Power Analysis and Sample Size Determination in Metabolic Phenotyping
Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or c...
Gespeichert in:
| Veröffentlicht in: | Analytical chemistry (Washington) Jg. 88; H. 10; S. 5179 - 5188 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
17.05.2016
|
| Schlagworte: | |
| ISSN: | 1520-6882 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or class of important analytes nor the effect size are known a priori. We introduce a new approach, based on multivariate simulation, which deals effectively with the highly correlated structure and high-dimensionality of metabolic phenotyping data. First, a large data set is simulated based on the characteristics of a pilot study investigating a given biomedical issue. An effect of a given size, corresponding either to a discrete (classification) or continuous (regression) outcome is then added. Different sample sizes are modeled by randomly selecting data sets of various sizes from the simulated data. We investigate different methods for effect detection, including univariate and multivariate techniques. Our framework allows us to investigate the complex relationship between sample size, power, and effect size for real multivariate data sets. For instance, we demonstrate for an example pilot data set that certain features achieve a power of 0.8 for a sample size of 20 samples or that a cross-validated predictivity QY(2) of 0.8 is reached with an effect size of 0.2 and 200 samples. We exemplify the approach for both nuclear magnetic resonance and liquid chromatography-mass spectrometry data from humans and the model organism C. elegans. |
|---|---|
| AbstractList | Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or class of important analytes nor the effect size are known a priori. We introduce a new approach, based on multivariate simulation, which deals effectively with the highly correlated structure and high-dimensionality of metabolic phenotyping data. First, a large data set is simulated based on the characteristics of a pilot study investigating a given biomedical issue. An effect of a given size, corresponding either to a discrete (classification) or continuous (regression) outcome is then added. Different sample sizes are modeled by randomly selecting data sets of various sizes from the simulated data. We investigate different methods for effect detection, including univariate and multivariate techniques. Our framework allows us to investigate the complex relationship between sample size, power, and effect size for real multivariate data sets. For instance, we demonstrate for an example pilot data set that certain features achieve a power of 0.8 for a sample size of 20 samples or that a cross-validated predictivity QY(2) of 0.8 is reached with an effect size of 0.2 and 200 samples. We exemplify the approach for both nuclear magnetic resonance and liquid chromatography-mass spectrometry data from humans and the model organism C. elegans. |
| Author | Pearce, Jake T M Holmes, Elaine Blaise, Benjamin J Lewis, Matthew Elliott, Paul Correia, Gonçalo Young, J Hunter Vergnaud, Anne-Claire Nicholson, Jeremy K Ebbels, Timothy M D Tin, Adrienne |
| Author_xml | – sequence: 1 givenname: Benjamin J surname: Blaise fullname: Blaise, Benjamin J organization: Hospices Civils de Lyon, Service de Réanimation Néonatale et Néonatalogie, Hôpital Femme Mère Enfant , 59 bd Pinel, 69677 Bron Cedex, France – sequence: 2 givenname: Gonçalo surname: Correia fullname: Correia, Gonçalo organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K – sequence: 3 givenname: Adrienne surname: Tin fullname: Tin, Adrienne organization: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street, Baltimore, Maryland 21205, United States – sequence: 4 givenname: J Hunter surname: Young fullname: Young, J Hunter organization: Johns Hopkins Bloomberg School of Public Health, Department of Medicine, The Johns Hopkins University and The Welch Center for Epidemiology and Clinical Research , 2024 East Monument Street, Baltimore, Maryland 21205, United States – sequence: 5 givenname: Anne-Claire surname: Vergnaud fullname: Vergnaud, Anne-Claire organization: Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London , St. Mary's Campus, Norfolk Place, W2 1PG London, United Kingdom – sequence: 6 givenname: Matthew surname: Lewis fullname: Lewis, Matthew organization: MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London , IRDB Building, Du Cane Road, London W12 0NN, U.K – sequence: 7 givenname: Jake T M surname: Pearce fullname: Pearce, Jake T M organization: MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London , IRDB Building, Du Cane Road, London W12 0NN, U.K – sequence: 8 givenname: Paul surname: Elliott fullname: Elliott, Paul organization: Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London , St. Mary's Campus, Norfolk Place, W2 1PG London, United Kingdom – sequence: 9 givenname: Jeremy K surname: Nicholson fullname: Nicholson, Jeremy K organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K – sequence: 10 givenname: Elaine surname: Holmes fullname: Holmes, Elaine organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K – sequence: 11 givenname: Timothy M D surname: Ebbels fullname: Ebbels, Timothy M D organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27116637$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1j11LwzAYhYMo7kP_gUguvelM0jUfl2POD5g4mF6XN-lbF2mT2nTI_PUO1KsDh-c5cCbkNMSAhFxxNuNM8FtwaQYBGrfDdiYtY1zrEzLmhWCZ1FqMyCSlj2PNGZfnZCQU51LmakxWm_iFPV0c5UPyiUKo6BbarkG69d9I73DAvvUBBh8D9YE-4wA2Nt7RzQ5DHA6dD-8X5KyGJuHlX07J2_3qdfmYrV8enpaLdQZzVQyZy1mhasWMtkxy57SomHKVVcqAZKIy88rWpraOg86Nq9E4WzCnai3yOXIQU3Lzu9v18XOPaShbnxw2DQSM-1RypY0qlCjkEb3-Q_e2xarset9Cfyj_r4sfyoheCA |
| CitedBy_id | crossref_primary_10_1016_j_csbj_2020_07_009 crossref_primary_10_1016_j_ymgme_2020_05_005 crossref_primary_10_1073_pnas_2118654119 crossref_primary_10_1093_jn_nxaa019 crossref_primary_10_3390_agronomy11050824 crossref_primary_10_1002_ansa_202300009 crossref_primary_10_1007_s11306_025_02259_7 crossref_primary_10_1016_j_vph_2019_03_005 crossref_primary_10_3390_metabo10060224 crossref_primary_10_1016_j_aca_2022_339614 crossref_primary_10_1016_j_ejvs_2024_09_019 crossref_primary_10_1002_dmrr_3789 crossref_primary_10_1136_rmdopen_2022_002741 crossref_primary_10_1039_C8CC02592D crossref_primary_10_3390_metabo9120308 crossref_primary_10_1002_bimj_70050 crossref_primary_10_1038_s41598_020_66947_1 crossref_primary_10_1007_s00216_021_03586_z crossref_primary_10_1007_s40572_020_00284_3 crossref_primary_10_1007_s43657_024_00205_6 crossref_primary_10_1016_j_scitotenv_2019_03_477 crossref_primary_10_1016_j_ebiom_2021_103599 crossref_primary_10_1177_0271678X211027384 crossref_primary_10_1016_j_lwt_2020_109454 crossref_primary_10_1139_er_2019_0003 crossref_primary_10_1002_pca_3229 crossref_primary_10_1002_elps_202000133 crossref_primary_10_1007_s40520_023_02654_x crossref_primary_10_3390_metabo14120677 crossref_primary_10_3390_metabo9120285 crossref_primary_10_3390_cancers14163992 crossref_primary_10_1016_j_aca_2019_12_062 crossref_primary_10_1002_mrc_4533 crossref_primary_10_1007_s00216_019_01874_3 crossref_primary_10_1093_bib_bbaa105 crossref_primary_10_1016_j_jpba_2017_07_044 crossref_primary_10_1016_j_scitotenv_2022_159932 crossref_primary_10_1016_j_trac_2024_117940 crossref_primary_10_1186_s12916_020_01546_5 crossref_primary_10_1186_s12920_020_00826_6 crossref_primary_10_1016_j_jaci_2017_04_021 crossref_primary_10_1016_j_chemosphere_2020_126401 crossref_primary_10_1186_s12887_025_05828_w crossref_primary_10_3390_molecules25173972 crossref_primary_10_1002_mgg3_1738 crossref_primary_10_3390_separations12020021 crossref_primary_10_1016_j_tifs_2018_08_007 crossref_primary_10_1016_j_preteyeres_2018_11_002 crossref_primary_10_3390_jpm13071060 crossref_primary_10_1002_jssc_202001263 crossref_primary_10_1002_mnfr_201800384 crossref_primary_10_1016_j_cll_2021_03_004 crossref_primary_10_1016_j_ab_2018_12_008 crossref_primary_10_1136_bmjopen_2025_099108 crossref_primary_10_1038_s41598_020_67939_x crossref_primary_10_1186_s12859_019_2804_7 crossref_primary_10_1007_s11135_024_01916_8 crossref_primary_10_1016_j_jmb_2020_01_027 crossref_primary_10_1186_s40246_018_0134_x crossref_primary_10_1016_j_clinms_2019_05_002 crossref_primary_10_1093_alcalc_agz030 crossref_primary_10_1177_1071100718786163 crossref_primary_10_1016_j_jpba_2020_113509 crossref_primary_10_1111_jvp_12961 crossref_primary_10_1515_sagmb_2022_0003 crossref_primary_10_3389_fvets_2023_1129741 crossref_primary_10_3390_ijms25063491 crossref_primary_10_1016_j_scienta_2022_111788 crossref_primary_10_1093_humrep_deaa279 crossref_primary_10_1093_gigascience_giy149 crossref_primary_10_1038_s41596_021_00579_1 crossref_primary_10_3390_nu16183196 crossref_primary_10_1002_elps_202000030 crossref_primary_10_1093_icb_icaf138 crossref_primary_10_3390_metabo11100660 crossref_primary_10_1007_s13668_019_00279_z crossref_primary_10_1111_jnc_15362 crossref_primary_10_1016_j_aca_2018_06_065 crossref_primary_10_1136_bmjopen_2021_059552 crossref_primary_10_1038_s41598_022_13397_6 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.analchem.6b00188 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1520-6882 |
| EndPage | 5188 |
| ExternalDocumentID | 27116637 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_12025 – fundername: Medical Research Council grantid: MR/L01341X/1 |
| GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABBLG ABHFT ABHMW ABJNI ABLBI ABMVS ABOCM ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF EJD F5P GGK GNL IH9 IHE JG~ KZ1 LMP NPM P2P PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 W1F WH7 X6Y XSW YZZ ZCA ~02 7X8 |
| ID | FETCH-LOGICAL-a475t-c3057f7098b061cc82d07cdb779a602d94dbf9fbc1a839cfe9cb50c7f8234e1a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376223500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Oct 02 04:59:45 EDT 2025 Mon Jul 21 06:03:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a475t-c3057f7098b061cc82d07cdb779a602d94dbf9fbc1a839cfe9cb50c7f8234e1a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27116637 |
| PQID | 1789757256 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1789757256 pubmed_primary_27116637 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-17 |
| PublicationDateYYYYMMDD | 2016-05-17 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Analytical chemistry (Washington) |
| PublicationTitleAlternate | Anal Chem |
| PublicationYear | 2016 |
| SSID | ssj0011016 |
| Score | 2.5171652 |
| Snippet | Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 5179 |
| SubjectTerms | Animals Caenorhabditis elegans Datasets as Topic - statistics & numerical data Humans Metabolome Metabolomics - statistics & numerical data Models, Statistical Multivariate Analysis Preliminary Data Sample Size |
| Title | Power Analysis and Sample Size Determination in Metabolic Phenotyping |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27116637 https://www.proquest.com/docview/1789757256 |
| Volume | 88 |
| WOSCitedRecordID | wos000376223500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5qBfXgUre6EcHrtJNZspxEaosHWwaq0FvJigM6U51R0F9vMp2hHjwIXnJKYObl5b0vecn3AXAllFAmxsLjAQm8yNDIo1SGHmOKIY2RiGXFM3tPxmM6nbKkPnAr6muVTUysArXKpTsj7yFCGYmJzdDX81fPqUa56motobEKWqGFMs6ryXRZRXA70-a5XIB6XBZdbqfHWuOlix1cqPVWfgWWVYIZ7vz303bBdg0t4c3CF_bAis7aYKPfKLq1wdYP8sF9MEicQBpsWEkgzxSccEcWDCfpl4a3zUUZN3UwzeBIl9ZjnlMJkyed5eWne2p1AB6Hg4f-nVeLKng8InHpSbvAiSE-o8KmcilpoHwilSCEcewHikVKGGaERNxiJ2k0kyL2JTE0CCONeHAI1rI808cAYmPBFvI1jiNtQwEWmLNI277ID0Nf0w64bOw1s3_qKhE80_l7MVtarAOOFkafzRfsGrOAIGRhEDn5w-hTsGkBDHbVfETOQMvYJavPwbr8KNPi7aLyBtuOk9E3zVTB7A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Analysis+and+Sample+Size+Determination+in+Metabolic+Phenotyping&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Blaise%2C+Benjamin+J&rft.au=Correia%2C+Gon%C3%A7alo&rft.au=Tin%2C+Adrienne&rft.au=Young%2C+J+Hunter&rft.date=2016-05-17&rft.eissn=1520-6882&rft.volume=88&rft.issue=10&rft.spage=5179&rft.epage=5188&rft_id=info:doi/10.1021%2Facs.analchem.6b00188&rft.externalDBID=NO_FULL_TEXT |