet The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals...
The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6348
SubjectTerms 60 APPLIED LIFE SCIENCES
Disinfection - methods
Disinfection - standards
Heating - methods
Masks - standards
Respiratory Protective Devices - standards
Textiles - standards
Title Can N95 Respirators Be Reused after Disinfection? How Many Times?
URI http://dx.doi.org/10.1021/acsnano.0c03597
https://www.ncbi.nlm.nih.gov/pubmed/32368894
https://www.proquest.com/docview/2398621508
https://www.osti.gov/servlets/purl/1638355
https://pubmed.ncbi.nlm.nih.gov/PMC7202248
Volume 14
WOSCitedRecordID wos000537682300117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-Cbgc4wBiDBQYyEoddAo3j-uOESgfiABWCTerNcpxYVEIOIu32788vTQNlII1jFNtJ3off7-m9_AxwmFvFHFXBvzMnYpbkKs4U-hWXXZ4xY6ipeWYvxXAoRyN1_UQW_bKCT5NjYytvfHnUtcg2J5bhAw0gF425P7idb7pod3xWQA4JckARLYvPPwtgGLLVQhjqlMGdXoOYLzsln4We8_V3vPQnWGvwJenPDGIDlgr_GVafsQ5uQn9gPBmqHrlpy-wVOS3C5bQqclKfGk5-jKt5n5Y_IRflH3IVtg1S_zFy8gV-nZ_9HFzEzUkKsWGSTWIVEgdnLGOWK5c6amUumHKJzV3iuGGFsrmkLoQqI7DQ50xqMm6k6rmU5cFHt6DjS198BWJZJnouEwkiKceMSi0teMAFYXXRzUUEh-HjdeMJla6L3DTRjUR0I5EIjuby17ZhI8dDMe7fnvC9nfAwI-J4e-guKlQHDIFEuBY7huxEI_IM6CqCg7medXAlrI8YX5TTSiMVIqdIkB_B9kzv7aNSmnIpFYtALFhEOwBpuhfv-PFdTdctKOIkufN_gtmFFYopfRebD79BZ_I4Lfbgo_09GVeP-7AsRnK_Nv2_utD-JQ
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VBQk48H6E8jBSD1zSJo43tk_VslAtYrtCUKTeLMeJxUpVUtW78PeZySahC1SCYxLbsT0zns-a8WeAvdJp4blG-y68jEVa6rjQZFe5SvJCWMttyzM7l4uFOj3Vn3Yg6c_CYCcCthTaIP4vdoH0AN_Vtm72E0ekc_IaXB-jcyXNnky_9GsvqV--iSPjPhnBxEDm80cD5I1c2PJGowat6m9I8_eEyUse6Oju__f9Htzp0CabbNTjPuxU9QO4fYmD8CFMprZmCz1mn4ege2BvK3xch6pk7R3i7N0y9Flb9SGbNT_YMS4irD0_cvgIvh69P5nO4u5ehdgKJVaxxm2Et04Il2ufee5UKYX2qSt96nMrKu1KxT06Lisp7OdtZovcKj32mSjRYh_DqG7q6ikwJwo59oVMCVd5YXXmeJUjSsDWZVLKCPZw8Kazi2DakDdPTTcjppuRCPZ7MRjXcZPTFRlnV1d4M1Q439ByXF10l-RqEFEQLa6j_CG3MoRDEWtF8LoXt0HDomiJratmHQwRI-ac6PIjeLIR__CrjGe5UlpEILcUYyhApN3bX-rlt5a8W3JCTerZv03MK7g5Ozmem_mHxcdduMVps59QWuJzGK0u1tULuOG-r5bh4mVrBz8BijMFsg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BglB74F0I5WGkHrikbBxvHJ-qZcuqiLKqeEi9WY4dqytVTlXvlr_PTDYbdYFKiGMS23Hs-TKfNePPAHvOKuG5QnxXXqYicyqtFOGqKIdFJYzhptWZPZazWXl6qk66TWG0FwY7EbGl2AbxCdUXzncKA9l7vB9MaPaHloTn5G24M0J3TtY9nnxb_3_JBItVLBnXykgoekGfPxogj2TjhkcaNIisv7HN35Mmr3mh6YP_6_9DuN-xTjZemckjuFWHx7B9TYvwCYwnJrCZGrGvffA9sg81Xi5j7Vh7ljg7nMd19lY4YEfNT_YFfyas3Udy8BR-TD9-nxyl3fkKqRGlWKQKlxPeWCFsoXzuuS2dFMpn1vnMF0bUyrqSe3RgRlL4z5vcVIUp1cjnwiFyd2AQmlA_B2ZFJUe-khnxKy-Myi2vC2QL2LocOpnAHn687vARdRv65pnuRkR3I5LA_noqtO00yumojPObK7zrK1ys5DluLrpLc6uRWZA8rqU8IrvQxEeRcyXwdj3lGgFGURMT6mYZNQkkFpxk8xN4tjKB_lU5z4uyVCIBuWEcfQES7958EuZnrYi35MSeyhf_NjBv4N7J4VQff5p93oUtTmv-IWUnvoTB4nJZv4K79moxj5evWyj8AutLCCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+N95+Respirators+Be+Reused+after+Disinfection%3F+How+Many+Times%3F&rft.jtitle=ACS+nano&rft.au=Liao%2C+Lei&rft.au=Xiao%2C+Wang&rft.au=Zhao%2C+Mervin&rft.au=Yu%2C+Xuanze&rft.date=2020-05-26&rft.eissn=1936-086X&rft.volume=14&rft.issue=5&rft.spage=6348&rft_id=info:doi/10.1021%2Facsnano.0c03597&rft_id=info%3Apmid%2F32368894&rft.externalDocID=32368894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon