Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images
State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m) optical aerial imagery acquired by a fixed-wing aircraft to automatically characterize ice-wedge polygons (IWPs) in the Arctic tundra. However,...
Uložené v:
| Vydané v: | Remote sensing (Basel, Switzerland) Ročník 12; číslo 7; s. 1085 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
28.03.2020
|
| Predmet: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m) optical aerial imagery acquired by a fixed-wing aircraft to automatically characterize ice-wedge polygons (IWPs) in the Arctic tundra. However, any mapping of IWPs at regional to continental scales requires images acquired on different sensor platforms (particularly satellite) and a refined understanding of the performance stability of the method across sensor platforms through reliable evaluation assessments. In this study, we examined the transferability of a deep learning Mask Region-Based Convolutional Neural Network (R-CNN) model for mapping IWPs in satellite remote sensing imagery (~0.5 m) covering 272 km2 and unmanned aerial vehicle (UAV) (0.02 m) imagery covering 0.32 km2. Multi-spectral images were obtained from the WorldView-2 satellite sensor and pan-sharpened to ~0.5 m, and a 20 mp CMOS sensor camera onboard a UAV, respectively. The training dataset included 25,489 and 6022 manually delineated IWPs from satellite and fixed-wing aircraft aerial imagery near the Arctic Coastal Plain, northern Alaska. Quantitative assessments showed that individual IWPs were correctly detected at up to 72% and 70%, and delineated at up to 73% and 68% F1 score accuracy levels for satellite and UAV images, respectively. Expert-based qualitative assessments showed that IWPs were correctly detected at good (40–60%) and excellent (80–100%) accuracy levels for satellite and UAV images, respectively, and delineated at excellent (80–100%) level for both images. We found that (1) regardless of spatial resolution and spectral bands, the deep learning Mask R-CNN model effectively mapped IWPs in both remote sensing satellite and UAV images; (2) the model achieved a better accuracy in detection with finer image resolution, such as UAV imagery, yet a better accuracy in delineation with coarser image resolution, such as satellite imagery; (3) increasing the number of training data with different resolutions between the training and actual application imagery does not necessarily result in better performance of the Mask R-CNN in IWPs mapping; (4) and overall, the model underestimates the total number of IWPs particularly in terms of disjoint/incomplete IWPs. |
|---|---|
| AbstractList | State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m) optical aerial imagery acquired by a fixed-wing aircraft to automatically characterize ice-wedge polygons (IWPs) in the Arctic tundra. However, any mapping of IWPs at regional to continental scales requires images acquired on different sensor platforms (particularly satellite) and a refined understanding of the performance stability of the method across sensor platforms through reliable evaluation assessments. In this study, we examined the transferability of a deep learning Mask Region-Based Convolutional Neural Network (R-CNN) model for mapping IWPs in satellite remote sensing imagery (~0.5 m) covering 272 km² and unmanned aerial vehicle (UAV) (0.02 m) imagery covering 0.32 km². Multi-spectral images were obtained from the WorldView-2 satellite sensor and pan-sharpened to ~0.5 m, and a 20 mp CMOS sensor camera onboard a UAV, respectively. The training dataset included 25,489 and 6022 manually delineated IWPs from satellite and fixed-wing aircraft aerial imagery near the Arctic Coastal Plain, northern Alaska. Quantitative assessments showed that individual IWPs were correctly detected at up to 72% and 70%, and delineated at up to 73% and 68% F1 score accuracy levels for satellite and UAV images, respectively. Expert-based qualitative assessments showed that IWPs were correctly detected at good (40–60%) and excellent (80–100%) accuracy levels for satellite and UAV images, respectively, and delineated at excellent (80–100%) level for both images. We found that (1) regardless of spatial resolution and spectral bands, the deep learning Mask R-CNN model effectively mapped IWPs in both remote sensing satellite and UAV images; (2) the model achieved a better accuracy in detection with finer image resolution, such as UAV imagery, yet a better accuracy in delineation with coarser image resolution, such as satellite imagery; (3) increasing the number of training data with different resolutions between the training and actual application imagery does not necessarily result in better performance of the Mask R-CNN in IWPs mapping; (4) and overall, the model underestimates the total number of IWPs particularly in terms of disjoint/incomplete IWPs. State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m) optical aerial imagery acquired by a fixed-wing aircraft to automatically characterize ice-wedge polygons (IWPs) in the Arctic tundra. However, any mapping of IWPs at regional to continental scales requires images acquired on different sensor platforms (particularly satellite) and a refined understanding of the performance stability of the method across sensor platforms through reliable evaluation assessments. In this study, we examined the transferability of a deep learning Mask Region-Based Convolutional Neural Network (R-CNN) model for mapping IWPs in satellite remote sensing imagery (~0.5 m) covering 272 km2 and unmanned aerial vehicle (UAV) (0.02 m) imagery covering 0.32 km2. Multi-spectral images were obtained from the WorldView-2 satellite sensor and pan-sharpened to ~0.5 m, and a 20 mp CMOS sensor camera onboard a UAV, respectively. The training dataset included 25,489 and 6022 manually delineated IWPs from satellite and fixed-wing aircraft aerial imagery near the Arctic Coastal Plain, northern Alaska. Quantitative assessments showed that individual IWPs were correctly detected at up to 72% and 70%, and delineated at up to 73% and 68% F1 score accuracy levels for satellite and UAV images, respectively. Expert-based qualitative assessments showed that IWPs were correctly detected at good (40–60%) and excellent (80–100%) accuracy levels for satellite and UAV images, respectively, and delineated at excellent (80–100%) level for both images. We found that (1) regardless of spatial resolution and spectral bands, the deep learning Mask R-CNN model effectively mapped IWPs in both remote sensing satellite and UAV images; (2) the model achieved a better accuracy in detection with finer image resolution, such as UAV imagery, yet a better accuracy in delineation with coarser image resolution, such as satellite imagery; (3) increasing the number of training data with different resolutions between the training and actual application imagery does not necessarily result in better performance of the Mask R-CNN in IWPs mapping; (4) and overall, the model underestimates the total number of IWPs particularly in terms of disjoint/incomplete IWPs. |
| Author | Zhang, Weixing Jones, Benjamin M. Epstein, Howard E. Kent, Kelcy Liljedahl, Anna K. Kanevskiy, Mikhail Jorgenson, M. Torre |
| Author_xml | – sequence: 1 givenname: Weixing orcidid: 0000-0001-8253-3932 surname: Zhang fullname: Zhang, Weixing – sequence: 2 givenname: Anna K. surname: Liljedahl fullname: Liljedahl, Anna K. – sequence: 3 givenname: Mikhail surname: Kanevskiy fullname: Kanevskiy, Mikhail – sequence: 4 givenname: Howard E. surname: Epstein fullname: Epstein, Howard E. – sequence: 5 givenname: Benjamin M. orcidid: 0000-0002-1517-4711 surname: Jones fullname: Jones, Benjamin M. – sequence: 6 givenname: M. Torre surname: Jorgenson fullname: Jorgenson, M. Torre – sequence: 7 givenname: Kelcy surname: Kent fullname: Kent, Kelcy |
| BookMark | eNptkU1vEzEQhleoSJTSC7_AEheEtODPrPcYhY9GSgsqLRytye5467Cxg-095Efwn-s0CFCFLzPyPO87Hs_z6sQHj1X1ktG3QrT0XUyM04ZRrZ5UpyXjteQtP_knf1adp7Sh5QjBWipPq183EXyyGGHtRpf3JFiS75C8R9yRFUL0zg_kEtIPcl0vrq7IZehxJDZEMp9y2ELGvpR3uwNWtMsO6-_YD0i-hHE_BJ-I8-TCDXf1NaYwTtkFT74W2VjaIQHfk9v5N7LcwoDpRfXUwpjw_Hc8q24_frhZXNSrz5-Wi_mqBqlFrgUw2fOG2hap7cFqa7sZqLaxnFPRINdrCzNq1VowKWQjWtVJLa2WGqlslDirlkffPsDG7KLbQtybAM48XIQ4GIjZdSMa4IqyvrSl2kraztai50ojMM1E18iD1-uj1y6GnxOmbLYudWU88BimZHirlWqZ0Lygrx6hmzBFXyY1XGjFGJeiKdSbI9XFkFJE--eBjJrDos3fRReYPoI7l-HwyTmCG_8nuQdF1Kn1 |
| CitedBy_id | crossref_primary_10_1029_2023EA002845 crossref_primary_10_3390_jimaging6120137 crossref_primary_10_1016_j_jag_2023_103569 crossref_primary_10_1109_COMST_2023_3312221 crossref_primary_10_3390_rs14153656 crossref_primary_10_1186_s40645_024_00610_5 crossref_primary_10_3390_rs14030624 crossref_primary_10_3390_rs13020197 crossref_primary_10_3390_rs13061217 crossref_primary_10_3390_rs14133046 crossref_primary_10_3390_rs13010071 crossref_primary_10_3390_rs13081509 crossref_primary_10_1016_j_icarus_2023_115722 crossref_primary_10_1080_01431161_2023_2275320 crossref_primary_10_1016_j_rse_2024_114052 crossref_primary_10_3390_rs16244670 crossref_primary_10_1088_2752_664X_ad9f6c crossref_primary_10_1139_dsa_2021_0045 crossref_primary_10_1016_j_ophoto_2022_100024 crossref_primary_10_1016_j_compgeo_2024_106549 crossref_primary_10_1016_j_rse_2024_114299 crossref_primary_10_3390_rs13061184 crossref_primary_10_1109_ACCESS_2021_3111706 crossref_primary_10_1109_TGRS_2022_3222223 crossref_primary_10_3390_rs13224618 crossref_primary_10_3390_rs13214294 crossref_primary_10_1016_j_scitotenv_2022_155886 crossref_primary_10_3390_rs13132450 crossref_primary_10_1016_j_geomorph_2023_108615 crossref_primary_10_3390_rs13132591 crossref_primary_10_1002_ppp_2123 crossref_primary_10_3390_jimaging6090097 crossref_primary_10_3390_rs13245052 crossref_primary_10_3390_rs14122761 crossref_primary_10_1029_2024JH000550 crossref_primary_10_3390_rs13061070 crossref_primary_10_3390_rs17061040 crossref_primary_10_1109_MGRS_2023_3312347 |
| Cites_doi | 10.1029/2018GL081584 10.1109/CVPR.2019.00657 10.1038/srep15865 10.1109/ICCV.2019.00925 10.1109/TKDE.2009.191 10.1029/2005GL024960 10.3390/rs10091487 10.1007/s10021-017-0165-5 10.1109/ICCV.2017.322 10.1038/s41467-018-07663-3 10.1080/2150704X.2015.1072288 10.1109/CVPR.2019.00511 10.3390/rs9070640 10.1038/nature14539 10.1016/j.rse.2019.111534 10.5194/tc-13-237-2019 10.1080/07038992.2017.1370367 10.3390/rs10060954 10.1109/CVPR.2018.00913 10.1016/j.rse.2018.11.034 10.1111/j.1467-8306.1972.tb00839.x 10.1111/gcb.12500 10.1109/CVPR.2018.00644 10.1109/CVPR.2017.472 10.1002/2015JF003602 10.1007/978-3-319-10602-1_48 10.1016/j.rse.2017.06.031 10.1145/3343031.3350535 10.1038/ngeo2674 10.1109/CVPR.2016.343 10.1130/SPE70-p1 10.1016/j.coldregions.2012.08.002 10.1086/622281 10.1080/2150704X.2015.1088668 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs12071085 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_a2501d48308f4096b3d258ea1813c745 10_3390_rs12071085 |
| GeographicLocations | United States--US Alaska Arctic region |
| GeographicLocations_xml | – name: Alaska – name: Arctic region – name: United States--US |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-a483t-3a14d270f9e0fdaf8ffc6a597f22037e28bfa60f5b314347395c484f848e04753 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537709600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:42:23 EDT 2025 Thu Oct 02 10:55:57 EDT 2025 Mon Oct 20 02:52:51 EDT 2025 Tue Nov 18 21:36:24 EST 2025 Sat Nov 29 07:18:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a483t-3a14d270f9e0fdaf8ffc6a597f22037e28bfa60f5b314347395c484f848e04753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8253-3932 0000-0002-1517-4711 |
| OpenAccessLink | https://www.proquest.com/docview/2385112437?pq-origsite=%requestingapplication% |
| PQID | 2385112437 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a2501d48308f4096b3d258ea1813c745 proquest_miscellaneous_2985591382 proquest_journals_2385112437 crossref_primary_10_3390_rs12071085 crossref_citationtrail_10_3390_rs12071085 |
| PublicationCentury | 2000 |
| PublicationDate | 20200328 |
| PublicationDateYYYYMMDD | 2020-03-28 |
| PublicationDate_xml | – month: 03 year: 2020 text: 20200328 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kanevskiy (ref_8) 2013; 85 Mackay (ref_7) 1972; 62 Diao (ref_24) 2015; 6 ref_36 ref_34 ref_11 Gorelick (ref_16) 2017; 202 Lara (ref_19) 2019; 221 ref_31 ref_30 Jorgenson (ref_3) 2015; 120 Liljedahl (ref_10) 2016; 9 Cooley (ref_20) 2019; 46 ref_17 ref_39 ref_38 ref_15 ref_37 Huang (ref_32) 2020; 237 Guan (ref_25) 2015; 6 Raynolds (ref_14) 2014; 20 Chen (ref_33) 2017; 43 Frost (ref_12) 2018; 21 ref_21 Fleet (ref_28) 2014; Volume 8693 Abolt (ref_18) 2019; 13 ref_1 LeCun (ref_23) 2015; 521 ref_2 ref_29 Leffingwell (ref_4) 1915; 23 ref_27 ref_26 ref_9 Nitze (ref_22) 2018; 9 Jones (ref_13) 2015; 5 ref_5 Pan (ref_35) 2010; 22 ref_6 |
| References_xml | – volume: 46 start-page: 2111 year: 2019 ident: ref_20 article-title: Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL081584 – ident: ref_37 doi: 10.1109/CVPR.2019.00657 – volume: 5 start-page: 15865 year: 2015 ident: ref_13 article-title: Recent Arctic tundra fire initiates widespread thermokarst development publication-title: Sci. Rep. doi: 10.1038/srep15865 – ident: ref_27 doi: 10.1109/ICCV.2019.00925 – volume: 22 start-page: 1345 year: 2010 ident: ref_35 article-title: A Survey on Transfer Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: ref_9 doi: 10.1029/2005GL024960 – ident: ref_34 – ident: ref_17 doi: 10.3390/rs10091487 – volume: 21 start-page: 507 year: 2018 ident: ref_12 article-title: Seasonal and Long-Term Changes to Active-Layer Temperatures after Tall Shrubland Expansion and Succession in Arctic Tundra publication-title: Ecosystems doi: 10.1007/s10021-017-0165-5 – ident: ref_26 doi: 10.1109/ICCV.2017.322 – volume: 9 start-page: 5423 year: 2018 ident: ref_22 article-title: Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic publication-title: Nat. Commun. doi: 10.1038/s41467-018-07663-3 – volume: 6 start-page: 745 year: 2015 ident: ref_24 article-title: Object recognition in remote sensing images using sparse deep belief networks publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2015.1072288 – ident: ref_39 doi: 10.1109/CVPR.2019.00511 – ident: ref_21 doi: 10.3390/rs9070640 – volume: 521 start-page: 436 year: 2015 ident: ref_23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 237 start-page: 111534 year: 2020 ident: ref_32 article-title: Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111534 – ident: ref_1 – volume: 13 start-page: 237 year: 2019 ident: ref_18 article-title: Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models publication-title: Cryosphere doi: 10.5194/tc-13-237-2019 – volume: 43 start-page: 513 year: 2017 ident: ref_33 article-title: Mapping Arctic Coastal Ecosystems with High Resolution Optical Satellite Imagery Using a Hybrid Classification Approach publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2017.1370367 – ident: ref_11 doi: 10.3390/rs10060954 – ident: ref_6 – ident: ref_36 doi: 10.1109/CVPR.2018.00913 – volume: 221 start-page: 462 year: 2019 ident: ref_19 article-title: Automated detection of thermoerosion in permafrost ecosystems using temporally dense Landsat image stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.034 – ident: ref_2 – volume: 62 start-page: 1 year: 1972 ident: ref_7 article-title: The World of Underground Ice publication-title: Ann. Assoc. Am. Geogr. doi: 10.1111/j.1467-8306.1972.tb00839.x – volume: 20 start-page: 1211 year: 2014 ident: ref_14 article-title: Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12500 – ident: ref_38 doi: 10.1109/CVPR.2018.00644 – ident: ref_30 doi: 10.1109/CVPR.2017.472 – volume: 120 start-page: 2280 year: 2015 ident: ref_3 article-title: Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/2015JF003602 – volume: Volume 8693 start-page: 740 year: 2014 ident: ref_28 article-title: Microsoft COCO: Common Objects in Context publication-title: Computer Vision—ECCV 2014 doi: 10.1007/978-3-319-10602-1_48 – volume: 202 start-page: 18 year: 2017 ident: ref_16 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – ident: ref_31 doi: 10.1145/3343031.3350535 – volume: 9 start-page: 312 year: 2016 ident: ref_10 article-title: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology publication-title: Nat. Geosci. doi: 10.1038/ngeo2674 – ident: ref_15 – ident: ref_29 doi: 10.1109/CVPR.2016.343 – ident: ref_5 doi: 10.1130/SPE70-p1 – volume: 85 start-page: 56 year: 2013 ident: ref_8 article-title: Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2012.08.002 – volume: 23 start-page: 635 year: 1915 ident: ref_4 article-title: Ground-Ice Wedges: The Dominant Form of Ground-Ice on the North Coast of Alaska publication-title: J. Geol. doi: 10.1086/622281 – volume: 6 start-page: 864 year: 2015 ident: ref_25 article-title: Deep learning-based tree classification using mobile LiDAR data publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2015.1088668 |
| SSID | ssj0000331904 |
| Score | 2.4369185 |
| Snippet | State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m)... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1085 |
| SubjectTerms | Accuracy Aircraft Aircraft configurations Aircraft icing Alaska Annotations Arctic Arctic region Artificial neural networks Assessments Automation cameras CMOS Coastal plains data collection Datasets Deep learning Fixed wings High resolution ice-wedge polygons Image acquisition Image detection Image processing Image resolution Machine learning Mapping Mask R-CNN Model accuracy Neural networks Permafrost Polygons Remote sensing Satellite imagery Satellites Sensors Spatial discrimination Spatial resolution Spectral bands Stability analysis Studies Training Tundra UAV Unmanned aerial vehicles Wedges WorldView-2 |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQhQQXVL7EQkFGcOFgNWs7sXNcChU9sKqAQm-RY4-3FUtSbbKV9kfwn5lx0mUlkLhwjSeS5ZnxvGdbbxh7bV2IHnLMNETfQhvvMKVcEFhJnC19KL2JqdmEmc_t-Xl5utPqi96EDfLAw8IdOqzR06CtymxELlLUKsjcgsPKpLzRSb0UUc8OmUp7sMLQyvSgR6qQ1x-uuqmkckpNk3cqUBLq_2MfTsXleJ_dG1Ehnw2zuc9uQfOA3RkblF9sHrKfqaZEWA2y2hveRo7Qjb8DuOKjRuqCf3Tdd_5JHM3nnHqcLTkiUj5b9y3CUgg4TGIMC_r3xIP4Rkdp_LRdbhYYevyy4fToQ9CB_hCO_LNLep09cNcEfjb7yk9-4P7TPWJnx--_HH0QYycF4XDleqHcVAdpslhCFoOLNkZfOOQSUcpMGZC2jq7IYl4rxE-aLu-8tjpabSHTyGges72mbeAJ49qrvIS6ts4qXShf5mDyHIrMOiO9ggl7c7O6lR9lxqnbxbJCukGeqH57YsJebW2vBnGNv1q9JSdtLUgQO33AMKnGMKn-FSYTdnDj4mrM0q5CuEJ4UyszYS-3w5hfdGniGmjXaFNaJF2k1Pj0f8zjGbsribFnSkh7wPb61Rqes9v-ur_sVi9SEP8CfHT0NQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images |
| URI | https://www.proquest.com/docview/2385112437 https://www.proquest.com/docview/2985591382 https://doaj.org/article/a2501d48308f4096b3d258ea1813c745 |
| Volume | 12 |
| WOSCitedRecordID | wos000537709600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagiwQX3ojCUhnBhYO1aewkzgl1l67oYaNol4WFS-T4UVaUpDQpUi_8A_4zM4nbRQJx4eJDPLESzYznm7H1DSEvpTJO2wg8DdA3E4lW4FLKMIgkSqbapDpxXbOJJMvkxUWa-4Jb469VbvfEbqM2tcYa-QGEFsQGgievl98Ydo3C01XfQuM62UOmMjEge4fTLD_dVVkCDiYWiJ6XlEN-f7BqxiGGVWye_Fsk6gj7_9iPuyBzfOd_P-8uue3hJZ309nCPXLPVfXLTdzr_vHlAfnbBydlVz8-9obWjgAHpG2uX1JOtzumJar7QU3aUZRSbpS0oQFs6Wbc14FtrYBpZHeb47kxb9gFrcjSvF5s52DC9rCjeHmF4MtDbNT1THfFna6mqDD2fvKezr7CRNQ_J-fH03dFb5lsyMCUkbxlXY2HCJHCpDZxRTjqnYwVJiQvDgCc2lKVTceCikgMQE3gKqIUUTgppAwGp0SMyqOrKPiZUaB6ltiylklzEXKeRTaLIxoFUSai5HZJXW_UU2vOVY9uMRQF5C6qyuFLlkLzYyS57lo6_Sh2ilncSyKzdPahX88I7aqEAE44N_GwgHeS-cclNGEmrAAlxnQhYZH9rAIV396a40v6QPN9Ng6Pi6YuqbL0GmVRC9oaUj0_-vcRTcivEpD7gLJT7ZNCu1vYZuaG_t5fNauQtfNQVD0Z4VfUMxx9TGPPoE8zns5P84y94dgrg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKVLZ8EYMFDACFiyiemIncRYIDS1Vo3aiEbTQroLj2EPFkAxJBjQfwa_wjdybxxQJxK4LtrFjKcm59x4_cg4hz6TKrDYeRBqwb0cEWkFIqcyBSqJkqLNQB7YxmwjiWJ6ehtMN8rP_FwaPVfY5sUnUWaFxjXwHSgtyA8GDV4uvDrpG4e5qb6HRwuLQrL7DlK16Ge3B933uuvtvjncPnM5VwFFC8trhaiQyN2A2NMxmykprta-AV1vXZTwwrkyt8pn1Ug5cQuBGlhZSWCmkYSJAlwhI-ZsCwC4HZHMaTaZn61UdxgHSTLQ6qJyHbKesRi6WcTRr_q3yNQYBf-T_pqjtX__fXscNcq2jz3Tc4v0m2TD5LbLVObl_Wt0mP5ria03Z6o-vaGEpcFy6Z8yCdmKyMzpR1Wf61tmNY4pmcHMK1J2Ol3UB_N1k0IyqFTO8N9LG-YBrjnRazFcziFF6nlM8HePgzkcbt_SdaoRNa0NVntGT8XsafYFEXd0hJ5fyNu6SQV7k5h6hQnMvNGkqleTC5zr0TOB5xmdSBa7mZkhe9HBIdKfHjrYg8wTmZQid5AI6Q_J03XfRqpD8tddrRNW6ByqHNxeKcpZ0iShRwHlHGTwskxbm9n7KMwCyUcD0uA4EDLLdAy7p0lmVXKBtSJ6smyER4e6Syk2xhD6hhNkpSlre__cQj8nWwfHkKDmK4sMH5KqLCxiMO67cJoO6XJqH5Ir-Vp9X5aMuuij5eNkI_gUdo2D1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLVGHQRseCMKAxgBCxZRXduJnQVCnZaKaqCqBgZmFxzH7oymJKVpQf0Ifoiv494k7SCB2M2CbexYSnLuvcePnEPIM20yb10IkQbsO5DKGggpkwVQSYyObRZb5SuzCTUe6-PjeLJDfm7-hcFjlZucWCXqrLC4Rt6B0oLcQArV8c2xiMlg-Gr-NUAHKdxp3dhp1BA5cOvvMH0rX44G8K2fcz58_aH_JmgcBgIjtVgGwnRlxhXzsWM-M157byMDHNtzzoRyXKfeRMyHqQBeIXFTy0otvZbaManQMQLS_66OFOMtsjvp7_cOtys8TAC8maw1UYWIWWdRdjmWdDRu_q0KVmYBf9SCqsANr__Pr-YGudbQatqr4-Am2XH5LXKlcXg_Wd8mP6qi7N2i1iVf08JT4L504NycNiKzU_rOlGf0MOiPxxRN4mYUKD3trZYF8HqXQTOqWUzx3pF1wSdci6STYraeQuzS05ziqZkAd0TqeKbvTSV4unTU5Bk96n2koy-QwMs75OhC3sZd0sqL3N0jVFoRxi5NtdFCRsLGoVNh6CKmjeJWuDZ5sYFGYhuddrQLmSUwX0MYJecwapOn277zWp3kr732EWHbHqgoXl0oFtOkSVCJAS7czeBhmfYw549SkfFQOwMMUFglYZC9DfiSJs2VyTny2uTJthkSFO46mdwVK-gTa5i1otTl_X8P8ZhcBtgmb0fjgwfkKsd1DSYCrvdIa7lYuYfkkv22PC0Xj5pAo-TzRQP4FyreaWU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferability+of+the+Deep+Learning+Mask+R-CNN+Model+for+Automated+Mapping+of+Ice-Wedge+Polygons+in+High-Resolution+Satellite+and+UAV+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Weixing&rft.au=Liljedahl%2C+Anna+K&rft.au=Kanevskiy%2C+Mikhail&rft.au=Epstein%2C+Howard+E&rft.date=2020-03-28&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=7&rft.spage=1085&rft_id=info:doi/10.3390%2Frs12071085&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |