Molecular Mechanisms of Iron and Heme Metabolism
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle...
Uložené v:
| Vydané v: | Annual review of nutrition Ročník 42; s. 311 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
22.08.2022
|
| Predmet: | |
| ISSN: | 1545-4312, 1545-4312 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe
and Fe
contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology. |
|---|---|
| AbstractList | An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology. An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe and Fe contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology. |
| Author | Dutt, Sohini Bartnikas, Thomas Benedict Hamza, Iqbal |
| Author_xml | – sequence: 1 givenname: Sohini surname: Dutt fullname: Dutt, Sohini email: hamza@umd.edu organization: Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA; email: hamza@umd.edu – sequence: 2 givenname: Iqbal surname: Hamza fullname: Hamza, Iqbal email: hamza@umd.edu organization: Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA; email: hamza@umd.edu – sequence: 3 givenname: Thomas Benedict surname: Bartnikas fullname: Bartnikas, Thomas Benedict email: thomas_bartnikas@brown.edu organization: Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA; email: thomas_bartnikas@brown.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35508203$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNT01Lw0AUXKRiP_QvSPDkZfW9tx9NjlLUFlq86Dls0rdYSTZ1NxH89was4FxmmBkGZi4moQssxA3CHaK29y6EIfKXDEMfJVhSBBKRLJkzMUOjjdQKafJPT8U8pQ8AKJRSF2KqjIGcQM0E7LqG66FxMdtx_e7CIbUp63y2iV3IXNhna255zHpXdc0YXopz75rEVydeiLenx9fVWm5fnjerh610OqdeGtTEqCo0aAitY6qsA1148vvR0_lyRE0WHFdY24K9h6UHY1XOYApLC3H7u3uM3efAqS_bQ6q5aVzgbkglWQsISi3zsXp9qg5Vy_vyGA-ti9_l30v6AUItVzI |
| CitedBy_id | crossref_primary_10_1016_j_envpol_2025_126799 crossref_primary_10_1007_s00401_023_02627_4 crossref_primary_10_1016_j_bcp_2025_117197 crossref_primary_10_1016_j_fsi_2024_109745 crossref_primary_10_59717_j_xinn_geo_2024_100088 crossref_primary_10_1016_j_blre_2024_101227 crossref_primary_10_1002_glia_24641 crossref_primary_10_1001_jama_2025_0452 crossref_primary_10_1038_s41598_025_95254_w crossref_primary_10_1007_s12039_024_02252_y crossref_primary_10_1016_j_jnutbio_2024_109698 crossref_primary_10_3390_biomedicines13092067 crossref_primary_10_1016_j_exphem_2024_104252 crossref_primary_10_3390_biom14091147 crossref_primary_10_3390_ijms25052493 crossref_primary_10_1016_j_jnutbio_2023_109458 crossref_primary_10_1038_s44318_025_00563_5 crossref_primary_10_3390_metabo14040228 crossref_primary_10_3390_life15081259 crossref_primary_10_1016_j_snb_2025_138726 crossref_primary_10_3389_fimmu_2024_1424954 crossref_primary_10_3390_nu16193350 crossref_primary_10_1186_s13008_024_00127_9 crossref_primary_10_1515_hsz_2022_0205 crossref_primary_10_3390_cells14090672 crossref_primary_10_1016_j_redox_2025_103615 crossref_primary_10_3390_ijms26072911 crossref_primary_10_4014_jmb_2504_04007 crossref_primary_10_1016_j_ajcnut_2025_07_037 crossref_primary_10_1007_s10653_025_02462_4 crossref_primary_10_3389_fonc_2024_1483425 crossref_primary_10_1134_S0362119725700513 crossref_primary_10_1016_j_tem_2023_12_010 crossref_primary_10_3389_fnut_2025_1637316 crossref_primary_10_1016_j_it_2025_02_009 crossref_primary_10_1002_cbdv_202501777 crossref_primary_10_3390_cells12141820 crossref_primary_10_3389_fmolb_2022_1068437 crossref_primary_10_1016_j_bbadis_2024_167551 crossref_primary_10_1007_s10616_025_00818_3 crossref_primary_10_1038_s41467_025_59310_3 crossref_primary_10_1016_j_brainres_2025_149861 crossref_primary_10_2147_JIR_S457092 crossref_primary_10_1186_s12929_024_01089_4 crossref_primary_10_3389_fbioe_2023_1187632 crossref_primary_10_1097_CM9_0000000000003169 crossref_primary_10_1007_s00210_025_04237_1 crossref_primary_10_1097_MD_0000000000039158 crossref_primary_10_1016_j_mtbio_2025_101691 crossref_primary_10_1016_j_tox_2024_153938 crossref_primary_10_1016_j_heliyon_2024_e32803 crossref_primary_10_1016_j_jep_2025_120057 crossref_primary_10_1016_j_jinorgbio_2025_112844 crossref_primary_10_1038_s41467_024_50073_x crossref_primary_10_31146_1682_8658_ecg_226_6_84_89 crossref_primary_10_1016_j_semcancer_2025_02_011 crossref_primary_10_3390_cimb46040175 crossref_primary_10_1016_j_actbio_2025_07_067 crossref_primary_10_3390_antiox12061217 crossref_primary_10_1007_s11357_024_01218_9 crossref_primary_10_1146_annurev_nutr_062122_014910 crossref_primary_10_1002_jat_4532 crossref_primary_10_1016_j_lfs_2025_123688 crossref_primary_10_1038_s41392_024_01969_z crossref_primary_10_1016_j_dyepig_2024_112456 crossref_primary_10_1007_s11892_025_01589_z crossref_primary_10_3390_molecules29204796 crossref_primary_10_1007_s11010_024_05119_5 crossref_primary_10_1016_j_intimp_2025_115583 crossref_primary_10_3389_fmicb_2024_1378989 crossref_primary_10_3390_biology14081052 crossref_primary_10_1007_s12035_023_03870_2 crossref_primary_10_1002_1873_3468_14485 crossref_primary_10_1016_j_fsi_2024_110043 crossref_primary_10_1186_s12964_023_01419_3 crossref_primary_10_3389_fphys_2024_1380992 crossref_primary_10_1016_j_jphotochem_2024_115752 crossref_primary_10_3390_ijms25158114 crossref_primary_10_1093_mtomcs_mfae043 crossref_primary_10_3390_biom14121522 crossref_primary_10_1016_j_freeradbiomed_2024_04_220 crossref_primary_10_1016_j_bcp_2023_115725 crossref_primary_10_1016_j_cyto_2024_156559 crossref_primary_10_1515_oncologie_2024_0147 crossref_primary_10_3390_antiox12111989 crossref_primary_10_1002_jcsm_13547 crossref_primary_10_1016_j_biopha_2024_116761 crossref_primary_10_1016_j_mssp_2025_109689 crossref_primary_10_3390_molecules30071507 crossref_primary_10_3390_nu16071008 crossref_primary_10_1016_j_taap_2025_117283 crossref_primary_10_1186_s13023_024_03465_7 crossref_primary_10_3390_ijms25147544 crossref_primary_10_1016_j_tox_2023_153515 crossref_primary_10_1186_s12891_025_08515_0 crossref_primary_10_1016_j_phymed_2025_156783 crossref_primary_10_1016_j_tjnut_2023_06_042 crossref_primary_10_3389_fimmu_2023_1294317 crossref_primary_10_3390_biom13071097 crossref_primary_10_12677_acm_2025_152365 crossref_primary_10_1016_j_ijantimicag_2023_106794 crossref_primary_10_3390_brainsci13060911 crossref_primary_10_1089_ast_2023_0006 crossref_primary_10_1111_aji_13916 crossref_primary_10_3390_metabo13091005 crossref_primary_10_1038_s41586_024_07444_7 crossref_primary_10_1016_j_ijbiomac_2025_141430 crossref_primary_10_3390_biom13121789 crossref_primary_10_1515_revneuro_2022_0121 crossref_primary_10_1002_adbi_202400821 crossref_primary_10_1016_j_jbc_2024_107132 crossref_primary_10_1111_liv_15965 crossref_primary_10_3389_fnagi_2025_1587986 crossref_primary_10_1016_j_jtha_2024_12_013 crossref_primary_10_1002_advs_202411923 crossref_primary_10_1016_j_ccr_2024_216300 crossref_primary_10_1016_j_apsusc_2025_164410 crossref_primary_10_1007_s42250_024_01033_x crossref_primary_10_1002_adma_202310522 crossref_primary_10_1128_spectrum_01485_23 crossref_primary_10_1007_s11427_023_2472_4 crossref_primary_10_1186_s12964_023_01316_9 crossref_primary_10_1016_j_biopha_2024_117183 crossref_primary_10_1016_j_aquaculture_2025_742482 crossref_primary_10_1042_BST20253013 crossref_primary_10_3390_foods13244159 crossref_primary_10_3390_molecules29184359 crossref_primary_10_1021_acs_biochem_4c00750 crossref_primary_10_1016_j_bcp_2023_115909 crossref_primary_10_1016_j_marenvres_2025_107516 crossref_primary_10_1007_s12185_022_03404_x crossref_primary_10_3390_antiox13020208 crossref_primary_10_3390_biomedicines11113094 crossref_primary_10_3390_cancers16244156 crossref_primary_10_1111_cns_14865 crossref_primary_10_1186_s10020_024_00993_7 crossref_primary_10_3390_polym14153045 crossref_primary_10_1177_09731296251322834 crossref_primary_10_1128_mmbr_00015_23 crossref_primary_10_1161_CIRCRESAHA_125_326201 crossref_primary_10_1371_journal_pgen_1011797 crossref_primary_10_2174_0109298673259183231117073347 crossref_primary_10_1016_j_fct_2024_114768 crossref_primary_10_1016_j_bbadis_2025_167705 crossref_primary_10_1016_j_freeradbiomed_2025_08_020 crossref_primary_10_23736_S0026_4806_25_09706_X crossref_primary_10_1016_j_canlet_2024_216652 crossref_primary_10_3390_md23040146 crossref_primary_10_1007_s00247_025_06172_y crossref_primary_10_1073_pnas_2412473122 crossref_primary_10_1007_s00018_024_05376_z crossref_primary_10_3389_fbioe_2025_1511197 crossref_primary_10_3389_fmolb_2023_1127690 crossref_primary_10_52711_0974_360X_2024_00607 crossref_primary_10_1016_j_jtemb_2025_127591 crossref_primary_10_1016_j_pharmthera_2022_108326 crossref_primary_10_1002_cbdv_202500942 crossref_primary_10_1016_j_indcrop_2024_118178 crossref_primary_10_3390_biomedicines13040851 crossref_primary_10_1016_j_bbih_2025_101029 crossref_primary_10_3389_fnana_2023_1280275 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1146/annurev-nutr-062320-112625 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Diet & Clinical Nutrition |
| EISSN | 1545-4312 |
| ExternalDocumentID | 35508203 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK110049 – fundername: NIDDK NIH HHS grantid: R01 DK085035 – fundername: NIDDK NIH HHS grantid: R01 DK125740 – fundername: NIDDK NIH HHS grantid: R01 DK074797 |
| GroupedDBID | --- -QD -QH 04C 0R~ 1KX 36B 39C 4.4 51A 5FA 5FB 5FC 5FD 5FE 5FF 5GY 5RE 6PF 7A. 85S AABJL AAGWO AALHT AALUV AAOHI AARJV AAWJP AAWTL AAYIS ABDOG ABGRM ABIPL ABJNI ABKGM ABOCM ABVYV ABZNY ACAHA ACDVT ACGFS ACGOD ACJYF ACMXS ACQCJ ACRLM ACSOE ADANS ADHEY ADLON ADNJN ADOJX ADSVE AEAIQ AEKBM AENEX AEPIK AEWIE AFCZG AFERR AFKDQ AFKEJ AFONB AFRAH AGBCJ AHIXL AHKZM AHMBA AHVNO AICBU AIDEK AIJFW AIZOL AJAAW ALAFQ ALIPV ALMA_UNASSIGNED_HOLDINGS AMTJG AOUBY AQQLW ATAUN B9D B9E B9F B9G B9H B9L B9N BCFVH BJPMW BMYRD CGR CS3 CUY CVF E.L EBS ECM EIF EMB EST F-Q F-S F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FXG GJQJI GLOEX GNDDA GOAVI GQXMV H13 HZ~ J1V L7B M22 N9A NEJ NPM O9- P2P RAR RAV UBH WH7 YSK ZYWBE ~KM 7X8 AAFWJ AAQMF AAXSQ ACKHT ACPHO ACQLW RIG TUS |
| ID | FETCH-LOGICAL-a482t-5142e13b1515216ae2b6a049f2fd151487777c260aeb1c69eff07f05638e05962 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 188 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844740700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-4312 |
| IngestDate | Thu Oct 02 10:27:47 EDT 2025 Thu Jan 02 22:50:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | tetrapyrrole iron metabolism porphyrin heme trafficking |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a482t-5142e13b1515216ae2b6a049f2fd151487777c260aeb1c69eff07f05638e05962 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9398995 |
| PMID | 35508203 |
| PQID | 2660103378 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2660103378 pubmed_primary_35508203 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-22 |
| PublicationDateYYYYMMDD | 2022-08-22 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annual review of nutrition |
| PublicationTitleAlternate | Annu Rev Nutr |
| PublicationYear | 2022 |
| SSID | ssj0009333 |
| Score | 2.689786 |
| SecondaryResourceType | review_article |
| Snippet | An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 311 |
| SubjectTerms | Biological Transport Heme - metabolism Homeostasis - physiology Humans Iron - metabolism Mitochondria - metabolism |
| Title | Molecular Mechanisms of Iron and Heme Metabolism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35508203 https://www.proquest.com/docview/2660103378 |
| Volume | 42 |
| WOSCitedRecordID | wos000844740700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcf6jx48cfmj_mLCOIt2KU_0p5E1DEPKzso7DbSNIHBls61E_zvfcla5kUQvPSQUCjJ68vnJS_vC3AbJhnXQmoqszCgQQ_9oJAso1IJFuQ8ypnIndgET9N4PE5G9YZbWadVNj7ROeq8kHaP_B4XEitJ4PP4YfFBrWqUPV2tJTS2oeUjylir5uNNtXAM1l2CPVICxYWS1UVHf4i8ULOqltRDBsAoyt6mYeHvqOmWnP7Bfz_2EPZr2CSPa-s4gi1l2tB5NBhoz7_IHXHpn25fvQ3d56mqsK0uFDojaVOnvwPesBHRJUNlrwpPy3lJCk1el4UhwuRkoOYK-yo0qRl2HsN7_-XtaUBrqQUqgphVFLGJqZ6fWbxhvUgolkUCgwfNdI5tga0ayCXGPgJ9u4wSpbXHNcKTHysn4HMCO6Yw6gwIEk6URJqHOsTZRoLQEVJOxHF67KFg1oWbZswmaMr2fEIYVazKyWbUunC6HvjJYl1zY4JYZGHFP__D2xewx-wlBQ99ALuElsYfWV3BrvyspuXy2tkIPtPR8BvJw8OY |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanisms+of+Iron+and+Heme+Metabolism&rft.jtitle=Annual+review+of+nutrition&rft.au=Dutt%2C+Sohini&rft.au=Hamza%2C+Iqbal&rft.au=Bartnikas%2C+Thomas+Benedict&rft.date=2022-08-22&rft.issn=1545-4312&rft.eissn=1545-4312&rft.volume=42&rft.spage=311&rft_id=info:doi/10.1146%2Fannurev-nutr-062320-112625&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-4312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-4312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-4312&client=summon |