Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA)

A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the (1) remedial design co...

Full description

Saved in:
Bibliographic Details
Published in:Advances in water resources Vol. 25; no. 1; pp. 51 - 65
Main Authors: Erickson, Mark, Mayer, Alex, Horn, Jeffrey
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 2002
Elsevier Science
Subjects:
ISSN:0309-1708, 1872-9657
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the (1) remedial design cost and (2) contaminant mass remaining at the end of the remediation horizon. Three test scenarios consider pumping rates for two-, five-, and 15 fixed-location wells as the decision variables. A single objective genetic algorithm (SGA) formulation and a random search (RS) are also applied to the three scenarios to compare performances with NPGA. With 15 decision variables, the NPGA is demonstrated to outperform both the SGA algorithm and the RS by generating a better tradeoff curve. For example, for a given cost of $100,000, the NPGA solution found a design with 75% less mass remaining than the corresponding RS solution. In the 15-well scenario, the NPGA generated the full span of the Pareto optimal designs, but with 30% less computational effort than that required by the SGA. The RS failed to find any Pareto optimal solutions. The optimal population size for the NPGA was found by sensitivity analysis to be approximately 100, when the total computational cost was limited to 2000 function evaluations. The NPGA was found to be robust with respect to the other algorithm parameters (tournament size and niche radius) when using an optimal population size. The inclusion of niching produced better results in terms of covering the span of the tradeoff curve. As long as some niching was included, the results were insensitive to the value of the parameter that controls niching ( σ share>0).
AbstractList A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the (1) remedial design cost and (2) contaminant mass remaining at the end of the remediation horizon. Three test scenarios consider pumping rates for two-, five-, and 15 fixed-location wells as the decision variables. A single objective genetic algorithm (SGA) formulation and a random search (RS) are also applied to the three scenarios to compare performances with NPGA. With 15 decision variables, the NPGA is demonstrated to outperform both the SGA algorithm and the RS by generating a better tradeoff curve. For example, for a given cost of $100,000, the NPGA solution found a design with 75% less mass remaining than the corresponding RS solution. In the 15-well scenario, the NPGA generated the full span of the Pareto optimal designs, but with 30% less computational effort than that required by the SGA. The RS failed to find any Pareto optimal solutions. The optimal population size for the NPGA was found by sensitivity analysis to be approximately 100, when the total computational cost was limited to 2000 function evaluations. The NPGA was found to be robust with respect to the other algorithm parameters (tournament size and niche radius) when using an optimal population size. The inclusion of niching produced better results in terms of covering the span of the tradeoff curve. As long as some niching was included, the results were insensitive to the value of the parameter that controls niching ( sigma sub(share) > 0).
Researchers applied a multiobjective optimization algorithm to a problem in groundwater quality management involving remediation via pump-and-treat processes. The proposed multiobjective optimization approach utilizes the niched Pareto genetic algorithm (NPGA). The approach was used to simultaneously minimize the remedial design cost and the contaminant mass left over at completion of the remediation horizon. The study considered three test scenarios involving pumping rates for two-, five-, and 15-fixed-location wells. The three scenarios were also evaluated using a single objective genetic algorithm formulation and a random search. For the case involving 15 decision variables, the NPGA method outperformed both the single objective genetic algorithm and the random search.
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the (1) remedial design cost and (2) contaminant mass remaining at the end of the remediation horizon. Three test scenarios consider pumping rates for two-, five-, and 15 fixed-location wells as the decision variables. A single objective genetic algorithm (SGA) formulation and a random search (RS) are also applied to the three scenarios to compare performances with NPGA. With 15 decision variables, the NPGA is demonstrated to outperform both the SGA algorithm and the RS by generating a better tradeoff curve. For example, for a given cost of $100,000, the NPGA solution found a design with 75% less mass remaining than the corresponding RS solution. In the 15-well scenario, the NPGA generated the full span of the Pareto optimal designs, but with 30% less computational effort than that required by the SGA. The RS failed to find any Pareto optimal solutions. The optimal population size for the NPGA was found by sensitivity analysis to be approximately 100, when the total computational cost was limited to 2000 function evaluations. The NPGA was found to be robust with respect to the other algorithm parameters (tournament size and niche radius) when using an optimal population size. The inclusion of niching produced better results in terms of covering the span of the tradeoff curve. As long as some niching was included, the results were insensitive to the value of the parameter that controls niching ( σ share>0).
Author Erickson, Mark
Mayer, Alex
Horn, Jeffrey
Author_xml – sequence: 1
  givenname: Mark
  surname: Erickson
  fullname: Erickson, Mark
  organization: Department of Geological Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan, USA
– sequence: 2
  givenname: Alex
  surname: Mayer
  fullname: Mayer, Alex
  email: asmayer@mtu.edu
  organization: Department of Geological Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan, USA
– sequence: 3
  givenname: Jeffrey
  surname: Horn
  fullname: Horn, Jeffrey
  organization: Department of Mathematics and Computer Science, Northern Michigan University, Marquette, Michigan, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13407360$$DView record in Pascal Francis
BookMark eNqF0sFrFDEUBvAgFdxW_wQhF6U9jOZlMpkZPUgpWoWqBfUc3mTe7KbMJGuSrRT8453uFgUvcwqE3_cu33fMjnzwxNhzEK9AgH79TZSiLaAWzamAMyGEFEX5iK2gqWXR6qo-Yqu_5Ak7TulmRo2q5Yr9_rwbsytCd0M2u1viYZvdhCPvKbm152Hg6xh2vv-FmSKPNFHvMLvgebpLmab0huN2Ozp7-Jx93hD3zm6o59cYKQe-Jk_ZWY7jOkSXNxM__XJ9eX72lD0ecEz07OE9YT8-vP9-8bG4-nr56eL8qkDVqFwobLqmswidJrSgOwsWBts3siGoS9tqia3oKuyEAkWgOuyVBo1SIageyhP28nB3G8PPHaVsJpcsjSN6CrtkVNPWlZLVIpS1BCVLvQhBg2zKmS5CpYVQop3hiweIyeI4RPTWJbONcxvxzkCpRF1qMbvq4GwMKUUa_hFh7udg9nMw910bAWY_B1POubf_5azL-85yRDcupt8d0jTXdOsommQdeTuPIc7DMX1wCxf-AN9w0WQ
CODEN AWREDI
CitedBy_id crossref_primary_10_1007_s11269_012_0125_y
crossref_primary_10_1016_j_jhydrol_2014_10_023
crossref_primary_10_1016_j_jhydrol_2022_127677
crossref_primary_10_1061__ASCE_WR_1943_5452_0001180
crossref_primary_10_1016_j_jenvman_2012_11_030
crossref_primary_10_3390_w13111574
crossref_primary_10_3389_fnins_2023_1251968
crossref_primary_10_1007_s12517_017_2996_y
crossref_primary_10_1007_s10040_007_0200_2
crossref_primary_10_1016_j_envsoft_2012_02_002
crossref_primary_10_1016_j_energy_2016_10_035
crossref_primary_10_1016_j_neucom_2014_01_075
crossref_primary_10_1016_j_applthermaleng_2009_05_008
crossref_primary_10_1016_j_compchemeng_2005_04_005
crossref_primary_10_1061__ASCE_0733_9372_2007_133_8_809
crossref_primary_10_1016_j_eswa_2008_06_136
crossref_primary_10_1016_j_jenvman_2024_122699
crossref_primary_10_1016_j_envsoft_2004_11_012
crossref_primary_10_1016_S0309_1708_02_00054_4
crossref_primary_10_1016_j_jhydrol_2019_124498
crossref_primary_10_1109_TMAG_2017_2784401
crossref_primary_10_1007_s10040_012_0900_0
crossref_primary_10_1016_j_advwatres_2005_07_010
crossref_primary_10_1016_j_jconhyd_2009_11_004
crossref_primary_10_1007_s13201_022_01785_2
crossref_primary_10_1016_j_undsp_2023_11_009
crossref_primary_10_1061_JHTRBP_HZENG_1503
crossref_primary_10_1016_j_advwatres_2006_05_009
crossref_primary_10_1061__ASCE_HE_1943_5584_0000327
crossref_primary_10_1109_ACCESS_2024_3430970
crossref_primary_10_1002_nme_1432
crossref_primary_10_1016_j_envsoft_2007_02_001
crossref_primary_10_1111_j_1365_2664_2007_01367_x
crossref_primary_10_1177_09544054221136512
crossref_primary_10_1080_09715010_2009_10514971
crossref_primary_10_1111_gwat_13098
crossref_primary_10_1016_j_advwatres_2007_02_008
crossref_primary_10_1002_2015WR017193
crossref_primary_10_1016_j_ijfatigue_2022_106840
crossref_primary_10_1016_j_jappgeo_2016_03_031
crossref_primary_10_1016_j_advwatres_2008_01_010
crossref_primary_10_2166_hydro_2023_059
crossref_primary_10_1061__ASCE_HE_1943_5584_0000198
crossref_primary_10_1016_j_envsoft_2017_05_004
crossref_primary_10_1007_s11269_012_0030_4
crossref_primary_10_1002_2014WR016825
crossref_primary_10_1007_s12303_010_0010_8
crossref_primary_10_1155_2014_539128
crossref_primary_10_1007_s11269_006_9109_0
crossref_primary_10_1016_j_jconhyd_2006_11_009
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000304
crossref_primary_10_1016_j_jhydrol_2016_01_009
crossref_primary_10_1016_j_jclepro_2020_122897
crossref_primary_10_1016_j_advwatres_2006_06_006
crossref_primary_10_1080_02626667_2012_754103
crossref_primary_10_1061__ASCE_0733_9496_2005_131_1_45
crossref_primary_10_1016_j_asoc_2015_06_007
crossref_primary_10_2166_ws_2018_059
crossref_primary_10_1061__ASCE_WR_1943_5452_0000053
crossref_primary_10_1080_00207720802556252
crossref_primary_10_1016_j_jclepro_2022_132697
crossref_primary_10_1016_j_jhydrol_2013_03_022
crossref_primary_10_1007_s11269_022_03289_9
crossref_primary_10_1016_j_cageo_2006_09_002
crossref_primary_10_1016_j_camwa_2008_10_003
crossref_primary_10_1007_s00521_018_3491_4
crossref_primary_10_1016_j_envsoft_2005_12_021
crossref_primary_10_1016_j_scitotenv_2021_150811
crossref_primary_10_1007_s00170_005_0035_8
crossref_primary_10_1016_j_jconhyd_2023_104201
crossref_primary_10_1109_ACCESS_2019_2948057
crossref_primary_10_1016_j_jhydrol_2007_05_008
crossref_primary_10_2134_agronj2004_0631
crossref_primary_10_1007_s12303_009_0038_9
crossref_primary_10_1016_j_envsoft_2012_05_002
crossref_primary_10_1029_2005WR004436
crossref_primary_10_1080_0305215X_2010_491548
crossref_primary_10_1016_j_jenvman_2008_07_002
crossref_primary_10_1093_jcde_qwad110
crossref_primary_10_1007_s10040_019_01963_8
crossref_primary_10_1061__ASCE_1090_025X_2003_7_2_131
crossref_primary_10_1016_j_advwatres_2006_01_008
crossref_primary_10_1029_2008WR007108
crossref_primary_10_1016_j_jconhyd_2008_05_002
crossref_primary_10_3390_app13042064
crossref_primary_10_1002_hyp_11412
crossref_primary_10_1016_j_jestch_2017_05_005
crossref_primary_10_1007_s12665_013_2291_5
crossref_primary_10_1016_j_jmmm_2019_01_029
crossref_primary_10_1007_s10040_021_02383_3
crossref_primary_10_1111_j_1745_6592_2010_01287_x
crossref_primary_10_1016_j_advwatres_2007_03_006
crossref_primary_10_1002_hyp_5036
crossref_primary_10_1111_j_1750_3841_2009_01348_x
crossref_primary_10_1007_s00170_014_6240_6
crossref_primary_10_1080_07408170802322994
crossref_primary_10_1080_02626667_2010_512467
crossref_primary_10_1111_j_1745_6592_2011_01375_x
crossref_primary_10_1007_s10040_004_0424_3
crossref_primary_10_1061__ASCE_HE_1943_5584_0000823
crossref_primary_10_1109_TMAG_2017_2702758
crossref_primary_10_1061__ASCE_HE_1943_5584_0001510
crossref_primary_10_1016_j_agwat_2010_01_013
Cites_doi 10.1029/WR018i004p00773
10.1029/95WR03528
10.1029/94WR02039
10.1029/97WR00366
10.1111/j.1745-6584.1999.tb01193.x
10.1029/97WR03605
10.1109/ICEC.1994.350037
10.1061/(ASCE)0733-9496(1999)125:2(76)
10.1002/j.1551-8833.1983.tb05177.x
10.1029/94WR02740
10.1061/(ASCE)0733-9496(2000)126:3(128)
10.1061/(ASCE)0733-9496(1995)121:2(171)
10.1029/WR020i004p00415
10.1029/91WR01468
10.1029/94WR00554
10.1029/93WR03511
10.1029/95RG00394
10.1109/3468.650319
ContentType Journal Article
Copyright 2002 Elsevier Science Ltd
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Ltd
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
7QH
7TG
7TV
7UA
KL.
7SU
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/S0309-1708(01)00020-3
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Water Resources Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
Environment Abstracts

Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9657
EndPage 65
ExternalDocumentID 308263510
13407360
10_1016_S0309_1708_01_00020_3
S0309170801000203
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7ST
C1K
SOI
7QH
7TG
7TV
7UA
KL.
7SU
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a484t-4a8b8bca1b6eac16bc1c1fcd828e173c962a90b5ab0414e14bad4616a24a14d13
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000173333400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0309-1708
IngestDate Thu Oct 02 07:04:54 EDT 2025
Tue Oct 07 09:45:43 EDT 2025
Tue Oct 07 09:36:28 EDT 2025
Tue Oct 07 09:17:26 EDT 2025
Mon Jul 21 09:16:00 EDT 2025
Tue Nov 18 22:01:32 EST 2025
Sat Nov 29 02:37:27 EST 2025
Fri Feb 23 02:33:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords algorithms
sensitivity analysis
plumes
ground water
pollution
contamination
pumping
remediation
hydraulic conductivity
aquifers
water quality
optimization
design
water resource management
wells
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a484t-4a8b8bca1b6eac16bc1c1fcd828e173c962a90b5ab0414e14bad4616a24a14d13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 14600409
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_48975425
proquest_miscellaneous_27214236
proquest_miscellaneous_16128342
proquest_miscellaneous_14600409
pascalfrancis_primary_13407360
crossref_primary_10_1016_S0309_1708_01_00020_3
crossref_citationtrail_10_1016_S0309_1708_01_00020_3
elsevier_sciencedirect_doi_10_1016_S0309_1708_01_00020_3
PublicationCentury 2000
PublicationDate 2002
2002-1-00
20020101
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Advances in water resources
PublicationYear 2002
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Horn J. The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations. PhD thesis, University of Illinois at Urbana Champaign, Urbana, Illinois, 1997
Freeze, Gorelick (BIB7) 1999; 37
Huang, Mayer (BIB16) 1997; 33
LaBolle, Fogg, Tompson (BIB17) 1996; 32
Maxwell RM. Understanding the effects of uncertainty and variability on groundwater-driven health risk assessment. PhD dissertation, University of California, Berkeley, CA, 1998
Maxwell, Pelmulder, Tompson, Kastenburg (BIB19) 1998; 34
Means RS. Environmental remediation cost data – assemblies. 6th annual ed. R.S. Means Co. and Talisman Partners, Englewood, CO, 2000
Wagner BJ. Recent advances in simulation-optimization groundwater management modeling. Rev. Geophys. Supplement, US Natl. Rep. Int. Union Geod. Geophys., 1995;33:1021–8
Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation (ICEC `94), Piscataway, NJ: IEEE Service Center; 1994. p. 82–7
Sawyer, Ahlfeld, King (BIB25) 1995; 31
Goldberg, Richardson (BIB9) 1987
Horn J, Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm. Technical Report IlliGAl Report 93005, University of Illinois at Urbana-Champaign, Urbana, IL, 1993
Ritzel, Eheart, Ranjithan (BIB24) 1994; 30
Goldberg (BIB8) 1989
Hand (BIB12) 2000
Chan Hilton, Culver (BIB1) 2000; 126
Fetter CW. Contaminant hydrogeology. 2nd. ed. Upper Saddle River, NJ: Prentice Hall; 1999
Richardson JT, Palmer MR, Liepins G. Hilliard M. Some guidelines for genetic algorithms with penalty functions. In: Proceedings of the Third International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufman; 1989. p. 191–7
McKinney, Lin (BIB21) 1994; 30
Cieniawski, Eheart, Ranjithan (BIB2) 1995; 31
Xiang, Sykes, Thomson (BIB27) 1995; 121
Dougherty, Marryott (BIB4) 1991; 27
Fonseca, Fleming (BIB6) 1998; 28
Gorelick, Voss, Gill, Murray, Saunders, Wright (BIB11) 1984; 20
Randke, Snoeyink (BIB23) 1983; 75
Das, Datta (BIB3) 1999; 125
Gorelick (BIB10) 1982; 18
Cieniawski (10.1016/S0309-1708(01)00020-3_BIB2) 1995; 31
Hand (10.1016/S0309-1708(01)00020-3_BIB12) 2000
Chan Hilton (10.1016/S0309-1708(01)00020-3_BIB1) 2000; 126
10.1016/S0309-1708(01)00020-3_BIB13
10.1016/S0309-1708(01)00020-3_BIB14
10.1016/S0309-1708(01)00020-3_BIB15
10.1016/S0309-1708(01)00020-3_BIB18
Gorelick (10.1016/S0309-1708(01)00020-3_BIB10) 1982; 18
McKinney (10.1016/S0309-1708(01)00020-3_BIB21) 1994; 30
10.1016/S0309-1708(01)00020-3_BIB5
Das (10.1016/S0309-1708(01)00020-3_BIB3) 1999; 125
Huang (10.1016/S0309-1708(01)00020-3_BIB16) 1997; 33
Dougherty (10.1016/S0309-1708(01)00020-3_BIB4) 1991; 27
Maxwell (10.1016/S0309-1708(01)00020-3_BIB19) 1998; 34
10.1016/S0309-1708(01)00020-3_BIB20
Ritzel (10.1016/S0309-1708(01)00020-3_BIB24) 1994; 30
10.1016/S0309-1708(01)00020-3_BIB22
LaBolle (10.1016/S0309-1708(01)00020-3_BIB17) 1996; 32
Xiang (10.1016/S0309-1708(01)00020-3_BIB27) 1995; 121
Goldberg (10.1016/S0309-1708(01)00020-3_BIB8) 1989
10.1016/S0309-1708(01)00020-3_BIB26
Goldberg (10.1016/S0309-1708(01)00020-3_BIB9) 1987
Gorelick (10.1016/S0309-1708(01)00020-3_BIB11) 1984; 20
Freeze (10.1016/S0309-1708(01)00020-3_BIB7) 1999; 37
Randke (10.1016/S0309-1708(01)00020-3_BIB23) 1983; 75
Fonseca (10.1016/S0309-1708(01)00020-3_BIB6) 1998; 28
Sawyer (10.1016/S0309-1708(01)00020-3_BIB25) 1995; 31
References_xml – start-page: 41
  year: 1987
  end-page: 49
  ident: BIB9
  article-title: Genetic algorithms with sharing for multimodal function optimization
  publication-title: Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms
– volume: 27
  start-page: 2493
  year: 1991
  end-page: 2508
  ident: BIB4
  article-title: Optimal groundwater management, 1, simulated annealing
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 1589
  year: 1994
  end-page: 1603
  ident: BIB24
  article-title: Using genetic algorithms to solve a multiple objective groundwater pollution containment problem
  publication-title: Water Resour. Res.
– volume: 126
  start-page: 128
  year: 2000
  end-page: 137
  ident: BIB1
  article-title: Constraint handling for genetic algorithms in optimal remediation design
  publication-title: J. Water Resour. Plan. Manage.
– volume: 28
  start-page: 26
  year: 1998
  end-page: 37
  ident: BIB6
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms I: a unified formulation
  publication-title: IEEE Trans. Systems, Man, Cybernetics, Part A: Systems Humans
– reference: Means RS. Environmental remediation cost data – assemblies. 6th annual ed. R.S. Means Co. and Talisman Partners, Englewood, CO, 2000
– volume: 18
  start-page: 773
  year: 1982
  end-page: 781
  ident: BIB10
  article-title: A model for managing sources of groundwater pollution
  publication-title: Water Resour. Res.
– volume: 75
  start-page: 406
  year: 1983
  end-page: 418
  ident: BIB23
  article-title: Evaluating GAC adsorptive capacity
  publication-title: J. Amer. Water Works Assoc.
– reference: Horn J, Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm. Technical Report IlliGAl Report 93005, University of Illinois at Urbana-Champaign, Urbana, IL, 1993
– volume: 37
  start-page: 934
  year: 1999
  end-page: 954
  ident: BIB7
  article-title: Convergence of stochastic optimization and decision analysis in the engineering design of aquifer remediation
  publication-title: Ground Water
– volume: 34
  start-page: 833
  year: 1998
  end-page: 847
  ident: BIB19
  article-title: On the development of a new methodology for groundwater driven health risk assessment
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 1373
  year: 1995
  end-page: 1385
  ident: BIB25
  article-title: Groundwater remediation design using a three-dimensional simulation model and mixed-integer programming
  publication-title: Water Resour. Res.
– year: 2000
  ident: BIB12
  publication-title: Personal communication, Department of Civil and Environmental Engineering
– reference: Richardson JT, Palmer MR, Liepins G. Hilliard M. Some guidelines for genetic algorithms with penalty functions. In: Proceedings of the Third International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufman; 1989. p. 191–7
– volume: 31
  start-page: 399
  year: 1995
  end-page: 409
  ident: BIB2
  article-title: Using genetic algorithms to solve a multiobjective groundwater monitoring problem
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 1001
  year: 1997
  end-page: 1012
  ident: BIB16
  article-title: Pump-and-treat optimization using well locations and pumping rates as decision variables
  publication-title: Water Resour. Res.
– year: 1989
  ident: BIB8
  publication-title: Genetic algorithms in search, optimization, and machine learning
– reference: Horn J. The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations. PhD thesis, University of Illinois at Urbana Champaign, Urbana, Illinois, 1997
– volume: 121
  start-page: 171
  year: 1995
  end-page: 181
  ident: BIB27
  article-title: Alternative formulations for optimal groundwater remediation design
  publication-title: J. Water Resour. Plan. Manage.
– reference: Maxwell RM. Understanding the effects of uncertainty and variability on groundwater-driven health risk assessment. PhD dissertation, University of California, Berkeley, CA, 1998
– reference: Fetter CW. Contaminant hydrogeology. 2nd. ed. Upper Saddle River, NJ: Prentice Hall; 1999
– reference: Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation (ICEC `94), Piscataway, NJ: IEEE Service Center; 1994. p. 82–7
– reference: Wagner BJ. Recent advances in simulation-optimization groundwater management modeling. Rev. Geophys. Supplement, US Natl. Rep. Int. Union Geod. Geophys., 1995;33:1021–8
– volume: 20
  start-page: 415
  year: 1984
  end-page: 427
  ident: BIB11
  article-title: Aquifer reclamation design: the use of contaminant transport coupled with non-linear programming
  publication-title: Water Resour. Res.
– volume: 125
  start-page: 76
  year: 1999
  end-page: 87
  ident: BIB3
  article-title: Development of multiobjective management models for coastal aquifers
  publication-title: J. Water Resour. Plan. Manage.
– volume: 30
  start-page: 1897
  year: 1994
  end-page: 1906
  ident: BIB21
  article-title: Genetic algorithm solutions of groundwater management models
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 583
  year: 1996
  end-page: 593
  ident: BIB17
  article-title: Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods
  publication-title: Water Resour. Res.
– start-page: 41
  year: 1987
  ident: 10.1016/S0309-1708(01)00020-3_BIB9
  article-title: Genetic algorithms with sharing for multimodal function optimization
– year: 1989
  ident: 10.1016/S0309-1708(01)00020-3_BIB8
– ident: 10.1016/S0309-1708(01)00020-3_BIB20
– ident: 10.1016/S0309-1708(01)00020-3_BIB18
– ident: 10.1016/S0309-1708(01)00020-3_BIB22
– volume: 18
  start-page: 773
  issue: 4
  year: 1982
  ident: 10.1016/S0309-1708(01)00020-3_BIB10
  article-title: A model for managing sources of groundwater pollution
  publication-title: Water Resour. Res.
  doi: 10.1029/WR018i004p00773
– volume: 32
  start-page: 583
  issue: 3
  year: 1996
  ident: 10.1016/S0309-1708(01)00020-3_BIB17
  article-title: Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR03528
– volume: 31
  start-page: 399
  issue: 2
  year: 1995
  ident: 10.1016/S0309-1708(01)00020-3_BIB2
  article-title: Using genetic algorithms to solve a multiobjective groundwater monitoring problem
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR02039
– volume: 33
  start-page: 1001
  issue: 5
  year: 1997
  ident: 10.1016/S0309-1708(01)00020-3_BIB16
  article-title: Pump-and-treat optimization using well locations and pumping rates as decision variables
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR00366
– ident: 10.1016/S0309-1708(01)00020-3_BIB14
– volume: 37
  start-page: 934
  issue: 6
  year: 1999
  ident: 10.1016/S0309-1708(01)00020-3_BIB7
  article-title: Convergence of stochastic optimization and decision analysis in the engineering design of aquifer remediation
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1999.tb01193.x
– year: 2000
  ident: 10.1016/S0309-1708(01)00020-3_BIB12
– volume: 34
  start-page: 833
  issue: 4
  year: 1998
  ident: 10.1016/S0309-1708(01)00020-3_BIB19
  article-title: On the development of a new methodology for groundwater driven health risk assessment
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR03605
– ident: 10.1016/S0309-1708(01)00020-3_BIB13
  doi: 10.1109/ICEC.1994.350037
– volume: 125
  start-page: 76
  issue: 2
  year: 1999
  ident: 10.1016/S0309-1708(01)00020-3_BIB3
  article-title: Development of multiobjective management models for coastal aquifers
  publication-title: J. Water Resour. Plan. Manage.
  doi: 10.1061/(ASCE)0733-9496(1999)125:2(76)
– volume: 75
  start-page: 406
  issue: 8
  year: 1983
  ident: 10.1016/S0309-1708(01)00020-3_BIB23
  article-title: Evaluating GAC adsorptive capacity
  publication-title: J. Amer. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1983.tb05177.x
– volume: 31
  start-page: 1373
  issue: 5
  year: 1995
  ident: 10.1016/S0309-1708(01)00020-3_BIB25
  article-title: Groundwater remediation design using a three-dimensional simulation model and mixed-integer programming
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR02740
– ident: 10.1016/S0309-1708(01)00020-3_BIB5
– volume: 126
  start-page: 128
  issue: 3
  year: 2000
  ident: 10.1016/S0309-1708(01)00020-3_BIB1
  article-title: Constraint handling for genetic algorithms in optimal remediation design
  publication-title: J. Water Resour. Plan. Manage.
  doi: 10.1061/(ASCE)0733-9496(2000)126:3(128)
– volume: 121
  start-page: 171
  issue: 2
  year: 1995
  ident: 10.1016/S0309-1708(01)00020-3_BIB27
  article-title: Alternative formulations for optimal groundwater remediation design
  publication-title: J. Water Resour. Plan. Manage.
  doi: 10.1061/(ASCE)0733-9496(1995)121:2(171)
– volume: 20
  start-page: 415
  year: 1984
  ident: 10.1016/S0309-1708(01)00020-3_BIB11
  article-title: Aquifer reclamation design: the use of contaminant transport coupled with non-linear programming
  publication-title: Water Resour. Res.
  doi: 10.1029/WR020i004p00415
– volume: 27
  start-page: 2493
  issue: 10
  year: 1991
  ident: 10.1016/S0309-1708(01)00020-3_BIB4
  article-title: Optimal groundwater management, 1, simulated annealing
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01468
– volume: 30
  start-page: 1897
  issue: 6
  year: 1994
  ident: 10.1016/S0309-1708(01)00020-3_BIB21
  article-title: Genetic algorithm solutions of groundwater management models
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR00554
– volume: 30
  start-page: 1589
  issue: 5
  year: 1994
  ident: 10.1016/S0309-1708(01)00020-3_BIB24
  article-title: Using genetic algorithms to solve a multiple objective groundwater pollution containment problem
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR03511
– ident: 10.1016/S0309-1708(01)00020-3_BIB26
  doi: 10.1029/95RG00394
– ident: 10.1016/S0309-1708(01)00020-3_BIB15
– volume: 28
  start-page: 26
  issue: 1
  year: 1998
  ident: 10.1016/S0309-1708(01)00020-3_BIB6
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms I: a unified formulation
  publication-title: IEEE Trans. Systems, Man, Cybernetics, Part A: Systems Humans
  doi: 10.1109/3468.650319
SSID ssj0008472
Score 2.0518255
Snippet A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The...
Researchers applied a multiobjective optimization algorithm to a problem in groundwater quality management involving remediation via pump-and-treat processes....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 51
SubjectTerms algorithms
aquifers
Computation
Computational efficiency
Contaminants
Cost engineering
Design engineering
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Formulations
Genetic algorithms
groundwater contamination
Groundwater remediation
Hydrogeology
Hydrology. Hydrogeology
Mathematical models
Pareto optimality
pollution control
Pollution, environment geology
Pumping rates
Remediation
trichloroethylene
water purification
wells
Title Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA)
URI https://dx.doi.org/10.1016/S0309-1708(01)00020-3
https://www.proquest.com/docview/14600409
https://www.proquest.com/docview/16128342
https://www.proquest.com/docview/27214236
https://www.proquest.com/docview/48975425
Volume 25
WOSCitedRecordID wos000173333400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9657
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008472
  issn: 0309-1708
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMIIVYRljIHDq2QweMZ22NuUVWgINKqLVI5WeMZG4pSO0rS0gN_h__Jm8VLUoXAgYsVWTN-kd_nt8zbEHoRx0mQZ0J4LKPSA1AQT3fR8rKQ8zCSkSpCZYZNxKMRPzlJDnq9X3UtzMU4Lkt-eZlM_iur4R4wW5fO_gO7m4fCDfgNTIcrsB2uf8V4U1LrVdl3K8peViAUznQoxuRqaONQV3KU6ofQ_RH18aCy7HFdnU2OXCeuXWcRlDppVIHJOc3BXgXyuen1Ov5aTU_n387MWJ-Dd8P6aKHubGtzDEzWbU3RBgxaY_5wb-fj0f5ouXTo0_CLTdPQRTgN_PYPR50KtIVDi9a5beponOjqiDsd6yGxz7uy2RZFL2DQClrXpdaqbDtt4ooysOcSR82D4T3osQSJCb96tNWAddR_STE26YqEgttLI_8a2gjiMPH7aGO4t3vyoVH5oOKbcJWm1JaKvW7Jb_lk25FeZQTdmogZfJqFnalyxTwwNs_xHXTbOSt4aEF2F_Xy8h662WlheR_9XIIbdnDDFm64KnAHbrgDN-zg9gZ3wKbXA9iwBRu2YMMObLgBG97SUNt-gD6_3T3eee-5iR6eYJzNPSZ4xjMpSBaBwidRJokkhVTg9uckpjKJApH4WSgynxGWE5YJxSISiYAJwhShD1G_rMr8EcIFI1ySUDHBKOOFL2LKlJ-rMJEBbFYDxOpXnErX7l5PXRmnbV4jcCbVnEl9khrOpHSAXjXbJrbfy7oNvOZf6oxWa4ymAMN1WzcX-N0SdHgboOc1AFKQ-jqUJ8q8Op9ph12r3-QPK8B14ZQFq1cEsW63SKPVKxhP9IDs8PG6P_oE3TBTkszR5FPUn0_P82fouryYn86mm-5r-Q01Aewy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimal+design+of+groundwater+remediation+systems%3A+application+of+the+niched+Pareto+genetic+algorithm+%28NPGA%29&rft.jtitle=Advances+in+water+resources&rft.au=ERICKSON%2C+Mark&rft.au=MAYER%2C+Alex&rft.au=HORN%2C+Jeffrey&rft.date=2002&rft.pub=Elsevier+Science&rft.issn=0309-1708&rft.volume=25&rft.issue=1&rft.spage=51&rft.epage=65&rft_id=info:doi/10.1016%2FS0309-1708%2801%2900020-3&rft.externalDBID=n%2Fa&rft.externalDocID=13407360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon