Power Analysis and Sample Size Determination in Metabolic Phenotyping

Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Analytical chemistry (Washington) Ročník 88; číslo 10; s. 5179 - 5188
Hlavní autoři: Blaise, Benjamin J, Correia, Gonçalo, Tin, Adrienne, Young, J Hunter, Vergnaud, Anne-Claire, Lewis, Matthew, Pearce, Jake T M, Elliott, Paul, Nicholson, Jeremy K, Holmes, Elaine, Ebbels, Timothy M D
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 17.05.2016
Témata:
ISSN:1520-6882
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or class of important analytes nor the effect size are known a priori. We introduce a new approach, based on multivariate simulation, which deals effectively with the highly correlated structure and high-dimensionality of metabolic phenotyping data. First, a large data set is simulated based on the characteristics of a pilot study investigating a given biomedical issue. An effect of a given size, corresponding either to a discrete (classification) or continuous (regression) outcome is then added. Different sample sizes are modeled by randomly selecting data sets of various sizes from the simulated data. We investigate different methods for effect detection, including univariate and multivariate techniques. Our framework allows us to investigate the complex relationship between sample size, power, and effect size for real multivariate data sets. For instance, we demonstrate for an example pilot data set that certain features achieve a power of 0.8 for a sample size of 20 samples or that a cross-validated predictivity QY(2) of 0.8 is reached with an effect size of 0.2 and 200 samples. We exemplify the approach for both nuclear magnetic resonance and liquid chromatography-mass spectrometry data from humans and the model organism C. elegans.
AbstractList Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or class of important analytes nor the effect size are known a priori. We introduce a new approach, based on multivariate simulation, which deals effectively with the highly correlated structure and high-dimensionality of metabolic phenotyping data. First, a large data set is simulated based on the characteristics of a pilot study investigating a given biomedical issue. An effect of a given size, corresponding either to a discrete (classification) or continuous (regression) outcome is then added. Different sample sizes are modeled by randomly selecting data sets of various sizes from the simulated data. We investigate different methods for effect detection, including univariate and multivariate techniques. Our framework allows us to investigate the complex relationship between sample size, power, and effect size for real multivariate data sets. For instance, we demonstrate for an example pilot data set that certain features achieve a power of 0.8 for a sample size of 20 samples or that a cross-validated predictivity QY(2) of 0.8 is reached with an effect size of 0.2 and 200 samples. We exemplify the approach for both nuclear magnetic resonance and liquid chromatography-mass spectrometry data from humans and the model organism C. elegans.
Author Pearce, Jake T M
Holmes, Elaine
Blaise, Benjamin J
Lewis, Matthew
Elliott, Paul
Correia, Gonçalo
Young, J Hunter
Vergnaud, Anne-Claire
Nicholson, Jeremy K
Ebbels, Timothy M D
Tin, Adrienne
Author_xml – sequence: 1
  givenname: Benjamin J
  surname: Blaise
  fullname: Blaise, Benjamin J
  organization: Hospices Civils de Lyon, Service de Réanimation Néonatale et Néonatalogie, Hôpital Femme Mère Enfant , 59 bd Pinel, 69677 Bron Cedex, France
– sequence: 2
  givenname: Gonçalo
  surname: Correia
  fullname: Correia, Gonçalo
  organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K
– sequence: 3
  givenname: Adrienne
  surname: Tin
  fullname: Tin, Adrienne
  organization: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street, Baltimore, Maryland 21205, United States
– sequence: 4
  givenname: J Hunter
  surname: Young
  fullname: Young, J Hunter
  organization: Johns Hopkins Bloomberg School of Public Health, Department of Medicine, The Johns Hopkins University and The Welch Center for Epidemiology and Clinical Research , 2024 East Monument Street, Baltimore, Maryland 21205, United States
– sequence: 5
  givenname: Anne-Claire
  surname: Vergnaud
  fullname: Vergnaud, Anne-Claire
  organization: Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London , St. Mary's Campus, Norfolk Place, W2 1PG London, United Kingdom
– sequence: 6
  givenname: Matthew
  surname: Lewis
  fullname: Lewis, Matthew
  organization: MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London , IRDB Building, Du Cane Road, London W12 0NN, U.K
– sequence: 7
  givenname: Jake T M
  surname: Pearce
  fullname: Pearce, Jake T M
  organization: MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London , IRDB Building, Du Cane Road, London W12 0NN, U.K
– sequence: 8
  givenname: Paul
  surname: Elliott
  fullname: Elliott, Paul
  organization: Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London , St. Mary's Campus, Norfolk Place, W2 1PG London, United Kingdom
– sequence: 9
  givenname: Jeremy K
  surname: Nicholson
  fullname: Nicholson, Jeremy K
  organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K
– sequence: 10
  givenname: Elaine
  surname: Holmes
  fullname: Holmes, Elaine
  organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K
– sequence: 11
  givenname: Timothy M D
  surname: Ebbels
  fullname: Ebbels, Timothy M D
  organization: Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , London SW7 2AZ, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27116637$$D View this record in MEDLINE/PubMed
BookMark eNo1j11LwzAYhYMo7kP_gUguvelM0jUfl2POD5g4mF6XN-lbF2mT2nTI_PUO1KsDh-c5cCbkNMSAhFxxNuNM8FtwaQYBGrfDdiYtY1zrEzLmhWCZ1FqMyCSlj2PNGZfnZCQU51LmakxWm_iFPV0c5UPyiUKo6BbarkG69d9I73DAvvUBBh8D9YE-4wA2Nt7RzQ5DHA6dD-8X5KyGJuHlX07J2_3qdfmYrV8enpaLdQZzVQyZy1mhasWMtkxy57SomHKVVcqAZKIy88rWpraOg86Nq9E4WzCnai3yOXIQU3Lzu9v18XOPaShbnxw2DQSM-1RypY0qlCjkEb3-Q_e2xarset9Cfyj_r4sfyoheCA
CitedBy_id crossref_primary_10_1016_j_csbj_2020_07_009
crossref_primary_10_1016_j_ymgme_2020_05_005
crossref_primary_10_1073_pnas_2118654119
crossref_primary_10_1093_jn_nxaa019
crossref_primary_10_3390_agronomy11050824
crossref_primary_10_1002_ansa_202300009
crossref_primary_10_1007_s11306_025_02259_7
crossref_primary_10_1016_j_vph_2019_03_005
crossref_primary_10_3390_metabo10060224
crossref_primary_10_1016_j_aca_2022_339614
crossref_primary_10_1016_j_ejvs_2024_09_019
crossref_primary_10_1002_dmrr_3789
crossref_primary_10_1136_rmdopen_2022_002741
crossref_primary_10_1039_C8CC02592D
crossref_primary_10_3390_metabo9120308
crossref_primary_10_1002_bimj_70050
crossref_primary_10_1038_s41598_020_66947_1
crossref_primary_10_1007_s00216_021_03586_z
crossref_primary_10_1007_s40572_020_00284_3
crossref_primary_10_1007_s43657_024_00205_6
crossref_primary_10_1016_j_scitotenv_2019_03_477
crossref_primary_10_1016_j_ebiom_2021_103599
crossref_primary_10_1177_0271678X211027384
crossref_primary_10_1016_j_lwt_2020_109454
crossref_primary_10_1139_er_2019_0003
crossref_primary_10_1002_pca_3229
crossref_primary_10_1002_elps_202000133
crossref_primary_10_1007_s40520_023_02654_x
crossref_primary_10_3390_metabo14120677
crossref_primary_10_3390_metabo9120285
crossref_primary_10_3390_cancers14163992
crossref_primary_10_1016_j_aca_2019_12_062
crossref_primary_10_1002_mrc_4533
crossref_primary_10_1007_s00216_019_01874_3
crossref_primary_10_1093_bib_bbaa105
crossref_primary_10_1016_j_jpba_2017_07_044
crossref_primary_10_1016_j_scitotenv_2022_159932
crossref_primary_10_1016_j_trac_2024_117940
crossref_primary_10_1186_s12916_020_01546_5
crossref_primary_10_1186_s12920_020_00826_6
crossref_primary_10_1016_j_jaci_2017_04_021
crossref_primary_10_1016_j_chemosphere_2020_126401
crossref_primary_10_1186_s12887_025_05828_w
crossref_primary_10_3390_molecules25173972
crossref_primary_10_1002_mgg3_1738
crossref_primary_10_3390_separations12020021
crossref_primary_10_1016_j_tifs_2018_08_007
crossref_primary_10_1016_j_preteyeres_2018_11_002
crossref_primary_10_3390_jpm13071060
crossref_primary_10_1002_jssc_202001263
crossref_primary_10_1002_mnfr_201800384
crossref_primary_10_1016_j_cll_2021_03_004
crossref_primary_10_1016_j_ab_2018_12_008
crossref_primary_10_1136_bmjopen_2025_099108
crossref_primary_10_1038_s41598_020_67939_x
crossref_primary_10_1186_s12859_019_2804_7
crossref_primary_10_1007_s11135_024_01916_8
crossref_primary_10_1016_j_jmb_2020_01_027
crossref_primary_10_1186_s40246_018_0134_x
crossref_primary_10_1016_j_clinms_2019_05_002
crossref_primary_10_1093_alcalc_agz030
crossref_primary_10_1177_1071100718786163
crossref_primary_10_1016_j_jpba_2020_113509
crossref_primary_10_1111_jvp_12961
crossref_primary_10_1515_sagmb_2022_0003
crossref_primary_10_3389_fvets_2023_1129741
crossref_primary_10_3390_ijms25063491
crossref_primary_10_1016_j_scienta_2022_111788
crossref_primary_10_1093_humrep_deaa279
crossref_primary_10_1093_gigascience_giy149
crossref_primary_10_1038_s41596_021_00579_1
crossref_primary_10_3390_nu16183196
crossref_primary_10_1002_elps_202000030
crossref_primary_10_1093_icb_icaf138
crossref_primary_10_3390_metabo11100660
crossref_primary_10_1007_s13668_019_00279_z
crossref_primary_10_1111_jnc_15362
crossref_primary_10_1016_j_aca_2018_06_065
crossref_primary_10_1136_bmjopen_2021_059552
crossref_primary_10_1038_s41598_022_13397_6
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.analchem.6b00188
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 5188
ExternalDocumentID 27116637
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_12025
– fundername: Medical Research Council
  grantid: MR/L01341X/1
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
NPM
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
7X8
ID FETCH-LOGICAL-a475t-c3057f7098b061cc82d07cdb779a602d94dbf9fbc1a839cfe9cb50c7f8234e1a2
IEDL.DBID 7X8
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376223500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Oct 02 04:59:45 EDT 2025
Mon Jul 21 06:03:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-c3057f7098b061cc82d07cdb779a602d94dbf9fbc1a839cfe9cb50c7f8234e1a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27116637
PQID 1789757256
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1789757256
pubmed_primary_27116637
PublicationCentury 2000
PublicationDate 2016-05-17
PublicationDateYYYYMMDD 2016-05-17
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal Chem
PublicationYear 2016
SSID ssj0011016
Score 2.5171652
Snippet Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 5179
SubjectTerms Animals
Caenorhabditis elegans
Datasets as Topic - statistics & numerical data
Humans
Metabolome
Metabolomics - statistics & numerical data
Models, Statistical
Multivariate Analysis
Preliminary Data
Sample Size
Title Power Analysis and Sample Size Determination in Metabolic Phenotyping
URI https://www.ncbi.nlm.nih.gov/pubmed/27116637
https://www.proquest.com/docview/1789757256
Volume 88
WOSCitedRecordID wos000376223500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIgEHlrKVTUbimjZ2lolPCEErDrSKVEC9Vd4iIkFSSECCr8dOE5UDByQuPtlSMh57nmfs9xC6CJXnKqDcoQCJ41PCHSaEcvwAhBaRH8mK1OfxDkajaDJhcZ1wK-prlc2eWG3UKpc2R94jEDEIwEToy9mrY1WjbHW1ltBYRi3PQBnr1TBZVBHsybR5LkdJj8uiy830GGu8dEMLF2q9lV-BZRVgBlv__bRttFlDS3w194UdtKSzNlq7bhTd2mjjB_ngLurHViANN6wkmGcKj7klC8bj9Evjm-aijJ06nGZ4qEvjMc-pxPGTzvLy0z612kMPg_799a1Tiyo43IegdKRZ4JCAyyJhQrmUEVUuSCUAGA9dqpivRMISIQk32EkmmkkRuBKSiHq-Jpzuo5Usz_Qhwl6iXWnzPFRTXwYuD5mli5eahkqb_h103thrav7UViJ4pvP3YrqwWAcdzI0-nc3ZNaYUCDEwCI7-MPoYrRsAE9pqPoET1ErMktWnaFV-lGnxdlZ5g2lH8fAbgN3CRg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Analysis+and+Sample+Size+Determination+in+Metabolic+Phenotyping&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Blaise%2C+Benjamin+J&rft.au=Correia%2C+Gon%C3%A7alo&rft.au=Tin%2C+Adrienne&rft.au=Young%2C+J+Hunter&rft.date=2016-05-17&rft.eissn=1520-6882&rft.volume=88&rft.issue=10&rft.spage=5179&rft.epage=5188&rft_id=info:doi/10.1021%2Facs.analchem.6b00188&rft.externalDBID=NO_FULL_TEXT